Cyber-Physical Systems

Laura Nenzi

Universita degli Studi di Trieste
| Semestre 2023

Lecture 3: Concurrent Modeling

[Many Slides due to J. Deshmukh, Toyota]

Difference Equation

real Xjop, < X < Xpign

xT =G(x,u)
y =h(xu)

x(k + 1) = G(x(k), u(k))

Difference Equation

real —-mt<60<m

x1(0)=0
x2(0) =0
6 (0)=0

ul) uZ >
force, angular speed Xf =x1+d sin(H)u1
X7 =X, +d cos(8)uy
6" =60 +cu,
y=1~0

Synchronous Models

Synchronous Models

All components execute in a sequence of
rounds in lock-step

Example:

Components in a digital hardware circuit with a
central global clock

Fixed-step Simulation Models of Discrete
Components in Simulink

I/ \

Synchronous languages

Benefit: system design is simpler if we use a simple round-based
computation

Challenge: How do we ensure synchronous execution when components
may execute on different hardware?

Simple Representation of a Synchronous Component

State Variables

Declaration and
initialization

Update action

that happens in Output
each round Names and

Input
Names and
Types

Types
Component

Simplest synchronous component: delay

(Boolean ={0, 1})

- i bool in bool out
Input variable: in of type Boolean
Output variable: out of type Boolean

State variable: x of type Boolean,
initialized to O

out:=x; X:=1In

In each round, component updates
output from the state and state from

input

Execution of “Delay”

Initialize stateto O
Repeatedly execute rounds

In each round:

Choose value for input (provided from
environment, e.g. by user)

Execute update code

1/0 1/1 0/1 0/0 1/0
O — 21 —21 —2>0 —~>0 —~1

bool in

out:=x; X:=1In

bool out

Synchrony hypothesis

Time needed to execute update is negligible compared to arrival times
between consecutive inputs

Synchronous execution is a logical abstraction
Execution time of update code is 0
Production of outputs, updates to state and arrival of inputs happen instantaneously

With multiple components, assume all execute synchronously and
simultaneously

Let’s Formalize an SRC (Synchronous Reactive Component)

SRC is defined as a tuple: (Q,, Q,, Q,, [init], [react])), where:

Symbol Designation Examples
Q,; Set of Inputs {bool in}
Qx Set of State Variables {bool x }
Q, Set of Outputs {bool out}
[init] Set of initial States x:=0
[react] Set of Updates out = x

X = 1n

Semantics of updates & initialization

Let the set of input, output, and state values be Q;, Qp, Oy

Semantics of the initialization function:
At time/round 0, maps the state variables to some specified value (or values) in Qy

Semantics of the update function (some sequence of conditionals and

assignments):
i/o
A set R of transitions where each transition is of the form: g — q’, where q is the old
value of the state variables, g’ is the new value of the state variables, i is the value of

the input in that round, and o is the value of the output
R is a subset of QyXQ;XQpXQx

What are the Q;, Qp, @ tfor these SRCs?

bool in bool out boolin [Mintv=0
boolx:=0 :Onogll e 0 .
" INt out

out:=x; X:=In

QI = {011}1 QX = {0,1}, QO — {0'1}
QI — {0,1}, QX = lntX{O,l}) QO = Int

Transitions for Delay

bool in bool out

out:=x; X:=In

0/0
025 0

1/0
OL>1

0/1
125 0

1/1
151

Composition of Synchronous Components

bool in, bool out; boolin, bool out,
’

Delay sequentially composed with Delay

Composition of Synchronous Components

bool in, bool out; boolin, bool out,
’

Observe:

1) in,is the same as

out,:=X, ; X5:=1Nn, S;J;'; every

2) lIgnoring first 2
rounds, outputs
of d2 are the

outy:=Xq; X{:= 1Ny

1/1 0/1 0/0 1/0 1/1]
1] —>1] —>(0 —2>(0 —>] —>] o> inputs to d1
delayed by 2
1/0 1/1 0/1 0/0 1/0 rounds

What does this model achieve?

bool in int c

>

int out bool

if (c = 2)
if (d I=0) warn

warn:=1;
else

What does this model achieve?

bool in int c

>

int out bool

if (c = 2)
if (d != 0) warn

warn:=1;
else

If number of ‘O’ inputs seen by the first component
exceeds the number of ‘1’ inputs it has seen by 2, at any
point in its execution, then the warn output becomes 1

Deterministic Component

An SRC is deterministic if:

It has a single initial state

Updates ensure that for every state g and input i, there is a unique state g’ and output o such
that (g,1i,0,q") is a transition

Determinism means for same input sequence, you get same state/output
sequence every single time

Note:
Nondeterminism is useful for modeling uncertainty/unknown and compactness

" ® MEECS 149/249A, UC Berkeley: 36

It is not the same as probabilistic/random choice!

Extended State Machines

Commonly used to describe behavior of MBD models

guard / action

State?2

Statel

initial
—— State3
indicator

Extended State Machines

Does this ESM remind you of something?

(in==1)— out :=0
(in==0)- out :=0

(in==0)— out := (in==1)— out =1

Component Switch: What does this do?

bool press

switch (q)
case O: if (press==1) g:=1

case 1: if (press==0) & (x < 10)
g:=1; x:= x+1
elseif (press==1) or (x >= 10)
q:=0; x:=0
end

ESM corresponding to Switch SRC
q=0: off
intx =0 =1:0n

(press==0)"?

(press==0) & (x<10)
-»Xx=x+1

(press==1) | (x=10)
- xX =0

ESM notation

Implicit variable called “mode” that
is a discrete state variable over some
finite enumeration. Here: {on, off}

(press==0) off (press==1)? SRC transition may correspond to
mode-switch

intx:=0

Each mode-switch has
guard/update. Example:

(press==1) or (x=10) on (press==0) & (x<10) Guard: (press==0) & (x<10) and

- x =0 o X =xtl Update: x:= x+1

ESM execution

intx:=0
Sample executions:

(of£,0)
10
(of£,0)
11
(on, 0)
10
(press==0) & (x<10) (on, 1)

DX =Xt 10
(on,10)
10
(of£,0)

(press==1) or (x=10)
- X =0

Start in mode off; initial state = (off,0)

(off,0)
10
(off,0)
11
(on,0)

10
(on, 1)

10
(on,5)
11
(off,0)

ESM transitions could be nondeterministic!

intx:=20

(press==0) & (x<10)

==1 >10
(press==1) or (x) Sy =y 1

- x =10

Event-triggered Components

What to do if we want some components to not participate in some rounds?
Event is a special input/output variable, which can be absent or present

Event variable has value only if it is present
Syntax:

e? True if e is present
ela e gets the value of the assignment a

Event-triggered Copy

event(bool) out
—

event(bool) in it in? then
{outlin; x:=x+1}

Event-triggered ClockedCopy

bool in event(bool) fla

event(bool) clock | if clock? then
flag!x; x:=in

Event-triggered Components

No need to execute in a round where triggering events are absent

event(bool) sec event(bool) min

if sec? then
X:=x+1;

if (x==60)
min! 1;
X:=0
end
end

Finite-state Components

Component is finite state if all variables are over finite types

boolin [inty:=0
bool i bool out
boolx:=0

out:=x; X:=In

FS

int out

Cruise Controller Example

Clock

event second

ThrottleController

event(real) F

Sensor

event rotate

>

CruiseController

€

event cruise

€

eventinc

€

event dec

nat speed l l event(nat) cruiseSpeed

Display

Driver Inputs

Sensors

Rotation Sensor: Wheel speed
sensor or vehicle speed sensor AC current

Type of a tachometer mduct.onco.l ’7 WW

Counts number of rotations per
second and as the wheel radius
is known, can compute the linear
speed of the car

G rere—
* The ABS wheel speed

sensor generates a small
electrical pulse whenever a
tooth on the tone ring
moves through the
magnetic field of the pick
up coil

4——”' Magnet

* Continuous rotation of the tone ring
produces an AC current whose
frequency — measured in Hertz — is
proportional to wheel speed

/

Tonering

(From Porter and Chester Institute slides on Google Image Search)

Actuator

Clock

event second

ThrottleController

Sensor

event rotate

>

T event(real) F

event cruise
3

_] eventinc
CruiseController €

event dec
N3

nat speed l l event(nat) cruiseSpeed

Display

ThrottleController is an
actuator that gets a
force/torque required to
adjust the throttle plate
which leads to tracking the
desired speed

Decomposing CruiseController further

event second event cruise

Measure Speed SetSpeed -
- event dec

event rotate

! event inc

—=| ControlSpeed |[+——7

nat speed ; ! ' event(nat) cruiseSpeed

event(real) F

MeasureSpeed SRC

event rotate

event second
—>

nat speed
nat count :=0, s:=0

if rotate?
count:=count + 1;

if second?
s:= round(K* count);
count:=0;

speed:=s

MeasureSpeed SRC

Synchronous components: summary

Synchronous dataflow languages used to model synchronous components
Scade-suite from Esterel Technologies: used in many avionics' applications

Benefit: system design is simpler

Challenge: How do we ensure synchronous execution when components
may execute on different hardware?

Asynchronous Components

Asynchrony

Synchrony: All components execute in a sequence of rounds in lock-step
Asynchrony: No lock-step computation!

Natural model for networked, distributed communicating components
executing independently and at possibly different speeds

As there is no central, global clock, explicit coordination is required between
components
Examples:

Processes in distributed computation, multiple threads in any modern OS
Interrupt-driven processing

Asynchronous Reactive Component Example

bool in bool out
—
T..:x:=In
boolg = bool U {0} T
out"
X#* @ — {out:=x; Guarded

Tasks: Tianout X 1= @ } Update

Asynchronous Reactive Component

bool in

T..:X:=In
T

out

X# @ - {out:=x;

X:=0Q}

Input channel in of type bool
Output channel out of type bool

State variable x of type bool+@. The
value @ indicates empty or null.

X initialized to @
Input task T, reads input value into x

Output task T, produces output if x
IS not empty

Asynchronous Reactive Component Execution

Execution Model: In each step only one task
is executed

Task can be executed only if it is enabled (i.e.
if its guard condition is true)

If multiple guard conditions are true, one
task is nondeterministically executed

Sample execution:

in?0 out!o0 in?1 1In?0 out!0
)— 00— 0 —1—0—0 Buffer
T, Tout T, T,, Tout

1n 1n

Example: Asynchrony + Nondeterminism

ARC may have no inputs or @
outputs, just internal tasks
Update may have no guards

In each step, execute T, or T, @ @

Sample execution:

(0,0) > (0,1) > (0.2) > (1,2) = (1,3) @ @ @

Interleaved model of concurrency @

Asynchronous Process/Reactive Component

Set of input channels: |
ESM representation: in?v, where v is the value
to be received

T :x:=in Set of output channels: O

ESM representation: outlv, where v is the
value to be written

T

out*
X# @ — {out:=x;
X:=Q) Set of state variables X

Initialization Init which maps state
variables to initial values

Updates are different from SRCs!

Input Task defines updates of the form: G = x:= E(X,in)

Guard condition G: some expression over only state variables X; input task
can be executed only if G is true

For each in in |, we associate a read-set (X U {in}): variables that can appear
in E for input task associated with in (rationale: can read value on in only if
that task is enabled)

in?v
Defines a set of input actions of the form: g — ¢’

where q is value of state variables before update, and q satisfies G
value of state variables after update is g’ = E(X—q, in—V)

Updates are different from SRCs!

Output Task: defines updates of the form: G — out := E(X)

Guard condition G: some expression over only variables in X; output task can
be executed only if G is true

Any expression containing only state variables can appear in E

outlv
Defines an output action of the form g——¢’

where q is value of state variables before update, and q satisfies G
value of state variables after update is g’
value v is output on channel out

Updates are different from SRCs!

Internal Task: defines updates of the form: G — x := E(X)

Guard condition G: some expression over only variables in X; internal task
can be executed only if G is true

Any expression containing only state variables can appear in E, only state
variables appear on LHS

Defines an internal action of the form qiq’
where q is value of state variables before update, and q satisfies G
value of state variables after update is g’
No input is read or output is produced!

Asynchronous Example

queue(bool) x; :== @, x, := @

bool in; bool
, out
—| T, .: =Full(x;) > Enqueue(x,,in,)
bool in,

T.,: =Full(x,) = Enqueue(x,,in,)

Toutr: TEmpty(x,) = out := Dequeue(x,)

Tout: EmMpty(x,) = out := Dequeue(x,)

Asynchronous Processes can also be represented with extended state machines

Asynchronous Merge: Sequence of Actions

queue(bool) x; == @, x,:= 0 ool (3, 0)
bool in, 00 T
— out in1} in1?1
_ Tiy1: —Full(x,) = Enqueue(xy,in,) |
bool in, _ out’l (<1>,<1>)
T..,: —Full(x,) = Enqueue(x,,in,) (<1>,0) Ty ‘
Toutr: TEmpty(x;) — out := Dequeue(x,) T, | in2?0 Tourz | OUL!O
Toura: TEMpty(x,) — out := Dequeue(x,) Tin
(<1>,<0>) (<1>,<0,1>)
in2?1

Asynchronous Processes can also be represented with extended state machines

Composing Asynchronous Processes

Tinl: Xl = |n

Toutl:
X, # @ - {temp :=xy;

X:=0}

Buffer

Tinz: X2 = temp

Toutz:
X, # @ - {out:=x,;

X, =0}

Buffer

Parallel composition:
Inputs, Outputs, States and
Initialization similar to the

synchronous case

Input consumption needs
to be synchronized with
output production for the
‘temp’ variable

Composed DoubleBuffer

Buffer Buffer

T, X, :=temp
out2*
X, # @ - {out:=x,;

X, =0}

Tini X :=10n

Tbutl:
X, # @ - {temp :=xg;

X;:=0}

bool in .
Tinl: Xl =1n

Toutrs X2 = @ — {out:=x,;

X, =0}

Buffer | T .. .:x,# 0 — {temp:=xy;

Double

bool
out

bool
temp

Defining P, | P,
In each step only 1 task executes

If y is an output channel of P,
and input channel of P,:

Output task for P;:G;— U,
Input task for P, :G,—» U,

Composition has output task for
y with code: G; A G, =» U;U,

Output Hiding

Hiding ouput y: achieved by removing y from the set of output channels
and turning each output task associated with the channel y into an
internal task by declaring y to be a local variable

booly x; :=0, x, := 0@

Tini X :=10n

bool in

Tyt X, # @ - { out:=x,;
Double X, =0}
Buffer |1 .. . :x,# @ — {local bool temp;
temp:=xy;
X, :=0;

X,:=temp}

Blocking vs. Non-blocking Synchronization

Task T, of P1 can produce a value on the output
only if P2 has an input task that is enabled to
consume the value with some input task

In this example, once x becomes odd, P2 cannot

consume (no enabled input task) and it blocks
communication

Timpe: (X is even)—
X:=tmp

Process is non-blocking on channel in for a state s

if at least one guarded update corresponding to
input task for in is enabled in the state s

Process is non-blocking if it is non-blocking in
How do you make P2 non-blocking? every channel and for every states.

Blocking vs. Non-blocking Synchronization in Merge

queue(bool) x; :== @, x, := @

bool

bool in;
out

—»| T..: —Full(x;) = Enqueue(xy,in,)
bool in,
T.,: =Full(x,) = Enqueue(x,,in,)

Toutr: TEmMpty(x,) = out := Dequeue(x,)

Touta: TEMpty(x,) = out := Dequeue(x,)

Blocking vs. Non-blocking Synchronization in Merge

queue(bool) x; :== @, x, := @

An input on the channel in;

- bool _
bool in, Ut cannot be processed if the queue
—| T2t —Full(x;) = Enqueue(xy,in,) X, is full, and thus the producer of
bool in, ,
T.,: =Full(x,) = Enqueue(x,,in,) outputs on the channel in, has to
T....: =Empty(x,) — out := Dequeue(x,) wait until this queue becomes

non-full

Touta: TEMpty(x,) = out := Dequeue(x,)

Deadlocks

Common error in asynchronous designs

Caused by each process waiting for another process to execute a task, but
no task is enabled

(0,0), (yl: Zl);

bool x; :=0,z;:=0 Vs, 22)

Tll: (X1==O)—) X1:= 1; T21: (X2==O)_) X2:= 1; (y1=:)—) yl:: 1;
Tyt (X==1)=> 21 =1, Tyt (x==1)> 2z, =1y
T13: (21::1)—) rl = 1 T23: (22==1)_) rz = 1

(y,==0)—vy,:=1;

Deadlocks

Common error in asynchronous designs

Caused by each process waiting for another process to execute a task, but
no task is enabled

(0,0, V1, 21),

(0,0) (v2,22)
Tz]_: (X2==O)_) X2:= 1; Tll & (y1=:O)—) yl:: 1"
Tzz: (X2==1)_) 22 = rl

(1,0),

(0,0)

P1 Must P2
synchronize

Ty | € (y,==0)—vy,:=1;

Finite State Machine

A FSM is a tuple {S, Q;, Qp, update, sy} where:
e S is a finite set of states;

e (); is a set of input valuations;

e () is a set of output valuations;

e update: S X Q; = S X Q, is an update function, mapping a state and
an input valuation to a next state and an output valuation;

* s, is the initial state.

Extended Finite State Machine

A FSM is a tuple {S, Q;, Qp, update, sy} where:
e S is a finite set of states;

e (); is a set of input valuations;

e () is a set of output valuations;

e I/ is a set of variables;

e update:S X Q; XV = SXVX Q. is an update function, mapping a
state and an input valuation to a next state and an output valuation;

* s, is the initial state.

Mealy machines and Moore machine

The state machines we describe here are known as Mealy machines, named after
George H. Mealy, a Bell Labs engineer who published a description of these ma-

chines in 1955 (Mealy, 1955). Mealy machines are characterized by producing
outputs when a transition is taken.

An alternative, known as a Moore machine, produces outputs when the machine
is in a state, rather than when a transition is taken. That is, the output is defined
by the current state rather than by the current transition. Moore machines are

named after Edward F. Moore, another Bell Labs engineer who described them in
a 1956 paper (Moore, 1956).

Ex: Parking Finite State Machine

Try to define the FSM of a car park, where a car ca@

and you have a maximum number of slots equal to VI

Hint: the modes are the number of occupied slots

Parking Finite State Machine

arr A = dep arr A = dep arr A = dep arr A = dep
—-c=1 - c=2 —c=3 - c=M

N eo00 / N

wo wo - e \ S

depA —arr depA —arr dep A = arr dep A —arr
—c=0 —>c=1 —~>c=2 - c=M-1

Parking Finite State Machine

arr A = dep arr A = dep arr A = dep arr A = dep
—-c=1 - Cc=2 —c=3 - c=M
bool arr ' A v — '

bool dep

W wo - e \ S

depA —arr depA —arr dep A = arr dep A —arr
—>c=0 >c=1 —>c=2 - c=M-1

Parking Extended State Machine

Consider a system that counts the number of cars that enter and leave a parking
garage in order to keep track of how many cars are in the garage at any time.

(arr A =~ dep A c<M)
—s:=s+1, c:=s

(dep A = arr A c>0)
—s:=s-1, c:=5s

Non-deterministic Finite State Machine

A FSM is a tuple {S, Q;, Q,, possibleUpdate, s, } where:
e S is a finite set of states;

e (); is a set of input valuations;

e () is a set of output valuations;

e possibleUpdate:S X Q; — 215%Qo} js gn is an update relation, map-
ping a state and an input valuation to a set of possible (next state,
output valuation) pairs;

e Sq js the initial state.

inputs: pedestrian: pure

outputs: sigR, sigG, sigY : pure ’ true / sigG
reen
i

true / sigR

yen_ow)

true / sigY

true / sigR

true / sigY

Thermostat FSM
Temp < 18 — heatON

cooling heating

Temp = 22 — heatOFF

It could be event triggered, like the garage counter, in which case it will react whenever a
temperature input is provided. Alternatively, it could be time triggered, meaning that it
reacts at regular time intervals

