
Scalar-Vector-Tensor
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A quantity described by only one number is called scalar, like as temperature.

A quantity described by three numbers, intensity (magnitude), direction, is called vector like 
as velocity v = [Vx ,Vy , Vz]

A quantity described by more one number i.e. 3 directions and 3 intensities is called tensor, 
like as strains in a continuous medium

Strain tensor
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A scalar, a vector and a tensor quantity can be constant or depend on a variable
(scalar, vector, tensor). When depend on a variable, the quantity is called field (scalar
vectorial, tensorial).

If the coordinate system changes, the scalar is the same, instead the vector and the
tensor have to be ricalculated.

So we define a quantity which “physical” proprieties are indipendent by the
coordinate system (i.e. Intensity and direction of the vector).
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Tensors are simply mathematical objects that can be used to describe physical
properties, just like scalars and vectors. In fact tensors are merely a generalization of
scalars and vectors; a scalar is a zero rank tensor, and a vector is a first rank tensor.

The rank (or order) of a tensor is defined by the number of directions (and hence the
dimensionality of the array) required to describe it. For example, properties that
require one direction (first rank) can be fully described by a 3×1 column vector, and
properties that require two directions (second rank tensors), can be described by 9
numbers, as a 3×3 matrix. As such, in general an nth rank tensor can be described by
3n coefficients.

The need for second rank tensors comes when we need to consider more than one
direction to describe one of these physical properties.
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COORDINATE TRASFORMATIONS 2-D
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COORDINATE TRASFORMATIONS 2-D
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TENSORS

The tensor of rth put in relation two tensors with rank m and n ( m+n=r)

Example: a vector is a trasformation of one point in an other one.

A tensor  of second rank transfrom a vector (vectorial field) in an other one ( vectorial field).
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Stress tensor

Tensors are geometric objects
that describe linear relations
between vectors, scalars, and
other tensors.
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In almost all cases, the tensors of second rank are:

Symmetric

have positive eingenvalues

These tensors can be represented  by ellisoidal surfaces.

jiij uu =

0i

6 indipendent components

The intersection of the main axes, P1,
P2, P3, correspond to

where λ1, λ2, λ3 are the
eigenvalues ​​(major, intermediate,
minor).
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A tensor acting on a vector transforms it into another vector. The b direction is perpendicular 
to the a intersection with the ellipsoid u. 
If a is parallel to one of the three main axes, then  b || a .
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The representation ellipsoid surface oriented along the main axes is: 
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​​The length of the major, the intermediate and minor axis is 
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CONTENTS:

• Stress definition

• Stress in two dimensions

• Stress in three dimensions

• Translations and rotations

• Deviatoric stress

• Mohr’s circle
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When on a solid body act external force (i.e. pressure, traction), the body is deformed changing
shape and/or volume. The body that returns to its initial condition when the external forces
stopped, is called elastic body. For small deformation and small time scale (minutes not million
years), the rocks can be consider elastic.
The elasticity theory links the forces applied on external surface of a body to its shape and
volume changes. This relationship is expressed in term of stresses and strains.

Stresses are forces per unit area that are
transmitted through a material by interatomic
force fields. Stresses that are transmitted
perpendicular to a surface are normal stresses;
those that are transmitted parallel to a surface are
shear stresses. The mean value of the normal
stresses is the pressure.
We consider a body subjected to a traction force F
and ΔS a surface element of a generic section S of
the body of which the normal n makes an angle ϕ
with F. If we named ΔF the force that acts on ΔS,
the stress is:
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Its unit in SI system is Pascal: 1Pa=1Nm-2
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•Consider the force that must act at the base of the
column of rock at a depth y beneath the surface to
support the weight of the column: the weight of the
column of cross-sectional area δA, is ρgyδA.
• This weight must be balanced by an upward surface
force σyyδA distributed on the horizontal surface of area
δA at depth y.
• We are assuming that no vertical forces are acting on the
lateral surfaces of the column and that the density ρ is
constant:
• σyy is thus the surface force per unit area acting
perpendicular to a horizontal surface, that is, stress

Since the forces on the column of rock must be equal if the column is in equilibrium, we find:

The normal force per unit area on horizontal planes increases linearly with depth. The normal
stress due to the weight of the overlying rock or overburden is known as the lithostatic stress
or pressure.

1] [Eqgy        yy  =
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• Surface forces can act parallel as well as perpendicular to a surface. An example is provided
by the forces acting on the area element δA lying in the plane of a strike–slip fault:

• The normal compressive force σxxδA acting on the fault face is the consequence of the
weight of the overburden and the tectonic forces tending to press the two sides of the fault
together. The tangential or shear force on the element σxzδA opposes the tectonic forces
driving the left-lateral motion on the fault.

• This shear force is the result of the frictional resistance to motion on the fault. The quantity
σxz is the tangential surface force per unit area or the shear stress: the first subscript refers to
the direction normal to the surface element and the second subscript to the direction of the
shear force.
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The tension stress (directed outwards the body) is positive.
The compressional stress (directed inwards the body) is negative.
The component along the positive direction of an axis is positive.
The component along the negative direction of an axis is negative.
The sign of the stress is the product of these signs (above).
Example: the component of a compressional stress directed along the negative axis is positive:

- x - = +

The horizontal tensile stress is a force per unit area acting on vertical planes and tending to 
pull on such planes. A compressive stress is a normal force per unit area tending to push on a 
plane. We consider compressive stresses positive and tensile stresses negative, a convention 
generally adopted in the geological literature. This is opposite to the sign convention used in 
most elasticity textbooks in which positive stress is tensional

Sign convention
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Stress in two dimensions

In this section we will consider a two-dimensional state of stress; the state is two-dimensional in the
sense that there are no surface forces in the z direction and none of the surface forces shown vary in
the z direction. The normal stresses are σxx and σyy, and the shear stresses are σxy and σyx. The notation
adopted in labeling the stress components allows immediate identification of the associated surface
forces. The second subscript on σ gives the direction of the force, and the first subscript gives the
direction of the normal to the surface on which the force acts.

The tangential or shear stresses σxy and σyx have
associated surface forces that tend to rotate the
element in Figure about the z axis. The moment exerted
by the surface force σxyδyδz is the product of the force
and the moment arm δx; that is, it is σxyδxδyδz. This
couple is counteracted by the moment σyxδxδyδz
exerted by the surface force σyxδxδz with a moment
arm δy.



Because the element cannot rotate if it is in equilibrium:

6] [Eq.       yxxy  =

Thus the shear stresses are symmetric in that their value is independent of the order of the subscripts. Three
independent components of stress σxx, σyy, and σxy must be specified in order to prescribe the two-
dimensional state of stress.
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Stress in three dimensions

Stress components can be defined at any point in a
material. In order to illustrate this point, it is
appropriate to consider a small rectangular element
with dimensions δx, δy, and δz defined in
accordance with a cartesian x, y, z coordinate
system, as illustrated in Figure:

In order that the parallelepiped is in static equilibrium (not in motion), is need to be null the 
resultants of the internal and external forces act on it and also the resultant of the moments.
Both the normal and shear stress are function of the coordinates of the point to which they 
relate; so that we should consider the stress changes that are expressed by partial 
differentials of the stresses.
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On the DEFG face the stress is σxx plus its increment along x axis. So the force acts on the DEFG is:
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Instead the force on the face ABCO is (the negative sign is because the negative direction along x axis): 
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The sum of the forces due to the normal stresses is:
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Translation:
We consider the internal forces acting alon x axis. The contribution of normal stresses is the one related 
to the two faces perpendicular to the x axis.
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The contribution due to the shear stresses is related to the two faces pairs parallel to x axis. For the sides 
perpendicular to y axis:
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Instead for the sides perpedicular to z axis:

dxdydz
z

dxdzdz
z

dxdy zxzx
zxzx




=












++−




The resultant of the forces act along x axis is:
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The same for the y and z axis: dxdydz
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The external forces acting on the parallelepiped are due to gravity, with acceleration g. If the density of 
parallelepiped is ρ, the gravity force act along x axis is:

xx dxdydzgdVg  =

The equilibrium conditions to avoid translations can be expressed as: 
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These equation can be easily expressed in tensorial or vectorial form as
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Rotations:
We consider the components of rotations around axes passing for the barycenter of the parallelepiped 
and parallel to the axes x, y, z. For a axis parallel to z, the stresses that cause rotations, are those acting 
along x and y. 

Considering positive the moments that cause a 
clockwise rotation, the moment related to the 
shear stresses parallel to x axis is 
(moment = stress x surface x arm):
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The same for the stresses parallel to axis y:
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To not have rotations, the sum of moments must be null. Ignoring the terms of fourth order
(dx2dydz), we obtain:

( ) 0=− dxdydzyxxy 

from which we have:

yxxy  =

The same results are obtained for the other axes, so that we have:

jiij  =

The stress tensor is a simmetric tensor and has only six indipendent components.
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Deep in the Earth there is great compression stress due to the gravitational load of the 
overlying rocks. Is sometimes appropriate to remove the effect of the load and consider only 
the remaining effort which we call “deviatoric”. We define the average stress

Deviatoric stress

( ) 3/3/332211 iiM  =++=

as the third part of the normal stresses sum, that is the trace of the stresses tensor which is 
invariant. So the average stress is also equal to the trace of diagonalized tensor divided three:
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The deviatoric stress tensor is the result of tectonic force and provide faulting and sometimes 
produces anisotropy in the propagation of seismic waves.
For depth bigger than few km, it frequently assume that exist a state of lithostatic stress, for 
which the normal stress are equal to the pressure due to the gravitational load of the overlying 
rocks with minus sign, and the deviatoric stresses are equal to zero.
Because the weight of a column of rock high z and with density ρ is equal to ρgz, the pressure P 
at a depth of 3 km below a column of rock with density 3 g/cm^3 is:

( )( )( ) kbarcmdyncmscmcmgP 9.0/109103/980/3 28523 ===

The pressure at a depth of 3 km is about 1 kbar o 100Mpa. Because exist the deviatori stresses 
(small) the relationship is only a good approximation.



30

A means by which two stresses acting on a plane of known orientation can be plotted as the 
components of normal and shear stresses (derived separately from each of the two stresses). 
Mohr’s circle is a geometric representation of the 2-D transformation of tridimensional state 
of stresses and this graphical representation is extremely useful because it enables you to 
visualize the relationships between the normal and shear stresses acting on various inclined 
planes at a point in a stressed body.
Using Mohr’s Circle you can also calculate principal stresses, maximum shear stresses and 
stresses on inclined planes. 

MOHR’S CIRCLE
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To derive the tangential stress and normal on a plane, consider a prismatic element with two 
sides parallel to the main stress σ1 and σ2 (σ1<σ2 ) and with the third face P with area A, 
which normal forms an angle θ with the direction of σ1

MOHR’S CIRCLE



Consider the equilibrium of the prisma in the two directions, parallel and perpendicular, at 
plane P!. For the equilibrium along the parallel direction: 
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The same for the perpendicolar direction
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From these equations we can calculate the normal σ and shear τ components on any plane, 
given ϑ, σ1 and σ2.
These equations represent the Mohr’ circle. 
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The compressional stress is positive (on the right of the origin), the tensional ones negative.
The shear stress downward is positive, the others negative. The angles measured 
counterclockwise from the σ1 are positive.
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The shear stress is the biggest on two perpendicular planes : the first one is at ϑ= 45° from σ1, 
the second one is at ϑ= -45° from σ1. 
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Until now we have considered one surface/plane stress (one of the main stress is null), so 
the stress tensor (assuming σ3=0) is: 
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Possible bidimensional stress and their representation
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Esempi cerchio di Mohr

Cerchio di Mohr nel caso di  Cerchio di Mohr nel caso di  

01  02 =

(tensione 
monoassiale)

01 = 02 

(compressione 
monoassiale)
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Passing from surface stress to tridimensional one, there will be three couples of main stress
with which to build three Mohr’s circles, each of ones represent the stress state on the plane
containing the main corresponding axes.
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By symmetry we have represented only the part of the graphyc corresponding to τ > 0. it can 
be shown that any point lying between the three circles can represents the normal and shear 
stress on a plane oriented with normal n=̂(cos φ, cosβ, cosϑ). For the palane dS the point is q!
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Small deformations:

Elongation:

Linear deformation:  
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Solid bodies are never completely rigid; under the action of forces applied these bodies are 
deformed. The strain are said to be elastic if they disappear when stopped the forces that 
have produced them, and the body on which these forces acted, it will be said elastic body 
otherwise deformations are said to be permanent. Consider the purely geometrical study of 
the distribution of displacements and deformations of an elastic body, without caring to 
consider the forces that caused these changes.
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Consider a stress acting in the x direction on an
elastic thread. The point L on the thread moves
of a distance u to the point L’ when the stress is
applied, instead the point M moves to the point
M’ at the distance u+δu. The strain in the x
direction and indicate with exx is defined by the
ratio between the elongation and the original
length of the elastic thread:
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Implicit in our discussion is the assumption that the deformations are small.
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In the bidimensional case, we consider
the deformations of the rectangle PQRT
in the plane x-y. The P, Q,S points moves
to P’, Q’, S’.
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We have so far considered strains or deformations that do not alter the right angles between line elements
that are mutually perpendicular in the unstrained state. Shear strains, however, can distort the shapes of
small elements. For example, Figure shows a rectangular element in two dimensions that has been distorted
into a parallelogram. The shear strain exy is defined to be one half of the decrease in the angle SPQ:

where 1 and 2 are the angles through which 
the sides of the original rectangular element 
are rotated.. The angle δ1 + δ2 is called shear 
angle:
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In the three dimensions only six shear strains (eij with i≠j), but eij=eji so only three are
independent:
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So the shear angle is double of shear deformation         



If the amount of solid-body rotation is zero, the distortion is known as pure
shear. In this case, illustrated in Figure:
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In three dimensions:
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In three dimensions. Prior to deformation it has sides δx, δy, and δz. The element may 
be deformed by changing the dimensions of its sides while maintaining its shape in 
the form of a rectangular parallelepiped. After deformation, the sides of the element 
are δx−εxxδx, δy−εyyδy, and δz−εzzδz. 
The quantity εxx, εyy, εzz are called normal components of strain. The normal
components of strain εxx, εyy, εzz are assumed, by convention, to be positive if the
deformation shortens the length of a side. This is consistent with the convention that
treats compressive stresses as positive.
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The elongation (δu, δv, δw) of any point (δx, δy, δz) can be expressed – at the first order – by:
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The equations can be written in vectorial form (matrices) dividing a symmetric part
(strains)from an antisymmetric one (rotations):
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The strain is an a-dimensional quantity! Generally, in seismology, the strain due to a seismic 
wave is about  10-6.
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Shear strain: 
Shape changes

l
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Normal strain: 
Length changes
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The  fractional change in volume (volume change divided by original volume) due to strain is 
known as the dilatation ; it is positive if the volume of the element is decreased by 
compression. The original volume of parallelepiped is V=δxδyδz. After deformation (at first 
approximation) the volume is:

The dilatation is:

( ) ( ) ( ) zeyexeVV zzyyxx  +++=+ 111

If the deformation of the element is so small that squares and higher order products of the 
strain components can be neglected in computing the change in volume of the element, we 
obtain: 
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The dilatation is equal to the divergence of displacement.



53

Usually you want to calculate the deformation having the known stress. Hooke proposed
that, for small deformations, each deformation is proportional to the stress that the causes:
this is the Hooke's law that is the basis of the theory of elasticity. In other words, the
Hooke's Law is the relationship of proportionality between stress and strain.

If is applied a traction (compression) to a body, the body
itself is subject to an elongation (shortening). By Hooke’s
law:

LF 

The proportionality constant depend on the material, temperature, geometrical
characteristic of the object (body).
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In a one dimension the Hooke’s law can be written:

xxxx ce=

Where c the constant depending on the medium.
In three dimensions each of six components of the stress tensor can be linearly dependent
on the six components of the strain tensor
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We have 36 constants. 

By the symmetry of the stress and strain tensors and by a thermodynamic condition, the
number of independent constants is 21.

………………………….
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If we consider an isotropic medium ( that is its properties not change with the direction),
the number of constants decreases to two:

( ) xxzzyyxxxx eeee  22 +=+++=

yyyy e 2+=

zzzz e 2+=

xyyxxy e 2==

xzzxxz e 2==

yzzyyz e 2==

Or in tensorial form:

ijijij e 2+=

With δij unit tensor (δij =1 per i=j ; δij =0 per i≠j).
The constants λ and μ are known as Lamè’s parameters. The constant μ (μ=σxy/2exx) give a
measurement of the resistence of a body to a shear stress, and is calles shear modulus or
rigidity modulus. Obviously the shear modulus for a liquid or gas is null. There are also other
constants: Young modulus, Poisson modulus, Poisson ratio and Bulk’ modulus.
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MODULO DI YOUNG

E

dx
du xx

=

To obtain the relationship between E and the Lame
costants λ and μ we write σxx and exx using λ and μ.
Because only σxx is different by zero:

xxxx e 2+=

yye 20 +=

zze 20 +=

yzxzxy eee ===0

According to Hooke’s law, when a body deforms elastically, there is a linear relationship
between stress and strain. The ratio of stress to strain defines an elastic constant (or elastic
modulus) of the body. The elastic moduli, defined for different types of deformation, are
Young’s modulus, the rigidity modulus, the bulk modulus and the Poisson’s ratio

Young’s modulus is defined from the extensional deformations. Each longitudinal strain is proportional
to the corresponding stress component. If we apply a stress σxx we have elongation du along the x axis
and shortenings dv and dw along y and z. The extension is proportional to σxx and to length dx ; is
inversely proportional to the resistance of the material:
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MODULO DI YOUNG

+=  23xx

Summing the first three equations:
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And replacing this last equation in
the first one:
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So the Young’s modul is
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The Young’s modul, as Lame’ parameters, is dimensionally like a stress and has large value ,
as 1010 Pa.
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POISSON RATIO
In an elastic body the transverse strains eyy and ezz are not independent of the strain exx. Consider the
change of shape of the bar in Figure. When it is stretched parallel to the x-axis, it becomes thinner parallel
to the y-axis and parallel to the z-axis. The transverse longitudinal strains eyy and ezz are of opposite sign
but proportional to the extension exx and can be expressed as:

   e   and    xxzzxxyy eee  −=−=

The constant of proportionality  is called Poisson’s ratio. The values
of the elastic constants of a material constrain  to lie between 0 (no
lateral contraction) and a maximum value of 0.5 (no volume change)
for an incompressible fluid. In very hard, rigid rocks like granite n is
about 0.45, while in soft, poorly consolidated sediments it is about
0.05. In the interior of the Earth,  commonly has a value around
0.24–0.27. A body for which the value of  equals 0.25 is sometimes
called an ideal Poisson body.
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INCOMPRESSIBILITY MODULUS (BULK’ MODULUS)

Consider a body subject to a hydrostatic pressure (e.g. Body immersed in a liquid): the ratio
between the pressure and the compression (= negative cubic dilatation) is named Bulk’
modulus K. For a hydrostatic pressure:
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pexx −=+  2

peyy −=+  2

pezz −=+  2

Adding these three equations
p323 −=+ 

K represents the resistance opposed by a medium to an increasing of hydrostatic pressure.
The Young’ and Bulk’ modulus, the Lamè parameters are all positive. They are measured in
Nm-2=Pa and their values for rocks are usually ranged from 20 to 120 Gpa.
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SUMMARIZING...
The application of a force creates a state of stress which causes a deformation in the structure of the
body. The stress is the relationship between the force and the surface on which it acts
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There are three kind of stress: traction (a), compression (b) and shear (c).

When the force acts normal to surface causes the
traction or the compression. Instead if the force
acts parallel to the surface causes a shear stress.
The unit is Pascal (1Pa=1Nm-2).
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Traction or compression Normal deformation
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where l and l0 are the body dimension in stress 
direction first and after its action.
Δl is the dimentional variation due to the stress. The 

deformation is adimensional!

A stress that acts on a body causes a change in dimensions and shape of the body itself.
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A stress that acts on a body causes a change in dimensions and shape of the body itself.

Shear stress Shear strain == tg
b

d


Both the normal and shear strain depend on the derivative of displacement field.

Convention of the σij sign:

POSITIVE NEGATIVE

TENSIVE STRESS (direct to the 
outside of the body)

COMPRESSIONAL STRESS (direct to 
the inside of the body)

Componet along the positive axis 
direction

Componet along the negative axis 
direction

The sign of the σij component is equal to the product of the sign above.
Example: the compressional stress component along the negative axis direction is positive
because is equal to - x - = +!
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The Hooke’s law define a relationship between stress and strain. For a isotropic body:

 

ij = ij +2ij

where μ and λ are di Lame’s parameters, Θ is the cubic dilation and  δij is the Kronecker
delta. 

The Lame’s  parameters have the stress dimensions (Mpa).

The dilation is the divergence of the displacement: 

The Kronecker delta is a unit tensor: δij =1 per i=j ; δij =0 per i≠j.

u=
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ELASTIC PARAMETERS

Rigidity: 
resistance of the medium to shear (N/m2) ij
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Young modulus: 
Stress dimension (MPa)

Poisson ratio: 
Is adimensional and ranged between 0 and 0.5. For  

liquid (μ=0) σ=0.5, for compact rocks σ=0.05. the 
average value for rocks is  0.25 that corrispond to 

λ=μ that is Poisson ratio.
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Bulk Modulus (or imcopressibility): 
is the relationship between applied pressure and 

volume variation. 

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