Magnetic Resonance Imaging MRI

Key resources:

- ü **"Introduction to Medical Physics" S. Keevil et al CRC Press (2022)**
	- **Chapter 7**
- ü **Some papers and link in Moodle**
- \checkmark the following web site:

<http://www.imaios.com/en/e-Courses/e-MRI>

- ü **Understanding the principles of nuclear magnetic resonance (NMR)**
- ü **The knowledge of the technology of the NMR imager**
- ü **To learn how to optimize a MRI exam**

Welcome to the MR unit

https://www.youtube.com/watch?v=8m_RUVrxhew

Historical Introduction

ü **1930s and 1940s: The discovery of nuclear magnetic resonance (NMR) confirms predictions of the quantum theory**

• **Nobel Prizes: Isidor Rabi, Felix Bloch, Edward Purcell**

ü **1971: Raymond Damadian discover differences between NMR signals obtained from normal tissue and from tumours**

ü **1973: Imaging methods by Paul Lauterbur and further developed by Peter Mansfield**

MRI in medicine

ü**High spatial resolution imaging of both structure and function**

ü**Growing role in planning and guiding treatment and in the evaluation of patients' response to therapy**

ü**A tool for understanding of basic physiology and neuroscience**

Much of this flexibility can be exploited by programming existing scanners to obtain images in new ways, rather than requiring expensive hardware upgrades

ü**Nuclear**

- **a phenomenon involving atomic nuclei** \cdot *v* not all nuclei can be **studied using NMR**
- **almost all medical MRI involves only the nucleus of the hydrogen atom**
- ü**Magnetic** esonance

MAGNETIC PISCUSSION

bruid Townshel.

ü**Nuclear**

- ü**Magnetic**
	- **NMR involves the magnetic properties of nuclei**
	- **it occurs when nuclei are placed in a magnetic field**

MAGNETIC PISCUSSION

brew Townshel.

- ü**Nuclear** ü**Magnetic** ü**Resonance**
	- **NMR occurs when energy is applied to the nuclei at a specific resonance frequency** v**nuclei absorb and then re-emit this energy** v**analysis of the resulting signal can reveal various properties of the material under study**

MAGNETIC PISCUSSION

brew Townshel.

- ü**NMR is fundamentally a quantum mechanical phenomenon**
- ü**For most purposes in medical MRI, it is sufficient to adopt a 'semi-classical' approach**
	- **in some situations we will have to refer back to the quantum mechanical model**
	- **in others we will have to accept that our semi-classical approach is an approximation that doesn't bear too much scrutiny!**

Resonance

ü**Resonance occurs when a system can efficiently transfer energy between two different storage modes**

• **such as kinetic energy and potential energy in the case of a pendulum**

Swinging a child in a playground swing is an easy job because you are helped by its natural frequency.

Ø **But can you swing it at another frequency?**

Resonance

Resonance occurs when a system can easily transfer energy between two or more different storage

https://www.youtube.com/watch?v=8xE_nT3QySo

Quantum mechanics

ü**many physical variables that appear to be continuous on the larger scale of everyday life are actually quantised when very small objects are considered** • **atoms and nuclei**

ü **quantised variables include energy, electric charge and angular momentum**

Quantum mechanics

ü **Angular momentum of atomic nucleus**

$$
\left| {\bf J} \right| = \hslash \sqrt{I(I+1)}
$$

 $\check{h} = h/2\pi$

• **h Planck's constant 6.63** × **10−34 J s**

- ü *I* **spin quantum number**
	- **a property of the nucleus**
	- *I* **can only take integer or half integer values (1/2, 1, 3/2, etc.)**

v**which in turn restricts the angular momentum to certain values too**

Quantum mechanics

ü **The value of** *I* **depends on the number of protons and neutrons**

 $\sqrt{2}$ Protons and neutrons have spin $I = \frac{1}{2}$

- **protons pair off with each other in such a way that the spin of each pair of protons cancels out**
- ü **If there is an odd number of protons, the unpaired proton contributes** *I* **= 1/2**

ü **Neutrons pair off in a similar way**

nuclei containing an even number of protons and an even number of neutrons have an overall spin I = 0

Magnetic Nuclei

A nucleus has magnetic properties if it has an odd number of protons and/or neutrons

- **1H1 (proton), 2H1 (Deuterium; odd-odd)**
- **7Li3 (Litium; even-odd)**
- ¹³C₆ (Carbonium; even-odd)
- **14N7 (Nitrogen; odd-odd)**
- **19F9 (Fluorine)**
- $23Na₁₁$ (Sodium)
- **31P15 (Phosphor)**
- 35Cl₁₇ (Chlorine)
- **63Cu29 (Copper)**
- 1271_{153} (lodine)

Nuclei with Nonzero Spin of Potential Biomedical Interest

The Relative NMR Sensitivity indicates the amount of signal that would be obtained from numbers of each nucleus, relative to that of the 1H nucleus

ü**More complex aspects of nuclear structure mean that some nuclei have higher spin quantum numbers** • **specifically "orbital angular momentum'**

ü**The hydrogen nucleus, and most of the other nuclei that are of interest in biomedical applications of NMR, have I = 1/2**

1H images

ü**1H nucleus combines the highest NMR sensitivity with natural abundance close to 100% and very high abundance in the body**

ü**1H nuclei are predominantly found in water molecules and in lipids**

other NMR-visible nuclei

specific applications to investigate other NMR-visible nuclei

- ü**spectroscopic studies of energy metabolism using 31P**
- ü**molecular imaging using 19F-containing compounds**
	- **introduced into the body artificially**

Basic Concepts Hydrogen Protons

√ Magnetic Resonance Imaging (MRI) is based on 1H protons

ü **Very qualitative introduction**

- **a solid ball spinning on an axis, with the rate at which it is spinning determined by the quantum number I**
- **a positively charged spinning proton acts like a tiny magnet**

a crude representation of a quantum mechanical object that is at once a wave and a particle !!!

The physics of proton NMR

µ=g**J**

ü µ **magnetic moment v** *y* gyromagnetic ratio of ¹H • $\gamma = 42.57$ MHz T⁻¹ • $\gamma = 2.68 \times 10^8$ **rad s⁻¹ T⁻¹** ü **J angular momentum**

Angular momentum of an atomic nucleus is due to internal structures of p and n (quarks)

<https://www.imaios.com/en/e-mri/nmr/nuclear-spin>

 $=\hslash\sqrt{I(I+1)}$

Effect of the Static Magnetic Field

н

 \checkmark When a magnetic field B_0 is applied **to a sample containing nuclear dipoles the dipoles align themselves in specific orientations** • **with respect to the applied field** \checkmark The orientations depend on m_I m_l the magnetic quantum number m_l can take a range of values in integer **steps from –***I* **to** *I*

 \cdot *I* spin quantum number

The physics of proton NMR

ü*1H* **spin quantum number:** *I* **= 1/2** <u>√¹H magnetic quantum number: *m*_I = +1/2</u> üµ **can adopt 2 possible orientations** ν μ _z is the component lying along the **direction of the static magnetic field B₀**

$$
\mu_z=\gamma \hbar m_I=\pm \frac{1}{2}\gamma \hbar
$$

Spin-up and spin-down

^µ*^z the component lying along the direction* of the static magnetic field B₀

- $\sqrt{2}$ orientations corresponding to $m₁$ = \pm 1/2
- ν lies at an angle of 54.7° to B₀
	- *the xy-plane is known as the transverse plane*

Larmor frequency **According to classical electromagnetism** ü**a magnetic moment lying at an angle to a magnetic field experiences a torque** • **turning force** ü**This causes the magnetic moment to rotate, or precess, around the direction of the B₀ at the Larmor frequency** ω_0

 B_0

$$
\omega_0=\gamma B_0
$$

 $\overline{\mathsf{ession}}\text{-}$ and-larmor-frequen

The energy of a magnetic moment in a magnetic field \sqrt{E} Energy of the nuclei $E = \pm \frac{1}{2} \hbar \gamma B_0$ • **I=1/2** • Larmor frequency $\omega_0 = \gamma B_0$ ü**Energy difference between the energy of nuclei in the 2 orientations**

$$
\frac{m_1 = -\frac{1}{2} \text{ (spin down)}}{\left(\frac{1}{2}m_1 = \frac{1}{2} \text{ (spin up)}}\right)} \quad \bigoplus_{m_1 = +\frac{1}{2} \text{ (spin up)}} B_0
$$

The physics of the compass needle

√ The torque in the magnetic n **needle** = μ **x** H

• *Vector product*

ü **potential energy -**µ**. H=** -µ H cos q

- *Scalar product*
- Minimum: $\theta = 0$, cos $\theta = 1$
- **Maximum:** θ **=180, cos** θ **=-1**

Nature prefers the lowest energy state ü**more nuclei in the lower energy level than the higher one** ü**the difference between the populations of the 2 energy levels Effect of the** *Static Magnetic Field*

$$
\frac{N\ \uparrow -N\ \downarrow}{N} \approx \frac{\hslash \gamma B_0}{2kT}
$$

• **k is Boltzmann's constant** v**1.38** × **10−23 J K−1**

Effect of the Static Magnetic Field ü**the difference in population amounts to only a few nuclei per million** • **A few ppm** ü**the small excess of nuclei oriented** along the B₀ direction gives rise to the В. **NMR signal** \cdot **B**₀ ~ 1-3 T $\hbar \gamma L$

om/en/e-mri/nmr/net-magnetization

The Bulk Magnetization

$$
\vec{M} = \sum \vec{\mu}
$$

- ü**M is the net magnetization (magnetic moment) of a sample placed in a magnetic field** €
	- **typically >> 1018 nuclei**

ü**M lies along the B0 direction**

The Bulk Magnetization

Effect of the Radiofrequency Field **The resonance of NMR Additional magnetic fields, which vary in time are used to manipulate the direction and size of M** • **M bulk magnetisation vector** • **to collect a signal from the spin system** ü**classical electromagnetism is used** ü**quantum-mechanical description is briefly considered**

Classical description of a spin in a magnetic field R.L. Dixon and K.E. Ekstrand Medical Physics vol 9 pp 807-818 1982

When a force is exerted on a spinning object (S), it tends to move at right angles to the force

$$
\frac{d\vec{S}}{dt} = \vec{\mu} \times \vec{H}
$$
\n
$$
\vec{\mu} = \gamma \vec{S}
$$
\n
$$
\frac{d\vec{\mu}}{dt} = \vec{\mu} \times \gamma \vec{H}
$$

wdt

 \triangleright the magnitude of μ remains constant

since $d\mu$ is perpendicular to both μ e H (or B)

€ Ø **The motion is a precession of** µ **about H (or B)**

 \triangleright Angular (Larmor) frequency $\omega = \gamma H = \gamma B$

<http://www.imaios.com/en/e-Courses/e-MRI/NMR/Precession-and-Larmor-frequency>

Classical description of a spin in a magnetic field

When a force is exerted on a spinning object, it tends to move at right angles to the force

$$
\frac{d\vec{S}}{dt} = \vec{\mu} \times \vec{H}
$$
\n
$$
\vec{\mu} = \gamma \vec{S}
$$
\n
$$
\frac{d\vec{\mu}}{dt} = \vec{\mu} \times \gamma \vec{H}
$$

A group of isolated classical spin precesses ad infinitum

B and H fields

✓ Both B and H are called magnetic field ü**B is measured in Tesla (T) or Gauss (G)** • **1T=10000G** ν In vacuum H is proportional to B $H \equiv \frac{B}{-} - M$ ü**In medium** • **M magnetization vector field**

• µ**⁰ permeability of free space**

 $\sqrt{B_1}$ is orthogonal to B_0 • **it lies in the transverse plane** V It is much weaker than B_0 • **of the order of** µ**T √It is applied for a short period of time** • **typically hundreds of** µ**s** *Effect of the Radiofrequency Field*

Motion of M in an RF field

ü**magnetic moments experience a torque in the presence of B₀ which causes them to precess**

ü**In the same way, there is precession of M around the direction of B1**

• **causing the magnetisation vector M to tip (or nutate) away from the z-axis**

Motion of M in an RF field

ü**In order for nutation of M to happen, the B₁ field must be kept 'in step' with the precessing nuclei**

 \checkmark the B₁ field must itself be **rotating in the transverse plane at the Larmor** frequency ω_{0}

Larmor frequency in MRI

ü**Larmor frequency lies in the same frequency range as the RF of the electromagnetic spectrum**

- **10–100 MHz**
- **B₁** is often termed the RF magnetic field
- $\sqrt{B_1}$ can be generated by using 2 RF **coils aligned along the x- and y-axes**
	- **generating sinusoidal magnetic fields 90o out of phase and so add up to produce a circularly polarised magnetic field**

Motion of M in an RF field **This is the resonance part of NMR** ü**nutation only occurs if B1 is applied at the Larmor frequency** ü**this fact allows to choose which nuclear species to interrogate**

- **B₀** generates bulk magnetisation from all **nuclei that have nonzero spin** $\cdot \cdot \cdot$ **¹H**, ¹³C, ³¹P
- The choice of the frequency of B₁ allows to **select which of these to study**

Motion of M in an RF field

ü**if** w**=**w**⁰ B1 stays in constant position relative to M** • w **frequency of the RF pulse** ü**Thus the small torque** € **of B₁ on M over many precessions has significant effect** w**=**w**⁰ is the resonance condition**

$$
\frac{d\vec{M}}{dt} = \vec{M} \times \gamma(\vec{H}_0 + \vec{H}_1(t))
$$

<http://www.imaios.com/en/e-Courses/e-MRI/NMR/Excitation>

Motion of M in an RF field **Once B₁** is applied: ü **M tips away from the z-axis because of precession around B1** \checkmark it will also precess around B_0 **The overall motion is quite complicated: the magnetisation vector following an expanding helical trajectory**

www.imaios.com/en/e-Courses/e-MRI/NMR/Excitation

Motion of M in an RF field

- **a) Static position**
- **b) the magnetisation vector M following an expanding helical trajectory**
	- **laboratory frame of reference**

The rotating frame

- **c) rotating frame of reference moving at** the Larmor frequency (ω_0)
	- **the motion of M is simplified to nutation from the z′-axis towards the x′y′ plane**
	- **x′y′z′ the rotating frame**

The flip angle ^a **In the rotating frame of reference** ü**the motion of M is simplified to nutation from the z′-axis towards the x′y′ plane v** nutation continues for as long as the B₁ field is present (t_{RF}) ü**The nutation angle** a

• **Or flip angle**

$$
\alpha=\gamma B_1t_{RF}
$$

The 90o RF pulse: **how long is t_{RF}** ?

 $H_1 = 10^{-3} T$; protons t_{RF} ?

n**' =42.5 kHz** t_{RF} = 1/(4 v') ~ 6 µsec

How long a 180° *pulse ?*

n **=1/T T period of the motion**

Larmor frequency

ü **Angular Larmor frequency (rad/s)** w**=**g**H**

ü **Larmor frequency (MHz)** $v = \gamma H/2\pi$

Motion of M in an RF field **The net effect of the RF pulse is to reduce the longitudinal magnetisation (Mz) while generating transverse magnetisation (Mxy)**

$$
M_{z'} = |\mathbf{M}| \cos \alpha = |\mathbf{M}| \cos (\gamma B_1 t_{RF})
$$

$$
M_{y'} = \vert \mathbf{M} \vert \sin \alpha = \vert \mathbf{M} \vert \sin \bigl(\gamma \, B_{1} t_{RF} \bigr)
$$

$$
M_{x'}=0
$$

assuming B1 along the x′-axis in the rotating frame, so that the transverse magnetisation lies along the y′-axis <https://www.imaios.com/en/e-mri/nmr/excitation>

Quantum mechanics ?

- **√ an electromagnetic field of frequency** $ω$ ⁰ **carries energy** $E = \hbar \omega_0$
- **✓ this is the energy gap between up and down energy levels**
- ν μ in the lower energy level are able to absorb **energy from the RF field**
	- **if the RF frequency matches the Larmor frequency**

ü **The effect is to reduce the difference between the populations of the two energy levels, and hence the size of the longitudinal magnetisation**

Quantum mechanics ?

ü **The effect of the RF pulse is to reduce the difference between the populations of the two energy levels, and hence the size of the longitudinal magnetisation**

ü **Less obviously, the excited nuclei are made to precess in phase with each other, so that net magnetisation Mxy is generated in the transverse plane**

<http://www.imaios.com/en/e-Courses/e-MRI/NMR/nuclear-spin>

Quantum-mechanical description of a spin in a magnetic field

 \checkmark RF irradiation at v_0 can cause de-excitation

- **Stimulated emission of a photon**
- ü w⁰ **obtained from the Hamiltonian is the same as classical Larmor frequency but the state of the quantummechanical spin time-independent**
	- **No precession !**

√ A wave function which is an equal mixture of spin-up and down states the expectation values are €

• **A precession of <**µ**> in the xy plane !**

$$
\langle \mu_x \rangle = \langle \mu_y \rangle = 0
$$

$$
\langle \mu_z \rangle = \pm \frac{1}{2} \gamma \hbar
$$

$$
\langle \mu_x \rangle = \frac{1}{2} \gamma \hbar \cos(\omega_0 t)
$$

$$
\langle \mu_y \rangle = -\frac{1}{2} \gamma \hbar \sin(\omega_0 t)
$$

$$
\langle \mu_z \rangle = 0
$$

<http://www.imaios.com/en/e-Courses/e-MRI/NMR/Net-magnetization>

Quantum-mechanical description of a spin in a magnetic field

ü **The expectation value of the magnetic moment of an ensemble of spins**

- [\mathscr{H}, μ] is the commutator of the **Hemiltonian**
- ü **It may be shown**
	- **Commutation properties of angular momentum operators** €
- ü **For an ensemble of N noninteracting spin with an associated magnetic moment** €
	- $M = N\langle\mu\rangle$
- **M the observable quantity**
- ü **M follows the classical equation!**
	- **Individual spins undergo complicated behavior**

$$
\frac{d}{dt}M = M \times \gamma H
$$

$$
\frac{d}{dt}\langle \mu \rangle = \frac{i}{\hbar} \langle [\mathcal{L}, \mu] \rangle
$$

$$
\frac{d}{dt}\langle \mu \rangle = \langle \mu \rangle \times \gamma H
$$

Effect of the Radiofrequency Field

homework

A hydrogen sample is at equilibrium in a 1.5 Tesla magnetic field.

A constant B1 field of 2.34x10-4 T is applied along the +x'-axis for 25 µ**s**

ü**What is the direction of the net magnetization vector after the B₁** field is turned off?

MRI: Basic Physics & a Brief **History** a video

https://www.youtube.com/watch?v=djAxjtN_7VE