Signal Detection

ü**the RF pulse generates transverse magnetisation Mxy**

v In the rotating frame this magnetisation is stationary and orthogonal to **B₁** direction **In laboratory frame**

 $M_z = |\mathbf{M}| \cos(\gamma B_1 t_{RF})$

 $M_{y} = |M| \sin \alpha \cos \omega_0 t = |M| \sin (\gamma B_1 t_{RF}) \cos \omega_0 t$

 $M_x = |M| \sin \alpha \sin \omega_0 t = |M| \sin (\gamma B_1 t_{RF}) \sin \omega_0 t$

Signal Detection

ü **Mxy is a time-varying magnetisation** ü **Faraday's law**

- **changing magnetisation generates an electromotive force in a nearby electrical conductor** v**EMF or voltage**
- **If conductor is connected to a circuit, an electric current flows and can be detected**

Basic Concepts Faraday's law

$$
\varepsilon = -N \frac{d\Phi_B}{dt}
$$

 $\phi_B = B S cos\theta$

e **electromotive force** $\Phi_{\rm R}$ magnetic flux **N number of identical turns**

A Faraday's iron ring apparatus: Change in the magnetic flux of the left coil induces a current in the right coil

free induction decay signal

ü **Coil is both transmitter and receiver**

- **Exponentially damped sinusoid**
	- **Relaxation**
- ü **FID disappears within a few hundred milliseconds**
	- **The surroundings absorbs energy**

Nuclear relaxation

ü**FID signal does not persist indefinitely** • **decays exponentially**

2 descriptions ü**macroscopic scale** ü**individual nuclei**

Nuclear relaxation

After a 90° pulse \checkmark longitudinal magnetisation M_z

$$
M_z = |\mathbf{M}| \left(1 - e^{-\frac{t}{T_1}} \right)
$$

\checkmark transverse magnetisation M_{xv}

$$
M_{xy} = |\mathbf{M}|e^{-\frac{t}{T_2}}
$$

https://www.imaios.com/en/e-mri/nmr/relaxation-tim

T₁ relaxation

the first Bloch equation

$$
\frac{dM_z}{dt} = -\frac{(M_z - M_0)}{T_1}
$$

VT₁ longitudinal relaxation time • or spin lattice relaxation time

$$
M_z = |\mathbf{M}| \left(1 - e^{-\frac{t}{T_1}} \right)
$$

Solution for a 90° pulse

Second Bloch equation

$$
\frac{d}{dt}M_{xy}=-\frac{M_{x}i+M_{y}j}{T_{2}^{*}}
$$

T₂ transverse relaxation time

• **or spin–spin relaxation time**

$$
M_{xy} = |\mathbf{M}|e^{-\frac{t}{T_2}}
$$

Solution for a 90o pulse

T2 and T2 are different and will be discussed later*

ü**determined by the chemical environment** • **water content** ü**vary between different body tissues and between healthy and diseased tissue** • **main source of contrast in conventional MR images** *T1 and T2 relaxation*

T1 and T2 relaxation

¹H NMR Relaxation Times of Brain Tissues Measured at 1.5 T

T₁ depends on the B₀ strength

T1 and T2 relaxation

¹H NMR Relaxation Times of Brain Tissues Measured at

https://www.imaios.com/en/e-mri/nmr/relaxation-times

Relaxation times

Relaxation and quantum mechanics ü**nutation of the M results from absorption of energy from the RF field**

- **exciting nuclei from the lower energy level to the higher one**
- ü**Relaxation occurs when an excited nucleus releases the ''quantum' of energy that it has absorbed**
	- **returning as a result to the lower energy level**

T1 relaxation

The transitions from spindown to spin-up (lower energy state) ü**are not spontaneous** ü**are stimulated by fluctuating magnetic fields produced by molecular motions**

• **Chemical enviroment**

Phase and NMR signal

v the RF pulse **made the excited nuclei to precess in phase with each other** ü**so that Mxy is generated in the transverse plane**

T1 Quantum mechanics **v** If the quantum of energy is lost from the **spin system, there is an increase in the population of the higher energy level v** resulting in an increase in M_z **• T₁ relaxation** ü**the emitted quantum of energy is absorbed by the surrounding environment** • **known as the lattice**

v**spin-lattice relaxation**

T2 Quantum mechanics

ü**alternatively, the emitted quantum is absorbed by another nucleus in the lower energy level** • **so that 2 nuclei swap places and there is no net increase in Mz** ü**the newly excited nucleus will not be precessing in phase with the other nuclei excited by the RF pulse** ü**Mxy will be reduced** • **T**₂ relaxation

v**or spin–spin relaxation**

*T2 & T2 **

- ü**the exponential decay of the FID is** faster than T₂ alone would suggest ü**The cause of the difference lies in** microscopic inhomogeneities in B₀ ü**B0 uniformity of MRI equipment is quite good**
	- **usually within 1 ppm (0.0001%) of 1.5 T over a 40 cm diameter spherical volume (DSV) at the centre of the bore**

*T2 & T2** **✓ The effective decay time is T₂^{*}**

• **In pure liquids:** $\gamma \Delta B$ $>>$ 1/T₂

Effects That Cause T2* and T2 Dephasing

ü**When the patient is introduced into the scanner the field is distorted on a microscopic scale because of the differing magnetic properties of different tissues and structures • magnetic susceptibilities • magnetic susceptibilities**
http://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/90-

*T2 & T2** **✓ The effective decay time is T₂^{*}** $1/T_2$ ^{*} = $1/T_2$ + $\gamma \Delta B$

• **In pure liquids:** $\gamma \Delta B$ $>>$ 1/T₂

ü**When the patient is introduced into the scanner the field is distorted on a microscopic scale because of the differing magnetic properties of different tissues and structures • magnetic susceptibilities • magnetic susceptibilities**
http://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/90-

*T2 & T2** **✓ The effective decay time is T₂^{*}** $1/T_2$ ^{*} = $1/T_2$ + $\gamma \Delta B$ • **In pure liquids:**

 $\gamma\Delta H >> 1/T^2$

Effects That Cause T₂* and T₂ De

T2* Free

(FID)

Induction D

$$
M_{xy} = |\mathbf{M}|e^{-\frac{t}{T_2*}}
$$

http://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/90-

T2 in MRI*

ü**Loss of signal due to field inhomogeneities can be particularly marked close to boundaries between [different tissues](https://www.imaios.com/en/e-mri/image-quality-and-artifacts/magnetic-susceptibility)**

• **soft tissue and bone, and close to air-filled sinuses**

ü**resulting in significant image degradation and loss of diagnostic information**

https://www.imaios.com/en/e-mri/image-quality-and-artifacts/magnetic-su

The spin-echo sequence How measure T₂ in presence of AB? \checkmark The FID is dumped by T_2^* √ It is necessary to compensate the AB effect on spin dephasing

√180[°] pulse along y' axis creates an echo signal

> · Very approximated movie !!!

T2 and spin echo*

ü **At a time** t **after the 90o pulse, another RF pulse is applied**

• **nutating the magnetisation through 180o RF pulse**

ü **The 'fan' of isochromats is 'flipped' to the other side of the transverse plane**

• **now the 'slow' isochromats are in front of the net magnetisation vector and the 'fast' ones are behind**

ü **After the 180o pulse the 'fan' begins to close,** after another interval τ the M_{xy} is back in phase

T₂* and spin echo

 \checkmark the rephased M_{xy} is smaller than immediately after the 90° pulse \checkmark the 180° pulse reverses dephasing, but not true T_2 decay during the 2t time

https://www.imaios.com/en/e-mri/nmr-signal-and-mri-contras

Spin echo signal

 $A(2\tau) = A_0 e^{-\frac{2\tau}{T_2}}$

Echo time $T_E = 2\tau$

Pooley RadioGraphics 2005; 25:1087-1099

p and T₂ Contrast

Short Echo-Time p weighted

Long Echo-Time T₂ weighted

Repeated FID sequence

http://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/TR-and-T1

SR signal intesity

TR<3T1 partial saturation of the FID signal: M_{z} ⁿ(T_R)= M_{z} ⁰ [1 - e^{-TR/T₁]}

Short Repetition Long Repetition

Pulse sequences

ü**The intensity of the NMR signals collected from different tissues at a** given echo time depends on the T₁ **and T2 values of tissues** ü**The contrast in signal intensity between tissues will depend on T_F** and T_R as well