Signal Detection

 the RF pulse generates transverse magnetisation M_{xy}

In the rotating frame this magnetisation is stationary and orthogonal to B₁ direction
In laboratory frame

 $M_z = \left| \mathbf{M} \right| \cos \left(\gamma B_1 t_{RF} \right)$

 $M_{y} = |\mathbf{M}| \sin\alpha \cos\omega_{0} t = |\mathbf{M}| \sin(\gamma B_{1} t_{RF}) \cos\omega_{0} t$

 $M_x = |\mathbf{M}| \sin\alpha \sin\omega_0 t = |\mathbf{M}| \sin(\gamma B_1 t_{RF}) \sin\omega_0 t$

Signal Detection

M_{xy} is a time-varying magnetisation
 Faraday's law

- If conductor is connected to a circuit, an electric current flows and can be detected

Basic Concepts Faraday's law

$$\varepsilon = -N \frac{d\Phi_B}{dt}$$

 $\phi_B = B S \cos\theta$

A Faraday's iron ring apparatus: Change in the magnetic flux of the left coil induces a current in the right coil

free induction decay signal

 Coil is both transmitter and receiver

- Exponentially damped sinusoid
 - Relaxation
- FID disappears within a few hundred milliseconds
 - The surroundings absorbs energy

Nuclear relaxation

FID signal does not persist indefinitely
 decays exponentially

2 descriptions
✓ macroscopic scale
✓ individual nuclei

Nuclear relaxation

After a 90° pulse ✓ longitudinal magnetisation M_z

$$M_{xy} = \left|\mathbf{M}\right| e^{-\frac{t}{T_2}}$$

 $M_z = \left| \mathbf{M} \right| \left(1 - e^{-\frac{t}{T_1}} \right)$

https://www.imaios.com/en/e-mri/nmr/relaxation-times

T₁ relaxation

the first Bloch equation

$$\frac{dM_z}{dt} = -\frac{(M_z - M_0)}{T_1}$$

T₁ longitudinal relaxation time or spin lattice relaxation time

$$M_z = \left| \mathbf{M} \right| \left(1 - e^{-\frac{t}{T_1}} \right)$$

Solution for a 90° pulse

https://www.imaios.com/en/e-mri/nmr/relaxation-times

Second Bloch equation

$$\frac{d}{dt}M_{xy} = -\frac{M_x i + M_y j}{T_2^*}$$

T₂ transverse relaxation time

or spin—spin relaxation time

$$M_{xy} = \left| \mathbf{M} \right| e^{-\frac{t}{T_2}}$$

Solution for a 90° pulse

T2 and T2* are different and will be discussed later

*T*₁ and *T*₂ relaxation
 determined by the chemical environment
 water content
 vary between different body tissues and between healthy and diseased tissue
 main source of contrast in conventional MR images

T₁ and T₂ relaxation

¹H NMR Relaxation Times of Brain Tissues Measured at 1.5 T

Tissue	T1 (ms) (mean ± SD)	T2 (ms) (mean \pm SD)
Grey matter	1078 ± 53	100 ± 12
White matter	684 ± 21	79 ± 12
Cerebrospinal fluid (CSF)	3959 ± 306	914 ± 422

T₁ depends on the B₀ strength

T₁ and T₂ relaxation

¹H NMR Relaxation Times of Brain Tissues Measured at 1.5 T

https://www.imaios.com/en/e-mri/nmr/relaxation-times

Relaxation times

T₁ and T₂ relaxation

Relaxation and quantum mechanics nutation of the M results from absorption of energy from the RF field
 absorption of energy from the RF

- exciting nuclei from the lower energy level to the higher one
- Relaxation occurs when an excited nucleus releases the "quantum" of energy that it has absorbed
 - returning as a result to the lower energy level

T₁ relaxation

The transitions from spindown to spin-up (lower energy state) ✓ are not spontaneous are stimulated by fluctuating magnetic fields produced by molecular motions

Chemical environment

Phase and NMR signal

✓ the RF pulse made the excited nuclei to precess in phase with each other ✓ so that M_{xv} is generated in the transverse plane

T₁ Quantum mechanics If the quantum of energy is lost from the spin system, there is an increase in the population of the higher energy level \checkmark resulting in an increase in M₇ T₁ relaxation the emitted quantum of energy is absorbed by the surrounding environment • known as the lattice

spin-lattice relaxation

T₂ Quantum mechanics

Iternatively, the emitted quantum is absorbed by another nucleus in the lower energy level so that 2 nuclei swap places and there is no net increase in M₇ where the newly excited nucleus will not be precessing in phase with the other nuclei excited by the RF pulse ✓ M_{xv} will be reduced

- T₂ relaxation
 - or spin–spin relaxation

$T_2 \& T_2^*$

- the exponential decay of the FID is faster than T₂ alone would suggest
 The cause of the difference lies in microscopic inhomogeneities in B₀
 B₀ uniformity of MRI equipment is quite good
 - usually within 1 ppm (0.0001%) of 1.5 T over a 40 cm diameter spherical volume (DSV) at the centre of the bore

$T_2 \& T2^*$ • The effective decay time is T_2^* • The effective decay time is T_2^* $1/T_2^* = 1/T_2 + \gamma \Delta B$ • In pure liquids: $\gamma \Delta B \gg 1/T_2$ $Fifects That Cause T2^* and T2 Dephasing$ $Causes of T2^*$ $Causes of T2^*$ Dephasing Spin-spin interactions Magnetic field inho-mogeneities

 When the patient is introduced into the scanner the field is distorted on a microscopic scale because of the differing magnetic properties of different tissues and structures
 magnetic susceptibilities

Magnetic susceptibility Chemical shift effects

 When the patient is introduced into the scanner the field is distorted on a microscopic scale because of the differing magnetic properties of different tissues and structures
 magnetic susceptibilities

 $\chi < 0$

 $\chi > 0$

T ₂ & T2*					
The effective decay time is T ₂ *					
$1/T_2^* = 1/T_2 + \gamma \Delta B$	Effects That Cause T2* and T2 Dephasing				
In pure liquids:	Causes of T2* Dephasing	Causes of T2 Dephasing			
γΔH >>1/T ₂	Spin-spin interactions Magnetic field inho- mogeneities Magnetic susceptibility Chemical shift effects	Spin-spin interactions			

$$M_{xy} = |\mathbf{M}| e^{-\frac{t}{T_2 *}}$$

T2* Free Induction Decay (FID)

http://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/90-RF-pulse

T₂* in MRI

Loss of signal due to field inhomogeneities can be particularly marked close to boundaries between different tissues

 soft tissue and bone, and close to air-filled sinuses

 resulting in significant image degradation and loss of diagnostic information

https://www.imaios.com/en/e-mri/image-quality-and-artifacts/magnetic-susceptibility

The spin-echo sequence
How measure T₂ in presence of ΔB?
✓ The FID is dumped by T₂*
✓ It is necessary to compensate the ΔB effect on spin dephasing

 180° pulse along y' axis creates an echo signal

• Very approximated movie !!!

T2* and spin echo

At a time τ after the 90° pulse, another RF pulse is applied

nutating the magnetisation through 180° RF pulse

The 'fan' of isochromats is 'flipped' to the other side of the transverse plane

 now the 'slow' isochromats are in front of the net magnetisation vector and the 'fast' ones are behind

✓ After the 180° pulse the 'fan' begins to close, after another interval τ the M_{xy} is back in phase

T2* and spin echo

✓ the rephased M_{xy} is smaller than immediately after the 90° pulse ✓ the 180° pulse reverses dephasing,[№] but not true T_2 decay during the 2^t time

https://www.imaios.com/en/e-mri/nmr-signal-and-mri-contrast/180-rf-pulse

Spin echo signal

$$A(2\tau) = A_0 e^{-\frac{2\tau}{T_2}}$$

Echo time $T_E = 2\tau$

Pooley RadioGraphics 2005; 25:1087–1099

ρ and T_2 Contrast

Short Echo-Time ρ weighted

Long Echo-Time T₂ weighted

T1 weighted images

tissue	T ₂	T ₁ (H _o =0.5T)	T ₁ (H _o =1.5T)
	(msec)	(msec)	(msec)
White matter	90	500	780
Grey matter	100	650	920
CSF	160	1800	2400

Repeated FID sequence

 \checkmark Total saturation: when M₇=0 Saturation Recovery sequence: the 90° pulse is repeated **T_R: repetition time** T_R shorter than 3 T₁ 90[°] **90°** 90[°] **90°** T_R T_R T_R

http://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/TR-and-T1-weighting

SR signal intesity

 $T_R < 3T_1$ partial saturation of the FID signal: $M_z^n(T_R) = M_z^0 [1 - e^{-TR/T_1}]$

Short Repetition

Long Repetition

Pulse sequences

The intensity of the NMR signals collected from different tissues at a given echo time depends on the T_1 and T₂ values of tissues The contrast in signal intensity between tissues will depend on T_F and T_R as well