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Time Trigger Machine



Thermostat FSM

cooling hea*ng

Temp ≤ 18 → ℎ𝑒𝑎𝑡𝑂𝑁

Temp ≥ 22 → ℎ𝑒𝑎𝑡𝑂𝐹𝐹

It could be event triggered, like the garage counter, in which case it will react whenever a 
temperature input is provided. Alterna*vely, it could be *me triggered, meaning that it 
reacts at regular *me intervals 



Timed Models

• Like Asynchronous models, but with explicit 9me informa9on

• Can make use of global 9me for coordina9on



Timed ESMs: a Light Switch Like asynchronous ESMs, have 
input, output channels, state 
variables
u Special type of state 

variable called “clock” 
u Clock variables evolve 

continuously in time
u ESM can “stay” in a mode 

with clock increasing 
monotonically from the 
start value

off dim bright(press==1)?→
c:=0

(press==1)?

clock c:=0

(press==1)? ∧ (c≥1)

(press==1)? ∧ (c≤1)



Transi8ons of a 8med ESM
• Mode switch: discrete ac9on
• machine moves from one mode 

to another
• guard on the transi*on must be 

true for mode switch to occur
• update specified by the 

transi*on will update/reset 
clock variables 

off dim bright
(press==1)?→
c:=0

(press==1)?

clock c:=0

(press==1)? ∧ (c≥1)

(press==1)? ∧ (c≤1)

(off,0.5) (dim,0)
(press==1)?



Transi8ons of a 8med ESM
In a mode: Timed ac9on
u When machine stays in any 

given mode for 9me 𝛿, each 
clock variable increases by 𝛿
and all other state variables 
remain unchanged

u Captures 9ming constraints
� ReseEng c to 0 from off→dim 

and guard c≥1 from dim→off 
specifies that these mode 
switches are ≥1 second apart

off dim bright(press==1)?→
c:=0

(press==1)?

clock c:=0

(press==1)? ∧ (c≥1)

(press==1)? ∧ (c≤1)



Timed Processes: explicit clock variables

• Clock variables
• Like other state variables, can be 

used in guards
• Can be reset to 0 during mode 

switches
• When the machine is in a given 

mode for dura*on 𝛿, the clock 
variable increases by 𝛿

off dim bright
(press==1)?→
c:=0

(press==1)?

clock c:=0

(press==1)? ∧ (c≥1)

(press==1)? ∧ (c≤1)



Timed Process Execu8on
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off dim bright(press==1)?→
c:=0

(press==1)?

clock c:=0

(press==1)? ∧ (c≥1)

(press==1)? ∧ (c≤1)

(off,0) (off,0.5) (dim,0)
(press==1)?

(dim,0.8)
(press==1)?

(bright,0.8)

(dim,3.8)

u Machine execu9on is 
through alterna9ng 9med 
transi9ons and mode 
switches

(press==1)?
(off,3.8)0.5

2

0.8

1.8
(dim,2.0)



u Input channel in of type bool
u Output channel out of type bool
u State variable x of type bool+∅. The 

value ∅ indicates empty
u If x is ∅, then read new value into x, 

and set clock to 0
u If clock value is ≥ 2 seconds, output 

value of x, and set x to ∅

Timed Buffer
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bool 
out

bool in
bool∅ x:= ∅, clock c:=0

Tin: (x==∅) & in?→
x:=in; c:=0;

Tout: (c≥2)→
{ out := x;

x := ∅ } 

Tinfull: in? →



Timed State Machine representa8on
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u Mode captures whether x==∅
u Clock variable tracks the 9me that 

elapsed since x received a value
u Guard ensures that at least 2 seconds 

pass before the value of x is output 
u Guard does not force transi9ons

�c can keep increasing while process 
remains in mode full

u How do we make sure that process 
does not remain in full mode for at 
most 3 seconds?

empty full

c≥ 2 → out:=x, x≔∅

in?→ x:=in, c:=0

c:=0

in?



u Attempt 1: we could make the guard 2 ≤
c ≤ 3

u Attempt 1 fails because: 
� You could keep getting new input (self-

loop executes) till 𝑐 ≥ 3
u Larger problem: Guards are non-forcing: 

nothing requires the guard to be executed
u We can fix this by introducing clock 

invariants
u Clock invariant of any mode: symbolic 

expression that must evaluate to true at all 
times, and if not, the process must exit 
that mode
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Clock invariants

empty full

c≥ 2 → out:=x, x≔∅

in?→ x:=in, c:=0

c:=0

in?



u Add clock invariant:
(mode==full) ⇒ (c ≤ 3)

u Forces process to leave mode full if c 
becomes greater than 3

u Staying in mode full when c≥ 3
would violate the clock invariant

u Useful construct to limit how long a 
process stays in a certain mode
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Clock invariants

empty full
c ≤ 𝟑

c≥ 2 → out:=x, x≔∅

in?→ x:=in, c:=0

c:=0

in?



u Each mode is a guard-enabled task; if guard is 
true, task is executed
� Going from one mode to another is a task switch

u Checking if process leaves mode 𝑚! and goes to 
𝑚"depends on if incoming guard of 𝑚" is true

u Staying in 𝑚!does not/should not depend on the 
guard of𝑚!

u So, we use invariants:
�a condi9on always checked in a given mode

Why model using invariants and guards?
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mode 𝑚 ≔ 𝑚,, clock 𝑐

𝑇!→#: g! c ∧ 𝑚 = 𝑚! →
𝑚 ≔ 𝑚#

𝑇#→!: g# c ∧ (𝑚 = 𝑚#) →
𝑚 ≔ 𝑚!

𝑚"

𝑚#

𝑔"𝑔#



u Model with one input channel and two output 
channels: out1 and out2

u Clock c tracks 9me elapsed since occurrence 
of the input task execu9on

u Clock d tracks 9me elapsed since occurrence 
of output task for out1

u Behavior of process: If input event occurs at 
some 9me t, then process issues output # on 
out1 some 9me t’ ∈ [t,t+1] and then issues 
output * on out2 at 9me t’’ ∈ [t’+1, t+2]

Example with two clocks
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wait1
c≤1

idle

Wait2
c≤2

clock 
c,d:=0 

in? → c:=0

out1!#;d:=0 d≥ 1 →
out2!*



Composing Timed Processes

16

empty full
c1 ≤ A"

c1≥B1→ out1:=x1, x1≔∅

in?→ x1:=in, c1:=0

c1:=0

empty full
c2 ≥ A#

c2≥B2→ out2:=x2, x2≔∅

in?→ x2:=in, c2:=0

c2:=0

u Each process stays in mode full for 
𝑡 ∈ [𝐵! , 𝐴!]

u Need to construct a new process 
with 4 new modes

u Each new mode is a pair consis7ng of 
modes from process 1 and 2

u Mode switches in the new machine 
correspond to mode switches in the 
old machine

u Interes7ng 7ming behavior can arise!



Composing Timed Processes
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empty full
c1 ≤A1

c1≥B1→ out1:=x1

in?→ x1:=in, c1:=0

c1:=0

empty full
c2 ≤A2

c2≥B2→ out2:=x2

in?→ x2:=in, c2:=0

c2:=0

in?

in?

empty,
empty

full, empty
c1≤A1

empty, full
c2≤A2

full,full
c1≤A1
c2≤A2

c 1≥
B 1
→ out 1:=

x 1

c 1≥
B 1
→

out 1:=
x 1 in?

in?

c
2≥B

2 →
out2 :=x

2

c2≥B2 → out2 :=x2
in?→ x1:=in, c1:=0,

x2:=in, c2:=0

in?→
x 1:

=in, c 1
:=0



If B1 < A1 <B2 :
u (full,full) →(full,empty) can never be 

enabled! 
Why? 
u 𝑐,reaches 𝐴, and the process gets kicked 

out of state (full,full)
u But 𝑐, cannot be greater than 𝐵0 so, 

guard from (full,full) to (full,empty) is not 
enabled!

Semi-synchrony

18

empty,
empty

full, empty
c1≤A1

empty, full
c2≤A2

full,full
c1≤A1
c2≤A2

c 1≥
B 1
→ out 1:=

x 1

c 1≥
B 1
→

out 1:=
x 1 in?

in?

c2≥B
2 →

out2 :=x2

c2≥B
2 → out2 :=x2

in?→ x1:=in, c1:=0,
x2:=in, c2:=0

in?→
x 1:

=in, c 1
:=0



u If B1 < A1 <B2 :
� (full,full) → (full,empty) cannot happen

u If B1 < A1 <B2 :
� (full, full) → (empty,full) will happen 

eventually
u out1 guaranteed to happen before out2

u Implicit coordina;on based on delays
� Both process clocks increase in tandem
� Global clock-based synchroniza;on

u Reason why ;med models are called semi-
synchronous or par;ally synchronous

Semi-synchrony
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empty,
empty

full, empty
c1≤A1

empty, full
c2≤A2

full,full
c1≤A1
c2≤A2

c 1≥
B 1
→ out 1:=

x 1

c 1≥
B 1
→

out 1:=
x 1 in?

in?

c2≥B
2 →

out2 :=x2

c2≥B
2 → out2 :=x2

in?→ x1:=in, c1:=0,
x2:=in, c2:=0

in?→
x 1:

=in, c 1
:=0



u Timed process consists of:
� An asynchronous process, where some of the state variables are of type clock (ranging over non-

nega;ve reals)
� A clock invariant I which is a Boolean expression over the state variables

u Inputs, Outputs, States, Ini;al states, Ac;ons: Internal, Input and Output: same as for asynchronous 
processes

u Timed Ac;on: Given a state q and ;me 𝛿 > 0, ac;on q →
%

q’ specifies a transi;on of dura;on 𝛿 if:
� q’ represents a state where the non-clock variables have the same value as in q, i.e. q’(x) = q(x)
� q’ represents a state where the clock variables in q are incremented by 𝛿, i.e. q’(c) = q(c) + 𝛿, and
� For all ;mes t ∈ [q(c), q(c)+𝛿], the clock invariant I is sa;sfied
� If clock invariant is convex, enough to check clock invariant at q(c) and q(c)+𝛿

Formal recap of a 8med process
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u Most material that follows is from this paper:
Z. Jiang, M. Pajic, S. Moarref, R. Alur, R. Mangharam, Modeling and 
Verifica3on of a Dual Chamber Implantable Pacemaker, In Proceedings 
of Tools and Algorithms for the Construc9on and Analysis of Systems 
(TACAS), 2012.  
u The textbook has detailed descrip9ons of some other pacemaker 

components

Pacemaker Modeling as a Timed Process
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u SA node (controlled by nervous system) 
periodically generates an electric pulse

u This pulse causes both atria to contract 
pushing blood into the ventricles

u Conduc*on is delayed at the AV node 
allowing ventricles to fill

u Finally the His-Pukinje system spreads 
electric ac*va*on through ventricles 
causing them both to contract, pumping 
blood out of the heart

How does a healthy heart work?
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Electrical Conduc/on System of the Heart



u Aging and/or diseases cause conduc9on 
proper9es of heart 9ssue to change leading to 
changes in heart rhythm

u Tachycardia: faster than desirable heart rate 
impairing hemo-dynamics (blood flow 
dynamics)

u Bradycardia: slower heart rate leading to 
insufficient blood supply

u Pacemakers can be used to treat bradycardia by 
providing pulses when heart rate is low

What do pacemakers do?
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Implantable Pacemaker modeling
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u Two fixed leads on wall of right atrium and ventricle respec9vely
u Ac9va9on of local 9ssue sensed by the leads (giving rise to events Atrial 

Sense (AS) and Ventricular Sense (VS))
u Atrial Pacing (AP) or Ventricular Pacing (VP) are delivered if no sensed 

events occur within deadlines

How dual-chamber pacemakers work
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Heart Pacemaker

AS

VS

AP

VP



The Lower Rate Interval (LRI) mode
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LRI component keeps heart rate above minimum level

ASed
LRI

c ≤ K
VP? → c:=0

VS? → c:=0

AS?
VS? → c:=0

VP? → c:=0

c ≥ K → AP!; c:=0

K= 850ms

u LRI = lower rate interval
u LRI component keeps heart rate above 

minimum level
u One of the pacemaker modes of 

opera7on that models the basic 7ming 
cycle

u Measures the longest interval between 
ventricular events

u Clock reset when VS or VP received
u No AS received ⇒ LRI outputs AP aJer 

K 7me units



u Statecharts (Harel, 1987), a nota*on for concurrent composi*on of hierarchical FSMs, has 
influenced many of these tools. 

u One of the first tools suppor*ng the Statecharts nota*on is STATEMATE (Harel et al., 
1990), which subsequently evolved into Ra*onal Rhapsody, sold by IBM.

u Almost every soiware engineering tool that provides UML (unified modeling language) 
capabili*es (Booch et al., 1998). 

u SyncCharts (Andre ́, 1996) is a par*cularly nice variant in that it borrows the rigorous 
seman*cs of Esterel (Berry and Gonthier, 1992) for composi*on of concurrent FSMs.

u LabVIEW supports a variant of Statecharts that can operate within dataflow diagrams
u Simulink with its Stateflow extension supports a variant that can operate within 

con*nuous-*me models. 
u UPPAAL (Yi, Pelersson, Larseń, mid-1990s) is is a tool for modeling, simula*on, and 

verifica*on of real-*me systems. It was jointly developed by Uppsala University in 
Sweden and Aalborg University in Denmark.

FSM SoMware Tools


