Cyber-Physical Systems

Laura Nenzi

Universita degli Studi di Trieste
| Semestre 2023

Lecture 4: Timed Models

ime Trigger Machine

variable: count: {0,---,60}

inputs: pedestrian : pure count < 60 /
outputs: sigR, sigG, sigY : pure count := count + 1

‘‘‘‘‘

count > 60 / sigG
count := ()

pedestrian N\ count < 60 /
count := count + 1

- - - -
444444

count := count + 1

count := 10

- pedestrian /\ count > 60 / sig¥ Cpendlng) (ount = count + 1
count =0

.....

count > 60 / sigY
count > 5 [sigR count := 0

count := ()

aaaaa

count = count + 1

Thermostat FSM
Temp < 18 — heatON

cooling heating

Temp = 22 — heatOFF

It could be event triggered, like the garage counter, in which case it will react whenever a
temperature input is provided. Alternatively, it could be time triggered, meaning that it
reacts at regular time intervals

Timed Models

* Like Asynchronous models, but with explicit time information

e Can make use of global time for coordination

Timed ESMs: a Light Switch

Like asynchronous ESMs, have
input, output channels, state

==1)? A (c=1 .
(press==1)? A {c=1) variables

Special type of state

clock c:=0 (press==1)? A (c<1) .
off dim bright variable called “clock”
(press==1)?—
¢:=0 Clock variables evolve
continuously in time
(press==1)? ESM can “stay” in a mode

with clock increasing
monotonically from the
start value

Transitions of a timed ESM

(press==1)? A (c=1)

clock c:=0 (press==1)? A (c<1)
off dim bright

(press==1)?

(0f£.0.5) =5 (dim, 0)

e Mode switch: discrete action

* machine moves from one mode
to another

e guard on the transition must be
true for mode switch to occur

e update specified by the
transition will update/reset
clock variables

Transitions of a timed ESM

In @ mode: Timed action

(press==1)? A (c=1) . .
When machine stays in any

given mode for time 9§, each
X o gim eI e clock variable increases by 8
(press==1)r> and all other state variables

remain unchanged

Captures timing constraints

Resetting c to O from off—=dim
and guard c=1 from dim—off
specifies that these mode

switches are >1 second apart

(press==1)?

Timed Processes: explicit clock variables

(press==1)? A (c>1) * Clock variables

e Like other state variables, can be
used in guards

* Can be reset to 0 during mode
switches
* When the machine is in a given

mode for duration 9§, the clock
variable increases by §

clock c:=0 (press==1)? A (c<1)

(press==1)?—
c:=0

(press==1)?

Timed Process Execution

(press==1)? A (c=1)

clock c:=0 (press==1)? A (c<1)

(press==1)?—
c:=0

(press==1)?

(press==1)?

(press==1)?

) (dim,0.8)—>(bright,0.8)

(off,O)(off,O.S)—»(dim,O
0.5

2

Machine execution is
through alternating timed
transitions and mode

switches

(press==1)?

S
(dim,2.0) €—>(dim,3.8) —— (off,3.8)
1.8

Timed Buffer

bool in

booly x:= @, clock c:=0

Tin: (x==0) & in?—
x:=in; c:=0;

Tout: (c=2)—
{out :=x;

Xx:=0}

Tinfunt IN? =

bool
out

Input channel in of type bool
Output channel out of type bool

State variable x of type bool+@. The
value @ indicates empty

If x is @, then read new value into x,
and set clockto O

If clock value is = 2 seconds, output
value of x, and set x to @

Timed State Machine representation

C.

c= 2 - out:=x, x:=0

empty

in?— x:=in, ¢:=0

full

Mode captures whether x==0

Clock variable tracks the time that
elapsed since x received a value

Guard ensures that at least 2 seconds
pass before the value of x is output

Guard does not force transitions
c can keep increasing while process
remains in mode full

How do we make sure that process
does not remain in full mode for at
most 3 seconds?

Clock invariants

c= 2 - out:=x, x:=0

1
o

C:
empty full

in?— x:=in, ¢:=0

Attempt 1: we could make the guard 2 <
c<3

Attempt 1 fails because:

You could keep getting new input (self-
loop executes) till c = 3

Larger problem: Guards are non-forcing:
nothing requires the guard to be executed

We can fix this by introducing clock
invariants

Clock invariant of any mode: symbolic
expression that must evaluate to true at all
times, and if not, the process must exit
that mode

Clock invariants

c= 2 - out:=x, x:=0

1
o

c: full

empty c<3

in?— x:=in, ¢:=0

Add clock invariant:
(mode==full) = (c < 3)

Forces process to leave mode full if c
becomes greater than 3

Staying in mode full when c= 3
would violate the clock invariant

Useful construct to limit how long a
process stays in a certain mode

Why model using invariants and guards?

Each mode is a guard-enabled task; if guard is
true, task is executed

Going from one mode to another is a task switch T1o2:81(c) A(m=my) -
m:==m
Checking if process leaves mode m, and goes to Tyi: 85(C) A (nf = m,) -
m,depends on if incoming guard of m,, is true m:=my
Staying in m,does not/should not depend on the
guard of m, e
So, we use invariants: g2 91

a condition always checked in a given mode

Example with two clocks

lock : :
- Z'C—O Model with one input channel and two output
Al idle channels: out; and out,
Clock c tracks time elapsed since occurrence
in? = ¢:=0 of the input task execution
waitl Clock d tracks time elapsed since occurrence
c<1 of output task for out,
Behavior of process: If input event occurs at
out,!#;d:=0 d>1- . :
out. I* some time t, then process issues output # on
Wait2 ? out, some time t’ € [t,t+1] and then issues
c<2 output * on out, at time t” € [t'+1, t+2]
(Idle,0,0) 25 (1dle,5.7,5. 7) 183 (Wa1t1 0,5.7) 25 (Wa1t1 0.6,6.3) 244!

(Wait2,0.6 0) (Wa1t2 1.1,0. 5) (Wa1t2 1.9,1.3) outy! (Idle,1.9,1.3).

Composing Timed Processes

Each process stays in mode full for
t € [B;, Ayl

Need to construct a new process
with 4 new modes

c1=B1 — out;:=xq, X1::@

Cu:= full
empty ¢ <A
— 131

in?— Xx4:=in, ¢4:=0
e Each new mode is a pair consisting of

modes from process 1 and 2

CZZBZ — 0Ut2:=X2, XZ::Q) . . .
Mode switches in the new machine

€2:=0 empty full correspond to mode switches in the
&2 = A old machine

in?— xy:=in, ¢;:=0 Interesting timing behavior can arise!

Composing Timed Processes

c1=B; = out;:=x4

in?— x4:=in, ¢1:=0

in?— Xq:=in, ¢1:=0,
Xy:=in, €,:=0

in?
Cy= BZ — out,:=x,

N

in?— X,:=in, ¢,:=0

empty, full
C, <A,

Semi-synchrony

IfB,<A,<B,:

(full,full) =(full,empty) can never be
enabled!

Why?

c,reaches A7 and the process gets kicked
out of state (full,full)

But ¢; cannot be greater than B, so,
guard from (full,full) to (full,empty) is not
enabled!

Semi-synchrony

full, empty Ce$8
S C1<=A;) o
O\)&x Gt "
A~ i
2 ;
2 . ? _=' o=
N in?— x: l_f;' Ccl- %' full,full
X5:=1N, =
empty, ’ ’ G=hAy
empty 1o NG=A;
XN
Sa > »
Ng 7 >
> D>
N 7 X
o o> 4
2 R
22 ’1/'
+ empty, full \"-&
C2SA2

IfB,<A,<B,:
(full,full) = (full,empty) cannot happen
If B, <A,<B,:

(full, full) = (empty,full) will happen
eventually

out, guaranteed to happen before out,

Implicit coordination based on delays
Both process clocks increase in tandem
Global clock-based synchronization

Reason why timed models are called semi-
synchronous or partially synchronous

Formal recap of a timed process

Timed process consists of:

An asynchronous process, where some of the state variables are of type clock (ranging over non-
negative reals)

A clock invariant J which is a Boolean expression over the state variables

Inputs, Outputs, States, Initial states, Actions: Internal, Input and Output: same as for asynchronous
processes

Timed Action: Given a state g and time § > 0, action g iq’ specifies a transition of duration ¢ if:
g’ represents a state where the non-clock variables have the same value as in g, i.e. g’(x) = q(x)
g’ represents a state where the clock variables in q are incremented by ¢, i.e. g’(c) = q(c) + §, and
For all times t € [q(c), q(c)+d], the clock invariant [is satisfied
If clock invariant is convex, enough to check clock invariant at g(c) and g(c)+9d

Pacemaker Modeling as a Timed Process

Most material that follows is from this paper:

Z. Jiang, M. Pajic, S. Moarref, R. Alur, R. Mangharam, Modeling and
Verification of a Dual Chamber Implantable Pacemaker, In Proceedings

of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2012.

The textbook has detailed descriptions of some other pacemaker
components

How does a healthy heart work?

Sinoatrial (

node ., -

Atrioventricular Right
(AV) node Ventricle

Electrical Conduction System of the Heart

SA node (controlled by nervous system)
periodically generates an electric pulse

This pulse causes both atria to contract
pushing blood into the ventricles

Conduction is delayed at the AV node
allowing ventricles to fill

Finally the His-Pukinje system spreads
electric activation through ventricles
causing them both to contract, pumping
blood out of the heart

What do pacemakers do?

Aging and/or diseases cause conduction
properties of heart tissue to change leading to
changes in heart rhythm

Tachycardia: faster than desirable heart rate
impairing hemo-dynamics (blood flow
dynamics)

Bradycardia: slower heart rate leading to
insufficient blood supply

Pacemakers can be used to treat bradycardia by
providing pulses when heart rate is low

Implantable Pacemaker modeling

sl N N\ N\
AS P [AR] AS AS Atrium
AP i
Pacemaker : —
pulse generatz M V ! Ventricle
. 1
1
VP vs i VP VP
1
! O,
Lead in : oJ" 2] J' - ¥ extension
right atrium AVI AVI {}/”58”56’61 AVI AVI
PVARP | : PVARP | PVARP PVARP
VRP VRP VRP VRP
AEI j LRI LRI
Lead in LRI LRI
right ventricle ORI URI
URI URI

reset

How dual-chamber pacemakers work

Two fixed leads on wall of right atrium and ventricle respectively

Activation of local tissue sensed by the leads (giving rise to events Atrial
Sense (AS) and Ventricular Sense (VS))

Atrial Pacing (AP) or Ventricular Pacing (VP) are delivered if no sensed
events occur within deadlines

AS

\ A 4

VS
Heart AP Pacemaker

VP

The Lower Rate Interval (LRI) mode

LRI component keeps heart rate above minimum level

ASed

VS? — c:=0
AS?
VP? - c:=0 LRI VP? - c:=0
c<K
VS? - ¢c:=0 c=> K- AP!; c:=0
K= 850ms

LRI = lower rate interval

LRI component keeps heart rate above
minimum level

One of the pacemaker modes of
operation that models the basic timing
cycle

Measures the longest interval between
ventricular events

Clock reset when VS or VP received

No AS received = LRI outputs AP after
K time units

FSM Software Tools

Statecharts (Harel, 1987), a notation for concurrent composition of hierarchical FSMs, has
influenced many of these tools.

One of the first tools supporting the Statecharts notation is STATEMATE (Harel et al.,
1990), which subsequently evolved into Rational Rhapsody, sold by IBM.

Almost every software engineering tool that provides UML (unified modeling language)
capabilities (Booch et al., 1998).

SyncCharts (Andre’, 1996) is a particularly nice variant in that it borrows the rigorous
semantics of Esterel (Berry and Gonthier, 1992) for composition of concurrent FSMs.

LabVIEW supports a variant of Statecharts that can operate within dataflow diagrams

Simulink with its Stateflow extension supports a variant that can operate within
continuous-time models.

UPPAAL (Yi, Pettersson, Larsen, mid-1990s) is is a tool for modeling, simulation, and
verification of real-time systems. It was jointly developed by Uppsala University in
Sweden and Aalborg University in Denmark.

