
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

I Semestre 2023

Lecture 5: Hybrid Models

Actor Models
A box, where the inputs and the outputs are functions

𝑆

𝑆: 𝑢 → 𝑦

𝑢 𝑦

Actor models are composable. We can form a cascade composition

We have so far assumed that state machines operate in a sequence of discrete reactions.
We have assumed that inputs and outputs are absent between reactions.

Having continuous inputs

4

Input u(t) Output y

s1 s2
Guard/actionGuard/action

Guard/action

Guard/action

We will define a transition to occur when a guard on an outgoing transition from the cur-
rent state becomes enabled

Thermostat FSM with a continuous-time input signal

The outputs are present only at the times the transitions are taken

cooling heating

𝜏 𝑡 ≤ 18 → ℎ𝑒𝑎𝑡𝑂𝑁

𝜏 𝑡 ≥ 22 → ℎ𝑒𝑎𝑡𝑂𝐹𝐹

𝜏
ℎ𝑒𝑎𝑡𝑂𝑁

ℎ𝑒𝑎𝑡𝑂𝐹𝐹

cooling heating

𝜏 𝑡 ≤ 18

𝜏(𝑡) ≥ 22

The current state of the state machine has a state refinement that gives the dynamic
behavior of the output as a function of the input.

State Refinements

h 𝑡 = 0 h 𝑡 = 1

𝜏 ℎ

Modal Models

A hybrid system is sometimes called a modal model because it has a finite
number of modes, one for each state of the FSM, and when it is in a mode, it
has dynamics specified by the state refinement.

Timed Automata

• Introduced by Alur and Dill (A theory of timed Automata, TCS,1994)

• They are the simplest non-trivial hybrid systems

• All they do is measuring the passage of time

• A clock 𝑠 𝑡 is modeled by a first-ODE: 𝑠̇ = 𝑎 ∀𝑡 ∈ 𝑇!
where 𝑠 ∶ ℝ → ℝ is a continuous-time signal,
𝑠(𝑡) is the value of the clock at time 𝑡, and
𝑇! ⊂ ℝ is the subset of time during which the hybrid system is in mode𝑚.
The rate of the clock, 𝑎, is a constant while the system is in this mode.

Timed Automata

cooling heating

𝜏 𝑡 < 20 ∧ 𝑠 𝑡 ≥ 𝑇!
→ 𝑠 𝑡 ≔ 0

𝜏 𝑡 ≥ 20 ∧ 𝑠 𝑡 ≥ 𝑇"
→ 𝑠 𝑡 ≔ 0

h 𝑡 = 0 h 𝑡 = 1

𝜏 ℎ

s 𝑡 : = 𝑇"

𝑠̇ = 1 𝑠̇ = 1

This is an assignment, not a predicate

cooling and heating are discrete states, s is a continuous state

Temperature input 𝜏 𝑡

The output ℎ

The refinement state 𝑠.

Hybrid Automata

𝜏 ≤ 18
cooling heating

𝜏 ≤ 18 ?

𝜏 ≥ 22 ?

𝜏̇ = −𝛼 𝜏

ℎ

𝜏̇ = −𝛼 𝜏 + 𝛼𝑘

𝜏' ≥ 18

ℎ = 0 ℎ = 1 𝜏
𝜏 > 18 𝜏 < 22

• Generalization of a timed process
• Instead of timed transitions, we can have arbitrary evolution of state/output

variables, typically specified using differential equations

• Ball dropped from an initial height of ℎ# with
an initial velocity of 𝑣#

• Velocity changes according to 𝑣̇ = −𝑔
• When ball hits the ground, i.e. when ℎ 𝑡 = 0,

velocity changes discretely from negative
(downward) to positive (upward)
• I.e. 𝑣 𝑡 ≔ −𝑎𝑣(𝑡) , where 𝑎 is a damping constant

• we can model it as a hybrid system!

Modeling a bouncing ball

13

Hybrid Process for Bouncing ball

14

ℎ̇ = 𝑣
𝑣̇ = −𝑔 ℎ == 0

𝑣 ≔ −𝑎𝑣
ℎ = ℎ!
𝑣 = 0

Hybrid Process for Bouncing ball

15

ℎ̇ = 𝑣
𝑣̇ = −𝑔
ℎ ≥ 0

ℎ == 0
𝑣 ≔ −𝑎𝑣

ℎ = ℎ!
𝑣 = 0

Non-Zeno hybrid process for bouncing ball

16

ℎ̇ = 𝑣
𝑣̇ = −𝑔 ℎ = 0 →

𝑣 ≔ −𝑎𝑣ℎ = ℎ!, 𝑣 = 0

ℎ = 0 ∧ 𝑣 < 𝜖 →
𝑣 ≔ 0

halt

faling

Hybrid Process for Bouncing ball

17
What happens as ℎ → 0?

ℎ(𝑡)

ℎ̇ = 𝑣
𝑣̇ = −𝑔

ℎ == 0
𝑣 ≔ −𝑎𝑣

ℎ = ℎ!
𝑣 = 0 ℎ̇(𝑡)

Hybrid Time Set
A hybrid time set is a finite or infinite sequence of intervals

𝜏 = { 𝐼", 𝑖 = 0,… ,𝑀}:
• 𝐼" = 𝜏", 𝜏"# 𝑓𝑜𝑟 𝑖 < 𝑀
• 𝐼$ = 𝜏$, 𝜏$# or 𝐼$ = [𝜏$, 𝜏$#) if M<∞
• 𝜏"# = 𝜏"%&
• 𝜏" ≤ 𝜏"#

Hybrid Time Set: Length
Two notions of length for a hybrid time set 𝜏 = { 𝐼", 𝑖 = 0,… ,𝑀}:

• Discrete extent: < 𝜏 > = 𝑀 + 1 number of discrete transition
• Continuous extent: 𝜏 = ∑"'!$ 𝜏"# − 𝜏" total duration of interval in 𝜏

Hybrid Time Set: Classification

• Finite: if < 𝜏 > is finite and I$ = [𝜏$, 𝜏$#]
• Infinite:if ||𝜏|| is infinite
• Zeno: if < 𝜏 > is infinite but ||𝜏|| is finite

A hybrid set 𝜏 = { 𝐼", 𝑖 = 0,… ,𝑀} is :

u Described by Greek philosopher Zeno in context of a race between Achilles and a
tortoise

u Tortoise has a head start over Achilles, but is much slower
u In each discrete round, suppose Achilles is d meters behind at the beginning of the

round
u During the round, Achilles runs d meters, but by then, tortoise has moved a little

bit further
u At the beginning of the next round, Achilles is still behind, by a distance of 𝑎×𝑑

meters, where 𝑎 is a fraction 0<𝑎<1
u By induction, if we repeat this for infinitely many rounds, Achilles will never catch

up!

Zeno’s Paradox

21

(Linear) Hybrid Automata

c!"(𝑥)

𝑞! 𝑞&

c#$ 𝑥
𝑥 ≔ 𝐴#$𝑥

𝑥̇ = 𝐴!𝑥 + 𝐵! 𝑢 𝑥̇ = 𝐴&𝑥 + 𝐵& 𝑢

c,(𝑥)

c!(𝑥) c&(𝑥)

c$# 𝑥
𝑥 ≔ 𝐴$#𝑥

(Linear) Hybrid Automata

cooling heating

𝜏 ≤ 18

𝜏 ≥ 22

𝜏̇ = −𝛼 𝜏 𝜏̇ = −𝛼 𝜏 + 𝑘

𝜏! ∈ 20,21
𝑡 = 0

𝑡̇ = 1 𝑡̇ = 1

u Continuous action/transition:

Hybrid actions/transitions

24

• Discrete mode 𝑚 does not change

• 𝐱𝝉 = 𝐱(0)

•
&𝐱 (
&(

satisfies the given dynamical equation for mode 𝑚

• Output 𝐲 satisfies the output equation for mode 𝑚: 𝐲 𝑡 = ℎ)(𝐱 𝑡 , 𝐮 𝑡)
• At all times 𝑡 ∈ 0, 𝛿 , the state 𝐱 𝑡 satisfies the invariant for mode 𝑚

(𝑞, 𝐱 *) 𝑞, 𝐱 t + 𝛿𝛿
𝐮(𝑡)/𝐲(𝑡)

u Discrete action/transition:

• Happens instantaneously

• Changes discrete mode 𝑞 to 𝑞!

• Can execute only if 𝑔(𝐱") evaluates to true

• Changes state variable value from 𝐱" to 𝑟 𝐱"
• 𝑟 𝐱" should satisfy mode invariant of q′Output will change from ℎ# 𝐱" to ℎ## 𝑟 𝐱"

Hybrid actions/transitions

25

(𝑞, 𝐱 *) 𝑞′, 𝑟 𝐱*
𝑔(𝐱)/𝐱 ≔ 𝑟 𝐱

u Objective: Steer vehicle to follow a given track
u Control inputs: linear speed 𝑣 , angular speed (𝜔), start/stop
u Constraints on control inputs:

� 𝑣 ∈ 𝑣-./, 𝑣-.//2,0
� 𝜔 ∈ {−𝜋, 0, 𝜋}

u Designer choice: 𝑣 = 𝑣-./ only if 𝜔 = 0, otherwise 𝑣 = 0!"#
1

Design Application: Autonomous Guided Vehicle

26

𝜃

𝑦

𝑑

Track

When 𝑑 ∈ −𝜖,+𝜖 , controller decides that
vehicle goes straight, otherwise executes a
turn command to bring error back in the
interval

𝑥

On/Off control for Path following

27

𝜃
𝑥

𝑦

𝑑

Track

𝑥̇ = (𝑣!"#/2) cos 𝜃
𝑦̇ = ⁄𝑣!"# 2 sin 𝜃

𝜃̇ = −𝜋
𝑑 ≥ 𝜖

𝑥̇ = 0
𝑦̇ = 0
𝜃̇ = 0

𝑥̇ = (𝑣!"#/2) cos 𝜃
𝑦̇ = ⁄𝑣!"# 2 sin 𝜃

𝜃̇ = 𝜋
𝑑 ≤ −𝜖

𝑥̇ = 𝑣!"# cos 𝜃
𝑦̇ = 𝑣!"# sin 𝜃

𝜃̇ = 0
−𝜖 ≤ 𝑑 ≤ 𝜖

𝑑 ≤ 𝜖?

𝑑 ≤ −𝜖? 𝑑 ≥ −𝜖?

𝑑 ≥ 𝜖?

𝑠𝑠? 𝑠𝑡𝑎𝑟𝑡 ∧
𝑑 ≥ 𝜖?

𝑠𝑠? 𝑠𝑡𝑜𝑝 𝑠𝑠?
𝑠𝑡𝑜
𝑝

𝑠𝑠?
𝑠𝑡𝑎
𝑟𝑡 ∧

−𝜖
≤ 𝑑

≤ 𝜖
?

𝑠𝑠? 𝑠𝑡𝑜𝑝

𝑠𝑠? 𝑠𝑡𝑎𝑟𝑡 ∧
𝑑 ≤ −𝜖?

Inputs: ss ∈ 𝑠𝑡𝑜𝑝, 𝑠𝑡𝑎𝑟𝑡 , 𝑑 ∈ ℝ

Turn right

Turn left

Go straight

Stationary

𝑥 ≔ 𝑥!
𝑦 ≔ 𝑦!
𝜃 ≔ 𝜃!

On/Off control for Path following

28

u Autonomous mobile robots in a room, goal for each robot:
� Reach a target at a known location
� Avoid obstacles (positions not known in advance)
� Minimize distance travelled

u Design Problems:
� Cameras/vision systems can provide estimates of obstacle positions

�When should a robot update its estimate of the obstacle position?
� Robots can communicate with each other

�How often and what information can they communicate?
� High-level motion planning

�What path in the speed/direction-space should the robots traverse?

Design Application: Robot Coordination

29

Path planning with obstacle avoidance

30

Goal

𝑥

𝑦

𝑝% = 𝑥%, 𝑦%

𝑝& = 𝑥&, 𝑦&

𝑣, 𝜃&

𝑣, 𝜃%

𝑥', 𝑦'

u Assumptions:
� Two-dimensional world
� Robots are just points
� Each robot travels with a fixed speed

u Dynamics for Robot 𝑅":
� ̇𝑥" = 𝑣 cos 𝜃"; ̇𝑦" = 𝑣 sin 𝜃"

u Design objectives:
� Eventually reach 𝑥8, 𝑦8
� Always avoid Obstacle1 and Obstacle 2
� Minimize distance travelled

𝑅"

𝑅$

Obstacle 1
𝑝(% = 𝑥(%, 𝑦(%

Obstacle 2
𝑝(& = 𝑥(&, 𝑦(&

1. Computer vision tasks
2. Actual path planning task

u Assume computer vision algorithm identifies obstacles, and labels them with
some easy-to-represent geometric shape (such as a bounding boxes)
� In this example, we will assume a sonar-based sensor, so we will use circles

u Assuming the vision algorithm is correct, do path planning based on the estimated
shapes of obstacles

u Design challenge:
� Estimate of obstacle shape is not the smallest shape containing the obstacle
� Shape estimate varies based on distance from obstacle

Divide path/motion planning into two parts

31

u Robot 𝑅$ maintains radii 𝑒 and 𝑒′ that are
estimates of obstacle sizes

u Every 𝜏 seconds, 𝑅$ executes following
update to get estimates of shapes of each
obstacle:

𝑒! ≔ min 𝑒!, 𝑟! + 𝑎 𝑝! − 𝑝"! − 𝑟!

u Computation of 𝑅1 is symmetric
𝑒# ≔ min 𝑒#, 𝑟# + 𝑎 𝑝! − 𝑝"# − 𝑟#

Estimation error

32

𝑒$𝑒"

𝑟"

Estimated shape
from distance 𝑑$

Estimated shape
from distance 𝑑%

Smallest shape
bounding obstacle

Estimated radius (from current distance d)
𝑒 = 𝑟 + 𝑎(𝑑 − 𝑟),
where 𝑎 ∈ [0,1] is a constant

𝑝(% = 𝑥(%, 𝑦(%

u Choose shortest path 𝜌= to target (to minimize
time)

u If estimate of obstacle 1 intersects 𝜌=, calculate
two paths that are tangent to obstacle 1
estimate

u If estimate of obstacle 2 intersects 𝜌=, or
obstacle 1, calculate tangent paths

u Plausible paths: 𝜌$ and 𝜌>
u Calculate shorter one as the planned path

Path planning

33

𝜌"

𝜌$
𝜌%

𝜌&

𝑥

𝑦

𝑝"

𝑝"#

𝑝"$

(𝑥& , 𝑦&)

𝜃

u Path planning inputs:
� Current position of robot
� Target position
� Position of obstacles and estimates

u Output:
� Direction for motion assuming obstacle estimates are correct

u May be useful to execute planning algorithm again as robot moves!
� Because estimates will improve closer to the obstacles
� Invoke planning algorithm every 𝜏 seconds

Dynamic path planning

34

u Every robot has its own estimate of the obstacle
u 𝑅>’s estimate of obstacle might be better than 𝑅$’s
u Strategy: every 𝜏 seconds, send estimates to other robot, and receive

estimates
u For estimate 𝑒?, use final estimate = min 𝑒? , 𝑒?@A!B

u Re-run path planner

Communication improves planning

35

Improved path planning through communication

36

𝜌"

𝜌$
𝜌%

𝜌&

𝑥

𝑦

𝑝"

𝑝"#

𝑝"$

(𝑥& , 𝑦&)
𝜌"

𝜌$
𝜌%

𝜌&'

𝑥

𝑦

𝑝%(0)

𝑝"#

𝑝"$

(𝑥& , 𝑦&)

𝑝%(𝜏) Old path

New path available
because estimate of
obstacle 1 improved
after receiving estimate
from 𝑅%

Hybrid State Machine for Communicating Robot

37

