
CELL MECHANICS

LECTURE 2 2. Physical principles 

2.1.  Forces at molecular and cell level 

• Physical forces and their magnitudes at the single-molecule level

• Modeling complex mechanical devices as protein machines by using three elements:   

case study: Mass, Stiffness and Damping of Proteins

2.2.  Thermal forces, diffusion, and chemical forces

• Boltzmann’s law and the  Principle of Equipartition of Energy

• Diffusion equation - Einstein relation – Stokes law

• Autocorrelation function and Power Spectrum

• The effect of force on the equilibria and rate of chemical reactions

• Example of single molecule force spectroscopy experiments – unbinding, unfolding



2.1.  Forces at molecular and cell level

Outline:

• Physical forces and their magnitudes at the single-molecule level

• Modeling complex mechanical devices as protein machines by using three elements:  

  Spring, Dashpot, Mass 

• Mass, Stiffness and Damping of Proteins
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• The force drives change and motion.  E.g. motor proteins and other molecular machines are 

able to move and do work because they generate force. 

• What types of  interactions and forces  occur in cells ? 

• Where these forces come from ?  

• Which is the magnitude of forces acting on molecules ?

2.1.  Physical forces and their magnitudes at the single-molecule level 3
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Range:

pN - nN
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Physical forces and their magnitudes at the single-molecule level (Examples)

Elastic 

F= k ∙ x , where: k – spring constant (stiffness), x – displacement

Example: motor protein k= 1 pN/1nm, spring strained through distance x= 1 nm → F= 1 pN

Viscous

F= ɣ ∙ v, where : ɣ- drag coefficient , v – relative velocity between object and liquid

ɣ= 6πηr, with η – liquid viscosity, r – radius of a spherical particle

Example: which is the viscous/drag force for a globular protein moving through water

radius r= 3 nm, molecular mass MM= 100 kDa)  in water ( viscosity )  → drag coeff ɣ ~ 60 pN s/m 

the average thermal speed  v ~ 8 m/s (calculated from thermall driven collisions from the the surrouding solvent molecules)
-- > F ~ 480 pN

Collisional and thermal

Example: Protein – water molecule collision / s: F= Δp/ Δ t 

Water molecule : mass m ~ 18 Da, average thermal speed vrms ~ 600 m/s,  momentum: p ~ 18 x 10-24 kg m/s.

Assuming the interaction is perfectly elastic : F= Δp/ Δ t = Δ(mv)/ Δ t=  2 p / Δ t ~ 36 x 10-12 pN  - very small

J. Howard – Book, Ch. 2
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Optical forces

Optical pressure due to the momentum of light (photon’s linear momentum :  p=hν/c)

Example: if an object absorbs one green photon / second, the corresponding force is:

F= Δp/ Δ t ~ 1.3 10 -27 N   - very small    

h= 6.63 10 -34 m 2 kg / s , ν = 6 1014 Hz , c= 3 108 m/s, E= h ν= 4 10 -19 J

A laser beam of power P=1 mW has about N ~ 2.5 10 15 photons ! → F (1mW) ~ 3.25 pN 

still small but enough to make an effect on small objects (see optical tweezers)

Gravity

Example: protein 100 kDa = 166 10 -21 g, the gravitational force F= 1.7 10 -9 pN very small

F= mg, m – mass, g – gravitational acceleration;  1 red blood cell: m= 10-10 g → F= 1pN

Centrifugal

Ultracentrifuges → acceleration ac ~ 10 5 g, associated force on protein 100 kDa is still modest: F= 1.7 10-3 pN, but this is 

large enough to cause the protein to drift at an average speed of ~ 3 μm/s → protein sedimentation through a distance 

of 100 mm (typical length of centrifuge tunbe) in about 10 h.
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Electrostatic F= qE

Example: force experienced by a potassium ion K+ , traveling through an ion channel of the plasma membrane.

The charge of the ion q= 160 10-21 C; the electric field accross a typical plasma membrane : E= 15 10 6 V/m 

(60 mV potential accross the 4 nm thick membrane) -- > F= 2.4 pN

Similar force exists between two monovalent ions in water that are separated by 1 nm  (homework).

Van der Waals forces are also electrostatic – they arise form the charge separation induced by nearby atoms. 

These forces can be as high as 100 pN / nm2 of protein-protein interface

Magnetic

Very small at the molecular level because molecules interact very weakly with magnetic fields.

Example: max force on a proton in the strongest nuclear magnetic resonance (NMR) machines is only of the order 

of 10-12 pN.

Thus even with a huge protein with 3000 aminoacids and 60000 atoms subject to a very strong magnetic field the 

magnetic force is < 10 -6 pN. 
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Modeling complex mechanical devices as protein machines by using three elements:   

 Spring, Dashpot, Mass 

In a simplified approach, 

a protein can be thought as a mechancial device composed of 

atoms that have mass, 

they are connected by bonds that have elasticity (like springs), 

and move in liquid environment, facing viscosity (like dashpots).

All mechanical devices can be built with 

three fundamental mechanical elements: 

SPRING, DASHPOT, MASS

Then we will discuss the (important) contribution

of the thermal forces for the work of of protein machines

10
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MASS DASHPOT SPRING

Motion of a MASS, a DASHPOT and a SPRING under the influence of a constant external force

x(t)= ½ at2

v(t)= at

= a
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Example. The force generated by the bacterial motor.

The bacterial flagelar motor should generate a force to move an E. Coli bacterium  through 

water at a constant velocity v= 25 μm/s , which is the force to do this ?

η~ 1 mPa s – water  viscosity, D ~ 1 μm (diam of E. Coli) 

F= ɣ ∙ v= 3πηDv ɣ = 3πD η ~10 mPa s μm= 10-8 Ns/m

F~ 250 mPa μm2 = 0.25 pN

E. Coli bacterium

F~  0.25 pN

12

v= 25 μm/s 



Motion of Combinations of Mechanical Elements

A) DASHPOT and MASS. Model for the movement of a cell / bacterium or a protein through a liquid 

𝑣 𝑡 =
𝐹

𝛾
1 − exp −

𝑡

𝜏
𝑚
𝑑𝑣

𝑑𝑡
+ 𝛾𝑣 = 𝐹

J. Howard – Book, Ch. 2
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Time constant

𝜏 =
𝑚

𝛾

𝜏 = 𝑚/𝛾

Eq of motion Solution



Example.  Inertia of a bacterium vs protein

Consider a bacterium swimming through water at a constant velocity v(0)= 25 μm/s. 

How long will it continue to coast after its motor has stopped ?

𝑚
𝑑𝑣

𝑑𝑡
+ 𝛾𝑣 = 0 𝜏 =

𝑚

𝛾

𝑚 ≈ 0.33 ∙ 10−15 kg

ɣb≈ 10 mPa s μm = 10-8 N s/m𝑣 𝑡 = 𝑣(0) ∙ exp −
𝑡

𝜏

𝜏𝑏 = 3.3 𝜇𝑠 !

𝒙𝒔𝒕𝒐𝒑 = 0
τ
v 0 ∙ exp −

t

τ
dt = 𝑣 0 ∙ 𝜏 ≈ 𝟏 Å
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Less than the diameter of a water molecule (~ 2.7 Å)

For a globular protein of 100 kDa the average instantaneous speed of such a protein is v= 8.6 m/s 

mp ≈ 0.166 10-21 kg 

ɣp ≈ 60 · 10-3 mPa s μm = 0.6 10-10 N s/m

After the protein gains speed due to molecular collisions with 

solvent molecules, the velocity persists for only a very short time as 

other collisions rapidly randomize the protein’s direction of travel.

𝜏𝑝 = 2.8 𝑝𝑠 !!!

xstop= 0.24 Å the distance that the protein moves before its speed is randomized by molecular collisions

Both time constants are small, but there are 6 orders of difference between the two !



Motion of Combinations of Mechanical Elements

B) SPRING and DASHPOT in parallel. 

Model for a compliant low- mass object that is deformed in a liquid, such as a protein that undergoes a global 

conformational change. 

It can be used also to model a viscoelastic material, such as skin, that takes finite time to adopt a new shape.

𝛾
𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹 𝑥 𝑡 =

𝐹

𝑘
1 − exp −

𝑡

𝜏
𝜏 =

𝛾

𝑘
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Time constant

𝜏 = 𝛾/𝑘



Example. The timescale of protein conformational changes.

Globular protein 100 kDa, the global conformational changes of the whole protein are  relatively slow

𝑘 = 4 pN/nm𝛾 = 60 𝑝𝑁 𝑠 /𝑚

𝜏 =
𝛾

𝑘
𝝉 = 𝟏𝟓 𝒏𝒔

Protein held in a strained 
conformation due to an 
internal strut (montante)

Latch (serratura) Open  latch

Protein relax, 
changes shape →
unstrained 
conformation

The global conformation changes in protein occur in nanoseconds
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Motion of Combinations of Mechanical Elements

C) MASS and SPRING in serie. Model to describe the vibrations of the atomic bonds. 

𝑥 𝑡 =
𝐹

𝑘
1 − cos 𝜔𝑡 𝜔 =

𝑘

𝑚
𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑘𝑥 = 𝐹

Harmonic motion

J. Howard – Book, Ch. 2
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Example. Vibration of chemical bonds.

Chemical bonds can be thought as having stiffness (chemical bonds vibrate at frequency ω=2πf, which can be detected 

spectroscopically when the molecule absorbs light of the same frequency as the molecular vibration). 

Ex: the fundamental vibration frequency of the H-Cl bond in HCl is f= 89.6 1012 Hz (2990 cm-1)

The corresponding wavelength is λ= c / ν= 3.53 μm

The appropriate mass m~1.63 10 -27 kg (appox mass of the hydrogen nucleus)

Stiffness k= m ω2= 517 N/m – very stiff !!!

Example. Protein vibrations. 

Consider the motor protein myosin. 

Motor domain has a mass m~0.166 x 10-21 kg and stiffness k ~ 4 pN/nm. 

The vibration frequency is calculated to be: f ~ 10 9 Hz, which means a period of oscillation T= 1 ns. 

By contrast, the relaxation time is 15 ns

Does the protein oscillate when it detaches from the actin filament or does it creep exponentially into its relaxed state ? 

The answer requires solution of the full model, with mass, spring, and dashpot, and it shows that the protein creeps 

rather than rings.

18

𝜔 =
𝑘

𝑚



Motion of Combinations of Mechanical Elements

MASS and SPRING with DAMPING. 

Simple mechanical model of a protein undegoing a large scale conformational change that is damped by the 

surrounding fluid, and possibly by internal viscosity. 

This model captures the main qualitative features of more complex models in that it can display oscillatory of 

monotonic motions depending on the strength of the damping.

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝛾

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹

Elastic solid in liquid

The solution depends on wether the damping is:

small

or 

large
𝛾2

4𝑚𝑘
> 1

𝛾2

4𝑚𝑘
< 1
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𝛾2 < 4𝑚𝑘 𝜸𝟐 > 𝟒𝒎𝒌

𝛾2

4𝑚𝑘
= 0.007

𝛾2

4𝑚𝑘
~ 1400

Unrealistic case:

Globular protein – 16 MDa (hypothetical)

Stiffness k= 30 N/m  (very rigid)

Little damping 𝛾= 150 pN s/m (unrealistic)

More realistic case: 

protein undergoing a large scale conformational change that 

is damped by the surrounding fluid, and by internal viscosity. 

Globular protein MM=100 kDa ; Stiffness k= 4 pN/nm ; 

damping 𝛾= 60 pN s/m 

The inertial forces are usually very small at the microscopic and molecular levels, so that the overdamped case usually applies.
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Examples

Energy of chemical bonds: 

the dissociation energy is seen as being approximately equal with the potential energy in the bond:

𝑈 =
1

2
𝑘𝑑2 , where d is the extension required to break the bond, d~ 0.05 nm. 

For H-Cl, the stiffness k ~ 517 N/m → U ~ 650 x 10-21 J = 650 pN ∙ nm → U ~ 161 KBT 

(KB Boltzmann ct: KB = 1.38 ∙ 10-23 J/K; T- temperatue, e.g. T=300 K ; 1 KB T ~ 4 ∙ 10-21 J= 4 pN ∙ nm)

Energy stored in protein conformational changes: 

Myosin molecule. The stifness is about k ~ 4*10-3 N/m (or 4 pN/nm)

For a conformational change of d=5 nm the total energy 𝑈 =
1

2
𝑘𝑑2 = 50 pN nm = 50 ∙ 10 -21 J  , U ~ 12.5 KBT  

This energy is approximately half of the chemical energy derived from hydrolisis of the gamma phosphate bond of ATP.

We can generalize this argument to global conformational changes of other protein machines:

The energies are on the order of 10 to 100 x 10-21 J (2.5 to 25  KBT ), conformational changes are on the order of 1 to 10 nm. 

Therefore the stifnesses are on the order of 0.2 to 200 pN/nm. 
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Get a feelling for what proteins are like mechanical devices

Questions: 

• How rigid the proteins are ? Density, viscosity ?

• How quickly do they move and change shape ? 

• What happens when a protein is struck by a force: does it ring like a fork (underdamped motion), 

or does it creep monotonically into a new shape (overdamped motion ?).

24Mass, Stiffness and Damping of Proteins

J. Howard – Book, Ch. 3



Proteins are composed of relatively light components:  

carbon, oxygen, nitrogen, and hydrogen

Proteins are about 40 % denser than water, with different 

proteins having slighlty different densities.

The average density of proteins is consider to be:           

ρ= 1.38 x 103 kg/m3

Rule of thumb:

The density of proteins is such that each kDa of protein 

occupies a volume of about 1.2 nm3 .

The SI of mass is kg, but in biochemistry the mass of proteins and 
other biomolecules is usually expressed as molecular mass, defined as
the mass in grams of a mole of the molecules. 

The unit is the Dalton :  1 Da = 1.66 x 10-24 g

Ex: A protein of 100 kDa has a mass,   m= 166 x 10-21 g

The volume V, occupied by such a protein is: V ~ 120 nm3 .

Mass of Proteins 𝑚 = 𝜌𝑉 25

J. Howard – Book, Ch. 3



For a homogenous and isotropic solid:

E : constant [N/m2] [Pa] 

E - Young’s modulus or elastic modulus

• Young’s modulus E is a material property:                        

it does not depend on the object size or shape

𝐹

𝐴
= 𝑬

∆𝐿

𝐿

A solid strained by a tensile force.

26Elasticity of Proteins

𝐹 = k ∆𝐿 =
𝐴𝐸

𝐿
∆𝐿

strainpressure

F ~ ΔL ; Hooke’s law 

K – stiffness

• The stiffness, k, of an object does depend on 

the size and shape. 

k : constant [N/m] 

extensionforce

J. Howard – Book, Ch. 3



Young’s moduli of different materials

For many materials (e.g. metals, plastics and structural 

proteins) the Hooke’s law applies only for 

forces that cause strains up to:

At higher forces the material yields and the yeld pressure 

is called tensile strength.

Other materials such as rubber and proteins like elastin 

and titin can be strained up to 100 % or more.

27

∆𝐿

𝐿
=  0.1- 1 %

J. Howard – Book, Ch. 3

F= k ΔL



The Global Motion of Proteins is Overdamped 28

The behavior / motion of an object in response to mechanical force - oscillatory (underdamped) or monotonic 

(overdamped) - depends on the relative magnitudes of the inertial and viscous forces. 

These in turn depend on the material properties: mass, stiffness and damping.

The scaling argument: 

as the dimension of an object gets smaller, the viscous forces increase relative to the inertial forces, and as a result, the 

global motions of small, comparatively soft objects such as proteins in aqueus solution are expected to be overdamped. 

Considering a crude mechancial model of a globular protein as a homogeneous and isotropic cube with side L, density ρ, 

and Young’s modulus E, damped by fluid viscosity η.

The mass: m= ρV= ρL3. The stiffness: k=EL

The drag force associated with a global conformational change that alters the shape of a protein: F = - ɣ v, with ɣ= 3π η L.

Overdamped condition: 
𝛾2

4𝑚𝑘
> 1

𝛾2

4𝑚𝑘
≅ 25

𝜂2

𝜌𝐸𝐿2
> 1
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How small must a protein be to ensure that its motion is overdamped and that it does not oscillate when subject to 

an external force ? 

For the middle rigid proteins the Young’s moduli, E ~ 1 GPa; the density, ρ ~ 103 kg/m3 , viscosity of water η ~ 1mPa s. 

→

This length corresponds to a medium-sized globular protein of ~ 1000 amino acids. 

Average MM of an amino acide is ~ 100 Da. 

Thus the model predicts that global motions of rigid globular proteins or protein domains of molecular weight less 

than 100 kDa should be overdamped. 

𝛾2

4𝑚𝑘
≅ 25

𝜂2

𝜌𝐸𝐿2
> 1

𝜂2

𝜌𝐸
≈ 1 nm2

Overdamped:

𝐿 < 5 nm

The Global Motion of Proteins is Overdamped; 
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𝛾2

4𝑚𝑘
≅ 25

𝜂2

𝜌𝐸𝐿2
> 1

The motion of larger proteins is also overdamped because: 

The rigidity of energy-transducing proteins, such as motor proteins, and the ribosomes is likely to be much less 

than that of rigid proteins like those of the cytoskeleton. Considering a protein undergoing a x=2 nm (modest) 

conformational change and assuming this is associated to a large amount of mechancial work, say W=25 KbT

(equal to the free energy of hydrolysis of the gamma phosphate bond of one molecule of ATP) from the energy 

W= ½ kx2  we get the stiffness k= 2W/x= 50 pN/nm, which is much smaller than the stiffness of a rigid protein of 

length 10 nm and Young’s modulus E= 2 GPa. 

This value of stiffness leads to a much greater characteristic length L= 50 nm, implying that even the motion of a 

ribosome, one of the largest protein machines, would be overdamped. 

Morover, since we consider a small value for the conformational change and a large value for the work, even 

this low stiffness is likely to be an overestimate; indeed the stiffness of motor proteins is on the order of pN/nm 

(0.001 N/m) → arguing once more that that protein motions are overdamped.

The Global Motion of Proteins is Overdamped; 



312.1.3. The Global Motion of Proteins is Overdamped; 

𝛾2

4𝑚𝑘
≅ 25

𝜂2

𝜌𝐸𝐿2
> 1
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Based on the scaling argument , since cells have linear dimensions about 1000 larger than those of proteins, one might 

expect that cells undergo underdamped motions.

Experimentally it is shown that this is not the case: the motions of the cells are very highly damped.

For example, the cytoplasm of macrophages that have ingested 1 um diameter magnetic particles can be perturbed 

using a weak external magnetic field. The particles reorient extremely slowly, with time constant of minutes. 

The apparent intracellular viscosity is very high, approx 1000 Pa s and the motion is highly overdamped. Because actin 

gels crosslinked with the actin binding protein ABP have similar viscoelastic properties to cells, it is likely that the 

viscoelasticity of cells arises from the stiffness and damping on cytoskeletal filaments. Since the long cytoskeletal 

filaments are highly damped, so too are cells.

The cytoskeletal filaments form a gel with a mesh size of about 50 nm. Small solutes and proteins can readily diffuse 

through the pores, but the motion of larger particles, such as ribosomes and organelles is severlely restricted. 

2.1.7. The Motions of Cytoskeleton and Cells are also Overdamped

𝛾2

4𝑚𝑘
≅ 25

𝜂2

𝜌𝐸𝐿2
> 1



Summary 1

• By considering three mechancial elements – mass, damping, spring - we introduced some of the mechanical concepts required to 

understand how forces influence protein and cells. 

Vibration of chemical bonds  ex. H-Cl , f= 89.6 1012 Hz; mass m~1.63 10 -27 kg → k = m ω2= 517 N/m – very stiff

• The mass and spring with damping illustrate that system can respond to mechanical forces int two ways:            

they can oscillate or they can move monotonically.
𝛾2

4𝑚𝑘

𝜏 =
𝛾

𝑘

𝜏 =
𝑚

𝛾

protein that undergoes a global conformational change (𝜏 = 15 𝑛𝑠) 

movement of a cell / bacterium or a protein through a liquid, inertia of a protein (100 kDa), 
measured as time to stop ( 𝜏 = 3 𝑝𝑠) 

𝜔 =
𝑘

𝑚



Summary 2

• The mechanical models discussed in this lecture can be generalized in two ways:

1. Increase the number of mechancial elements to include several masses, springs and dashpots, and even

other elements as latches and stops; the equation of motion are solved by balancing the forces accross each

element.       

Ex: Molecular dynamics: each atom in protein and surrounding fluid is represented by a point mass, each

bond is represented by a spring with constant stiffness and the damping is dropped from the equation. The 

ensuing motion is complex and best solved numerically by computer.

2. Consider the mechanical behvior of «continuum» solids that have material properties such as elasticity, 

density and viscosity (our approach in next lectures)



Summary 3

• The rigidity of cytoskeleton proteins as actin, tubulin, keratin is similar to that of hard plastics but less than that

of other materials such as glass or metal, because proteins are held together by weak Van der Waals bonds 

• The rigidity of protein machines/motors undergoing large conformational changes as they transduce chemical

energy into mechanical work is expected to be much less than that of structural proteins

• As proteins move and change shape, they experience damping forces from the surrounding fluid as well from 

the internal friction. These forces arise from the rapid making and breaking of bonds.

• Due to the small size of proteins, the viscous forces are preponderent over the inertial forces→ global motions

of proteins, especially less rigid ones, are overdamped→ they creep rather than oscilate when subject to forces

• The motion of long, thin cytoskeletal filaments are also overdamped, due to their large aspect ratios, this in 

turn causes the motion of the cells to be overdamped.

𝛾2

4𝑚𝑘
≅ 25

𝜂2

𝜌𝐸𝐿2
> 1 k =

𝐴𝐸

𝐿
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