Systems Dynamics

Course ID: 267MI – Fall 2023

Thomas Parisini Gianfranco Fenu

University of Trieste Department of Engineering and Architecture

267MI –Fall 2023

Lecture 6 A (Very) Short Glimpse on Probability Theory, Random Variables and Discrete-Time Stochastic Processes

Lecture 6: Table of Contents

6. A (Very) Short Glimpse on Probability Theory, Random Variables and Discrete-Time Stochastic Processes

6.1 A Glimpse on Probability Theory and Random Variables

6.1.1 Basic Definitions

- 6.1.2 Probability Distribution & Density Functions
- 6.1.3 Functions of Random Variables

6.1.4 Random Variables: Correlation and Independence

6.2 Discrete-Time Stochastic Processes

6.2.1 Definition

6.2.2 How To Describe a Stochastic Process?

- Stationary Stochastic Processes
- 6.2.3 Gaussian Stochastic Processes
- 6.2.4 White Stochastic Processes

A Glimpse on Probability Theory and Random Variables

A Glimpse on Probability Theory and Random Variables

Basic Definitions

Random Variables

- **Random experiment**: analysis of characteristic elements of phenomena yielding unpredictable results.
- **Results space**: we denote by *S* the set of all possible results of the experiment. Result: *s ∈ S* .
- **Events**: sets of results of specific interest. Hence an event is a subset of *S* .

Random variable

Given a random experiment, a **random variable** (r.v.) is a variable *v*(*s*) taking values depending on the result $s \in S$ of a random experiment via a function $\varphi(\cdot)$.

A Glimpse on Probability Theory and Random Variables

Probability Distribution & Density Functions

Probability Distribution & Density Functions

Probability distribution function

Provides information on the random variable *v* and it is defined as

$$
F_v(q) = \mathcal{P}(v \le q)
$$

According to the definition $P(v \in [a, b]) = F_v(b) - F_v(a)$

Probability density function

$$
f_v(q) = \frac{d F_v}{d q}
$$

Clearly \mathcal{P} $(v \in [a, b])$ is the area "under" the diagram of $f(q)$ in the interval $[a, b]$. DIA@UniTS – 267MI –Fall 2023 TP GF – L6–p3

A Glimpse on Probability Theory and Random Variables

Functions of Random Variables

Functions of Random Variables

• **Expected value (average value, average)**

$$
E(v) = \int_{-\infty}^{+\infty} q f_v(q) dq
$$

• **Variance**

$$
var(v) = \int_{-\infty}^{+\infty} \left[q - E(v) \right]^2 f_v(q) dq
$$

• **Standard deviation**

$$
\sigma(v) = \sqrt{\text{var}(v)}
$$

Tchebicev inequality

$$
\mathcal{P}\left(|v - \mathbf{E}(v)| > \epsilon\right) \le \frac{\text{var}(v)}{\epsilon^2} \qquad \forall \epsilon > 0
$$

The Sample Average

Matlab live script

A gently introduction to the sample average and median for readers less familiar with statistics is provided in a **Matlab live script**. We highlight those aspects that will be important to interpret the results from the system identification point of view.

Steps to retrieve the live script:

- Download as a ZIP archive the whole contents of the folder named "**Lecture6**," available in the "**Class Materials**" file area of the MS Teams course team, and uncompress it in a preferred folder.
- Add the chosen folder and subfolders to the Matlab path.
- Open the live script using the Matlab command:

open ('L6_HandsON_SampleAverage . mlx ') ;

Random Variables (cont.)

Sum of random variables

Caution! Given two random variables $v_1(s)$, $v_2(s)$:

$$
v(s) = v_1(s) + v_2(s) \quad \Longrightarrow \quad \mathcal{E}(v) = \mathcal{E}(v_1) + \mathcal{E}(v_2)
$$

$$
\text{var}(v) \neq \text{var}(v_1) + \text{var}(v_2)
$$

Vector Random Variable

• For example, given two random variables *v*1, *v*² we can build a **random vector** in the obvious way:

$$
v = \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right]
$$

1 \mathbf{I}

• Consequently, expectation and variance of a random vector are

$$
E(v) = \begin{bmatrix} E(v_1) \\ E(v_2) \end{bmatrix}
$$

$$
var(v) = E\left\{ [v - E(v)] [v - E(v)]^T \right\}
$$

Please note: var(v) is a matrix!

Vector Random Variable (cont.)

 \bar{v}

• In two dimensions

$$
= \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \mu_1 = \mathrm{E}(v_1) \ , \quad \mu_2 = \mathrm{E}(v_2)
$$

• Therefore

$$
var(v) = E\left\{ [v - E(v)] [v - E(v)]^T \right\} = E\left\{ \begin{bmatrix} v_1 - \mu_1 \\ v_2 - \mu_2 \end{bmatrix} \begin{bmatrix} v_1 - \mu_1 & v_2 - \mu_2 \end{bmatrix} \right\}
$$

$$
= E\begin{bmatrix} (v_1 - \mu_1)^2 & (v_1 - \mu_1)(v_2 - \mu_2) \\ (v_2 - \mu_2)(v_1 - \mu_1) & (v_2 - \mu_2)^2 \end{bmatrix}
$$

$$
= \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix} = \Sigma \text{ variance matrix}
$$

covariance

 $DIA@UnITS$ - 267MI -Fall 2023

Vector Random Variable (cont.)

• The matrix $\Sigma = \text{var}(v)$ in general is symmetric and positive semidefinite

The Sample Average

Matlab live script

A basic introduction to the sample variance for the readers who are less familiar with statistics is provided in a **Matlab live script**. We emphasize those aspects that will be important to interpret the results from system identification. We also take the opportunity to introduce the concept bias-variance trade-off. Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named "**Lecture6**," available in the "**Class Materials**" file area of the MS Teams course team, and uncompress it in a preferred folder.

- Add the chosen folder and subfolders to the Matlab path.
- Open the live script using the Matlab command:

open ('L6_HandsON_SampleVariance . mlx ') ;

A Glimpse on Probability Theory and Random Variables

Random Variables: Correlation and Independence

Correlation and Independence

• Two random variables v_1 , v_2 are uncorrelated if

$$
E\left\{ [v_1 - E(v_1)] [v_2 - E(v_2)] \right\} = 0
$$

that is $E(v_1 v_2) = E(v_1) \cdot E(v_2)$

• Two random variables v_1 , v_2 are independent if

$$
f_{v_1, v_2}(a, b) = f_{v_1}(a) \cdot f_{v_2}(b)
$$

Independence vs correlation

r.v. independent r.v. uncorrelated

The Covariance Matrix

Matlab live script

a basic introduction to the covariance matrix and its use in system identification for the readers who are less familiar with statistics. A **Matlab live script** offers a basic introduction to the covariance matrix and its use in system identification, for the readers who are less familiar with statistics.

Steps to retrieve the live script:

- Download as a ZIP archive the whole contents of the folder named "**Lecture6**," available in the "**Class Materials**" file area of the MS Teams course team, and uncompress it in a preferred folder.
- Add the chosen folder and subfolders to the Matlab path.
- Open the live script using the Matlab command:

open (' L6_HandsON_CovarianceMatrix . mlx ') ;

Discrete-Time Stochastic Processes

Discrete-Time Stochastic Processes

Definition

Stochastic Processes

A **stochastic process** is a random phenomenon evolving over time according to a probabilistic law.

In practice: a two-variable function $v(t, s)$, where t is the time and s is the instance of the random experiment associated with the stochastic process.

Hence

- given $t = \bar{t}$, $v(\bar{t}, s)$ is a r.v. with a certain probability distribution
- given \bar{s} , $v(t,\bar{s})$ is a function of time that takes on the name of **realization** of the stochastic process

Stochastic Processes (cont.)

In practice a stochastic process is a set of infinite r.v. ordered with respect to time.

Discrete-Time Stochastic Processes

How To Describe a Stochastic Process? Stationary Stochastic Processes

Description of a Stochastic Process

• From a formal point of view, the full description of a stochastic process entails the knowledge of the probability distribution function:

$$
\mathcal{P}\left[x(t_1)\leq x_1\,,\;x(t_2)\leq x_2\,,\;\cdots\,,\;x(t_k)\leq x_k\right]
$$

for every arbitrary value of

$$
k, x_1, x_2, \cdots, x_k, t_1, t_2, \cdots, t_k
$$

• Such description is clearly not practical. Therefore, we assume that the stochastic process is fully described by the first- and second-order moments.

Description of a Stochastic Process (cont.)

• First-order moment (**expected value** or **average**):

Description of a Stochastic Process (cont.)

• Second-order moment (**covariance function**):

Coincides with covariance function when $m(t) \equiv 0 \ \forall t$.

Description of a Stochastic Process (cont.)

Therefore:

For our purposes, we assume that a stochastic process is fully described by first- and second-order moments: $m(t)$, $\gamma(t_1, t_2)$.

> Two stochastic processes with the same first- and second-order moments are **undistinguishable by hypothesis**.

Stationary Stochastic Processes

Stationary stochastic process

A stochastic process is stationary (in weak sense) if:

- $m(t) \equiv m = \text{const}$
- $\gamma(t_1, t_2) = \gamma(\tau), \quad \tau = t_2 t_1$

This assumption greatly simplifies several derivations and, especially, implies the possibility of analyzing the probability distribution without caring about the specific time-instant.

Stationary Stochastic Process: Normalized Covariance

• Consider a stationary stochastic process for which:

•
$$
m(t) \equiv m = \text{const}
$$

• $\gamma(t_1, t_2) = \gamma(\tau), \quad \tau = t_2 - t_1$

Clearly, the variance of the process is *γ*(0) and we define the **normalized covariance**:

$$
\rho\left(\tau\right) = \frac{\gamma\left(\tau\right)}{\gamma\left(0\right)}
$$

Discrete-Time Stochastic Processes

Gaussian Stochastic Processes

Gaussian Stochastic Processes

Gaussian processes

irrespective of the choice of the time-instants t_1, t_2, \ldots, t_N the random variables $v_{t_1}(s),\,v_{t_2}(s),\,\ldots,\,v_{t_N}(s)$ are jointly Gaussian, that is:

$$
f(v_1, v_2, ..., v_N) = \alpha \exp \left\{-\frac{1}{2}(v - \mu)^T \Sigma^{-1} (v - \mu)\right\}
$$

where

$$
v = [v_1, v_2, ..., v_N]^T
$$
 $\mu = E(v)$ $\Sigma = \text{var}(v)$

Discrete-Time Stochastic Processes

White Stochastic Processes

White Stochastic Processes

White process

A stochastic process *ε*(*t*) is defined **white** if

•
$$
E[\varepsilon(t)] = 0
$$

\n• $\gamma(\tau) = \begin{cases} \lambda^2, & \tau = 0 \\ 0, & \tau \neq 0 \end{cases}$

and we denote: $\varepsilon \sim$ WN $(0, \lambda^2)$

In a white process what happens at different time-instants is unrelated, thus the knowledge of $\varepsilon(t)$ does not help in gaining knowledge about $\varepsilon(t+1)$.

267MI –Fall 2023

Lecture 6

A (Very) Short Glimpse on Probability Theory, Random Variables and Discrete-Time Stochastic Processes

END