Systems Dynamics

Course ID: 267MI - Fall 2023

Thomas Parisini Gianfranco Fenu

University of Trieste Department of Engineering and Architecture

267MI – Fall 2023

Lecture 6 A (Very) Short Glimpse on Probability Theory, Random Variables and Discrete-Time Stochastic Processes

6. A (Very) Short Glimpse on Probability Theory, Random Variables and Discrete-Time Stochastic Processes

6.1 A Glimpse on Probability Theory and Random Variables

6.1.1 Basic Definitions6.1.2 Probability Distribution & Density Functions6.1.3 Functions of Random Variables6.1.4 Random Variables: Correlation and Independence

6.2 Discrete-Time Stochastic Processes

6.2.1 Definition6.2.2 How To Describe a Stochastic Process?Stationary Stochastic Processes6.2.3 Gaussian Stochastic Processes6.2.4 White Stochastic Processes

A Glimpse on Probability Theory and Random Variables

A Glimpse on Probability Theory and Random Variables

Basic Definitions

- **Random experiment**: analysis of characteristic elements of phenomena yielding unpredictable results.
- **Results space**: we denote by S the set of all possible results of the experiment. Result: $s \in S$.
- **Events**: sets of results of specific interest. Hence an event is a subset of S.

Random variable

Given a random experiment, a **random variable** (r.v.) is a variable v(s) taking values depending on the result $s \in S$ of a random experiment via a function $\varphi(\cdot)$.

A Glimpse on Probability Theory and Random Variables

Probability Distribution & Density Functions

Probability Distribution & Density Functions

Probability distribution function

Provides information on the random variable v and it is defined as

$$F_v(q) = \mathcal{P}\left(v \le q\right)$$

According to the definition

$$\mathcal{P}\left(v \in [a, b]\right) = F_v(b) - F_v(a)$$

Probability density function

$$f_v(q) = \frac{d F_v}{d q}$$

Clearly $\mathcal{P}(v \in [a, b])$ is the area "under" the diagram of f(q) in the interval [a, b]. DIA@UNITS - 267MI -Fall 2023 TP GF - L6-p3

A Glimpse on Probability Theory and Random Variables

Functions of Random Variables

Functions of Random Variables

• Expected value (average value, average)

$$\mathbf{E}\left(v\right) = \int_{-\infty}^{+\infty} q f_{v}(q) dq$$

• Variance

$$\operatorname{var}(v) = \int_{-\infty}^{+\infty} \left[q - \operatorname{E}(v) \right]^2 f_v(q) \, dq$$

• Standard deviation

$$\sigma(v) = \sqrt{\operatorname{var}(v)}$$

Tchebicev inequality

$$\mathcal{P}(|v - \mathbf{E}(v)| > \epsilon) \le \frac{\operatorname{var}(v)}{\epsilon^2} \qquad \forall \epsilon > 0$$

Matlab live script

A gently introduction to the sample average and median for readers less familiar with statistics is provided in a **Matlab live script**. We highlight those aspects that will be important to interpret the results from the system identification point of view.

Steps to retrieve the live script:

- Download as a ZIP archive the whole contents of the folder named "Lecture6," available in the "Class Materials" file area of the MS Teams course team, and uncompress it in a preferred folder.
- Add the chosen folder and subfolders to the Matlab path.
- Open the live script using the Matlab command:

open('L6_HandsON_SampleAverage.mlx');

Sum of random variables

Caution! Given two random variables $v_1(s)$, $v_2(s)$:

$$v(s) = v_1(s) + v_2(s) \implies \begin{array}{c} \mathrm{E}(v) = \mathrm{E}(v_1) + \mathrm{E}(v_2) \\ \mathrm{var}(v) \neq \mathrm{var}(v_1) + \mathrm{var}(v_2) \end{array}$$

Important specific case: Gaussian random variable

Vector Random Variable

• For example, given two random variables v_1 , v_2 we can build a **random vector** in the obvious way:

$$v = \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right]$$

· Consequently, expectation and variance of a random vector are

$$E(v) = \begin{bmatrix} E(v_1) \\ E(v_2) \end{bmatrix}$$

$$var(v) = E\left\{ [v - E(v)] [v - E(v)]^T \right\}$$

Please note: var(v) is a matrix!

DIA@UniTS - 267MI -Fall 2023

Vector Random Variable (cont.)

In two dimensions

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 $\mu_1 = \mathbf{E}(v_1), \quad \mu_2 = \mathbf{E}(v_2)$

Therefore

$$\operatorname{var}(v) = \mathbf{E}\left\{ [v - \mathbf{E}(v)] [v - \mathbf{E}(v)]^{\mathrm{T}} \right\} = \mathbf{E}\left\{ \begin{bmatrix} v_{1} - \mu_{1} \\ v_{2} - \mu_{2} \end{bmatrix} \begin{bmatrix} v_{1} - \mu_{1} & v_{2} - \mu_{2} \end{bmatrix} \right\}$$

$$= \mathbf{E} \begin{bmatrix} (v_1 - \mu_1)^2 & (v_1 - \mu_1)(v_2 - \mu_2) \\ (v_2 - \mu_2)(v_1 - \mu_1) & (v_2 - \mu_2)^2 \end{bmatrix}$$

Vector Random Variable (cont.)

• The matrix $\Sigma = var(v)$ in general is symmetric and positive semidefinite

DIA@UniTS - 267MI -Fall 2023

The Sample Average

Matlab live script

A basic introduction to the sample variance for the readers who are less familiar with statistics is provided in a **Matlab live script**. We emphasize those aspects that will be important to interpret the results from system identification. We also take the opportunity to introduce the concept bias-variance trade-off.

Steps to retrieve the live script:

- Download as a ZIP archive the whole contents of the folder named "Lecture6," available in the "Class Materials" file area of the MS Teams course team, and uncompress it in a preferred folder.
- Add the chosen folder and subfolders to the Matlab path.
- Open the live script using the Matlab command:

```
open('L6_HandsON_SampleVariance.mlx');
```


A Glimpse on Probability Theory and Random Variables

Random Variables: Correlation and Independence

Correlation and Independence

• Two random variables v_1 , v_2 are uncorrelated if

 $E\{[v_1 - E(v_1)] [v_2 - E(v_2)]\} = 0$

that is $E(v_1 v_2) = E(v_1) \cdot E(v_2)$

• Two random variables v_1 , v_2 are independent if

$$f_{v_1, v_2}(a, b) = f_{v_1}(a) \cdot f_{v_2}(b)$$

Independence vs correlation
r.v. independent r.v. uncorrelated

The Covariance Matrix

Matlab live script a basic introduction to the covariance matrix and its use in system identification for the readers who are less familiar with statistics. A Matlab live script offers a basic introduction to the covariance matrix and its use in system identification, for the readers who are less familiar with statistics.

Steps to retrieve the live script:

- Download as a ZIP archive the whole contents of the folder named "Lecture6," available in the "Class Materials" file area of the MS Teams course team, and uncompress it in a preferred folder.
- Add the chosen folder and subfolders to the Matlab path.
- Open the live script using the Matlab command:

open('L6_HandsON_CovarianceMatrix.mlx');

Discrete-Time Stochastic Processes

Discrete-Time Stochastic Processes

Definition

A **stochastic process** is a random phenomenon evolving over time according to a probabilistic law.

In practice: a two-variable function v(t,s), where t is the time and s is the instance of the random experiment associated with the stochastic process.

Hence

- given $t = \bar{t}$, $v(\bar{t}, s)$ is a r.v. with a certain probability distribution
- given \bar{s} , $v(t, \bar{s})$ is a function of time that takes on the name of realization of the stochastic process

Stochastic Processes (cont.)

In practice a stochastic process is a set of infinite r.v. ordered with respect to time.

Discrete-Time Stochastic Processes

How To Describe a Stochastic Process? Stationary Stochastic Processes • From a formal point of view, the full description of a stochastic process entails the knowledge of the probability distribution function:

$$\mathcal{P}[x(t_1) \le x_1, x(t_2) \le x_2, \cdots, x(t_k) \le x_k]$$

for every arbitrary value of

$$k, x_1, x_2, \cdots, x_k, t_1, t_2, \cdots, t_k$$

• Such description is clearly not practical. Therefore, we assume that the stochastic process is fully described by the first- and second-order moments.

• First-order moment (expected value or average):

Description of a Stochastic Process (cont.)

• Second-order moment (covariance function):

$$\gamma(t_1, t_2) = \mathbf{E} \left\{ \begin{bmatrix} v_{t_1}(s) & -m(t_1) \end{bmatrix} \begin{bmatrix} v_{t_2}(s) & -m(t_2) \end{bmatrix} \right\}$$
function of s
for given t₁
function of s
for given t₁

Correlation function:

 $\operatorname{E}\left[v_{t_1}(s)\cdot v_{t_2}(s)\right]$

Coincides with covariance function when $m(t) \equiv 0 \ \forall t$.

DIA@UniTS - 267MI -Fall 2023

Therefore:

For our purposes, we assume that a stochastic process is fully described by first- and second-order moments: m(t), $\gamma(t_1, t_2)$.

Two stochastic processes with the same first- and second-order moments are **undistinguishable by hypothesis**.

Stationary stochastic process

A stochastic process is stationary (in weak sense) if:

•
$$m(t) \equiv m = \text{const}$$

•
$$\gamma(t_1, t_2) = \gamma(\tau), \quad \tau = t_2 - t_1$$

This assumption greatly simplifies several derivations and, especially, implies the possibility of analyzing the probability distribution without caring about the specific time-instant.

- Consider a stationary stochastic process for which:
 - $m(t) \equiv m = \text{const}$
 - $\gamma(t_1, t_2) = \gamma(\tau), \quad \tau = t_2 t_1$

Clearly, the variance of the process is $\gamma(0)$ and we define the **normalized covariance**:

$$\rho\left(\tau\right) = \frac{\gamma\left(\tau\right)}{\gamma\left(0\right)}$$

Discrete-Time Stochastic Processes

Gaussian Stochastic Processes

Gaussian processes

irrespective of the choice of the time-instants t_1, t_2, \ldots, t_N the random variables $v_{t_1}(s), v_{t_2}(s), \ldots, v_{t_N}(s)$ are jointly Gaussian, that is:

$$f(v_1, v_2, ..., v_N) = \alpha \exp\left\{-\frac{1}{2}(v-\mu)^T \Sigma^{-1}(v-\mu)\right\}$$

where

$$v = [v_1, v_2, \dots, v_N]^T$$
 $\mu = \mathbf{E}(v)$ $\Sigma = \operatorname{var}(v)$

Discrete-Time Stochastic Processes

White Stochastic Processes

White process

A stochastic process $\varepsilon(t)$ is defined white if

•
$$\mathbf{E}[\varepsilon(t)] = 0$$

• $\gamma(\tau) = \begin{cases} \lambda^2, & \tau = 0\\ 0, & \tau \neq 0 \end{cases}$

In a white process what happens at different time-instants is unrelated, thus the knowledge of $\varepsilon(t)$ does not help in gaining knowledge about $\varepsilon(t+1)$.

267MI – Fall 2023

Lecture 6 A (Very) Short Glimpse on Probability Theory, Random Variables and Discrete-Time Stochastic Processes

