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A Glimpse on Probability Theory
and Random Variables



A Glimpse on Probability Theory
and Random Variables

Basic Definitions



Random Variables

• Random experiment: analysis of characteristic elements of phenomena yielding
unpredictable results.

• Results space: we denote by S the set of all possible results of the experiment.
Result: s ∈ S .

• Events: sets of results of specific interest. Hence an event is a subset of S .

Random variable
Given a random experiment, a random variable (r.v.) is a variable v(s) taking values
depending on the result s ∈ S of a random experiment via a function φ(·).
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A Glimpse on Probability Theory
and Random Variables

Probability Distribution & Density
Functions



Probability Distribution & Density Functions
Probability distribution function
Provides information on the random variable v and it is defined as

Fv(q) = P (v ≤ q)

According to the definition P (v ∈ [a, b]) = Fv(b)− Fv(a)

Probability density function

fv(q) =
dFv

d q

Clearly P (v ∈ [a, b]) is the area “under” the diagram of f(q) in the interval [a, b].
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A Glimpse on Probability Theory
and Random Variables

Functions of Random Variables



Functions of Random Variables

• Expected value (average value, average)

E (v) =

∫ +∞

−∞
q fv(q)dq

• Variance
var(v) =

∫ +∞

−∞
[q − E(v)]

2
fv(q) dq

• Standard deviation
σ(v) =

√
var(v)

Tchebicev inequality
P (|v − E(v)| > ϵ) ≤ var(v)

ϵ2
∀ϵ > 0
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The Sample Average

Matlab live script
A gently introduction to the sample average and median for readers less
familiar with statistics is provided in a Matlab live script. We highlight
those aspects that will be important to interpret the results from the
system identification point of view.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture6,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( 'L6_HandsON_SampleAverage . mlx ' ) ;

DIA@UniTS – 267MI –Fall 2023 TP GF – L6–p5



Random Variables (cont.)

Sum of random variables
Caution! Given two random variables v1(s), v2(s):

v(s) = v1(s) + v2(s) =⇒ E(v) = E(v1) + E(v2)

var(v) ̸= var(v1) + var(v2)

Important specific case: Gaussian random variable
A r.v. v is Gaussian if:

fv(q) =
1√
2πσ

e−
(q−µ)2
2σ2

µ = E(v)

σ2 = var(v)
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Vector Random Variable

• For example, given two random variables v1, v2 we can build a random vector in the
obvious way:

v =

 v1

v2


• Consequently, expectation and variance of a random vector are

E(v) =

 E(v1)

E(v2)



var(v) = E
{
[v − E(v)] [v − E(v)]

T
}

Please note: var(v) is a matrix!
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Vector Random Variable (cont.)

• In two dimensions

v =

 v1

v2

 µ1 = E(v1) , µ2 = E(v2)

• Therefore

var(v) = E
{
[v − E(v)] [v − E(v)]

T
}
= E

{[
v1 − µ1
v2 − µ2

] [
v1 − µ1 v2 − µ2

]}

= E

[
(v1 − µ1)

2 (v1 − µ1)(v2 − µ2)

(v2 − µ2)(v1 − µ1) (v2 − µ2)
2

]

=

 σ21 σ1 2

σ2 1 σ22

 = Σ variance matrix

covariance
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Vector Random Variable (cont.)

• The matrix Σ = var(v) in general is symmetric and positive semidefinite
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The Sample Average
Matlab live script
A basic introduction to the sample variance for the readers who are less
familiar with statistics is provided in a Matlab live script. We emphasize
those aspects that will be important to interpret the results from system
identification. We also take the opportunity to introduce the concept
bias-variance trade-off.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture6,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L6_HandsON_SampleVariance . mlx ' ) ;
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A Glimpse on Probability Theory
and Random Variables

Random Variables: Correlation and
Independence



Correlation and Independence

• Two random variables v1, v2 are uncorrelated if

E {[v1 − E(v1)] [v2 − E(v2)]} = 0

that is E (v1 v2) = E(v1) · E(v2)

• Two random variables v1, v2 are independent if

fv1, v2 (a, b) = fv1 (a) · fv2 (b)

Independence vs correlation
r.v. independent r.v. uncorrelated
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The Covariance Matrix
Matlab live script
a basic introduction to the covariance matrix and its use in system
identification for the readers who are less familiar with statistics.
A Matlab live script offers a basic introduction to the covariance matrix
and its use in system identification, for the readers who are less familiar
with statistics.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture6,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L6_HandsON_CovarianceMatrix . mlx ' ) ;
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Discrete-Time Stochastic
Processes



Discrete-Time Stochastic
Processes

Definition



Stochastic Processes

A stochastic process is a random phenomenon evolving over time according to a
probabilistic law.

In practice: a two-variable function v(t, s) , where t is the time and s is the instance of
the random experiment associated with the stochastic process.

Hence
• given t = t̄, v (t̄, s) is a r.v. with a certain probability distribution
• given s̄, v (t, s̄) is a function of time that takes on the name of realization of the
stochastic process
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Stochastic Processes (cont.)

In practice a stochastic process is a set of infinite r.v. ordered with respect to time.
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Discrete-Time Stochastic
Processes

How To Describe a Stochastic Process?
Stationary Stochastic Processes



Description of a Stochastic Process

• From a formal point of view, the full description of a stochastic process entails the
knowledge of the probability distribution function:

P [x(t1) ≤ x1 , x(t2) ≤ x2 , · · · , x(tk) ≤ xk]

for every arbitrary value of

k , x1 , x2 , · · · , xk , t1 , t2 , · · · , tk

• Such description is clearly not practical. Therefore, we assume that the stochastic
process is fully described by the first- and second-order moments.
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Description of a Stochastic Process (cont.)

• First-order moment (expected value or average):

function of t

m(t) = E
[
vt(s)

]

function
of s

for given t

Funzione di
fissato
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Description of a Stochastic Process (cont.)

• Second-order moment (covariance function):

function of t1 function of t2

γ (t1, t2) = E


 vt1(s) − m(t1)

 vt2(s) − m(t2)


function of s
for given t1

function of s
for given t2

• Correlation function:
E [vt1(s) · vt2(s)]

Coincides with covariance function when m(t) ≡ 0 ∀t.
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Description of a Stochastic Process (cont.)

Therefore:

For our purposes, we assume that a stochastic process is fully de-
scribed by first- and second-order moments: m(t), γ (t1, t2).

Two stochastic processes with the same first- and
second-order moments are undistinguishable by hy-
pothesis.
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Stationary Stochastic Processes

Stationary stochastic process
A stochastic process is stationary (in weak sense) if:

• m(t) ≡ m = const
• γ(t1, t2) = γ(τ) , τ = t2 − t1

This assumption greatly simplifies several derivations and, especially, implies the
possibility of analyzing the probability distribution without caring about the specific
time-instant.
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Stationary Stochastic Process: Normalized Covariance

• Consider a stationary stochastic process for which:
• m(t) ≡ m = const
• γ(t1, t2) = γ(τ) , τ = t2 − t1

Clearly, the variance of the process is γ(0) and we define the normalized covariance:

ρ (τ) =
γ (τ)

γ (0)
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Discrete-Time Stochastic
Processes

Gaussian Stochastic Processes



Gaussian Stochastic Processes

Gaussian processes
irrespective of the choice of the time-instants t1, t2, . . . , tN the random variables
vt1(s), vt2(s), . . . , vtN (s) are jointly Gaussian, that is:

f (v1, v2, . . . , vN ) = α exp
{
−12 (v − µ)

T
Σ−1 (v − µ)

}
where

v = [v1, v2, . . . , vN ]
T

µ = E(v) Σ = var(v)
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Discrete-Time Stochastic
Processes

White Stochastic Processes



White Stochastic Processes

White process
A stochastic process ε(t) is defined white if

• E [ε(t)] = 0

• γ(τ) =

{
λ2 , τ = 0
0 , τ ̸= 0

and we denote: ε ∼ WN
(
0, λ2

)
In a white process what happens at different time-instants is unrelated, thus the
knowledge of ε(t) does not help in gaining knowledge about ε(t+ 1).
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