
Introduction to Artificial Intelligence

Search

Instructor: Tatjana Petrov

University of Trieste, Italy
[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russell, et al for CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu Thanks to
Laura Nenzi for the course edition in summer 2023.]

http://ai.berkeley.edu/

Today

§ Search Problem

§ Uninformed Search Methods
§Breadth-First Search
§Depth-First Search
§Uniform-Cost Search

Search Problems

Context

§ Agent: goal-based agents with
atomic representation

§ Environment: episodic, single agent,
fully observable, deterministic,
static, discrete, and known

Example: Traveling in Romania

Search Problems Are Models

Search Problems

§ A search problem consists of:

§ A state space 𝑆

§ Actions: Actions(𝑠)

§ A successor(/action cost) function: c(𝑠, 𝑎, 𝑠’) where 𝑎 𝑠 = 𝑠′

§ A initial state and a goal test(/state)

§ A solution is a path, i.e. a sequence of actions (a plan) which transforms
the start state to a goal state

§ An optimal solution has the lowest path cost among all solutions.

Example: Traveling in Romania

§ State space: Cities

§ Actions
e.g. Actions(Arad)={ToSibiu,ToTimisoara,ToZerind}

§ Successor function:
§ Roads: Go to adjacent city with cost = distance

e.g. c(Arad, ToSibiu, Sibiu)=140

§ Start state:
§ Arad

§ Goal state:
§ Bucharest

§ Solution?

Search Problems

§ A search problem consists of:

§ A state space

§ A successor(/action cost) function
(with actions, costs)

§ A initial state and a goal test(/state)

§ A solution is a path, i.e. a sequence of actions (a
plan) which transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

What’s in a State Space?

§ Problem: Pathing
§ States: (x,y) location
§ Actions: NSEW
§ Successor: update location

only
§ Goal test: is (x,y)=END

§ Problem: Eat-All-Dots
§ States: {(x,y), dot booleans}
§ Actions: NSEW
§ Successor: update location

and possibly a dot boolean
§ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

§ World state:
§ Agent positions: 120
§ Food count: 30
§ Ghost positions: 12
§ Agent facing: NSEW

§ How many
§ World states?

120x(230-1)x(122)x4
§ States for pathing?

120
§ States for eat-all-dots?

120x(230)

Quiz: Safe Passage

§ Problem: eat all dots while keeping the ghosts perma-scared
§ What does the state space have to specify?

§ (agent position, dot booleans, power pellet booleans, remaining scared time, ghosts
location)

State Space Graphs and Search Trees

State Space Graphs

§ State space graph: A mathematical
representation of a search problem
§ Nodes are (abstracted) world configurations
§ Arcs represent successors (action results)
§ The goal test is a set of goal nodes (maybe only one)

State Space Graphs

§ State space graph: A mathematical
representation of a search problem
§ Nodes are (abstracted) world configurations
§ Arcs represent successors (action results)
§ The goal test is a set of goal nodes (maybe only one)

S

G

d

b

p q

c

e

h

a

f

r

Tiny state space graph
for a tiny search problem

State Space Graphs

§ State space graph: A mathematical
representation of a search problem
§ Nodes are (abstracted) world configurations
§ Arcs represent successors (action results)
§ The goal test is a set of goal nodes (maybe only one)

§ In a state space graph, each state occurs only
once!

§ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Search Trees

§ A search tree:
§ A “what if” tree of plans and their outcomes
§ The start state is the root node
§ Children correspond to successors
§ Nodes show states, but correspond to PLANS that achieve those states
§ For most problems, we can never actually build the whole tree

“E”,
1.0

“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r
We construct

them on demand
– and we

construct as little
as possible.

Each NODE in the
search tree is an

entire PATH in the
state space

graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

s
b

b G a

a

G

a G b G

… …

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Searching with a Search Tree

§ Search:
§ Expand out potential plans (tree nodes)
§ Maintain a fringe of partial plans under consideration
§ Try to expand as few tree nodes as possible

General Tree Search

§ Important ideas:
§ Fringe
§ Expansion
§ Exploration strategy

§ Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p q

c

e

h

a

f

r

fd e

r

S

d e p

e

h r

f

c G

b c

s
s à d
s à e
s à p
s à d à b
s à d à c
s à d à e
s à d à e à h
s à d à e à r
s à d à e à r à f
s à d à e à r à f à c
s à d à e à r à f à G

Best-first search
Evaluation function

Data Structure to store the frontier

§ A priority queue first pops the node with the minimum cost
according to some evaluation function, f (used in best-first search)

§ A FIFO queue or first-in-first-out queue first pops the node that
was added to the queue first (used in breadth-first search)

§ A LIFO queue or last-in-first-out queue (also known as a stack) pops
first the most recently added node (used in depth-first search)

Search Algorithm Properties

Search Algorithm Properties

§ Cartoon of search tree:
§ b is the branching factor
§ m is the maximum depth
§ solutions at various depths

§ Number of nodes in entire tree?
§ 1 + b + b2 + …. bm = O(bm)

§ Time complexity?
§ Space complexity?
§ Complete: Guaranteed to find a solution if one exists?
§ Optimal: Guaranteed to find the least cost path?

…
b 1 node

b nodes
b2 nodes

bm nodes

m tiers

Measuring problem-solving performance

§ Completeness: Is the algorithm guaranteed to find a solution when there is one, and to
Completeness correctly report failure when there is not?

§ Cost optimality: Does it find a solution with the lowest path cost of all solutions?

§ Time complexity: How long does it take to find a solution? This can be measured in
Time complexity seconds, or more abstractly by the number of states and actions
considered.

§ Space complexity: How much memory is needed to perform the search?

