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The estimation problem




The estimation problem

+ The estimation problem arises when there is a need of determining one or more
unknown quantities using experimentally observed data

[Experimental observations [Unknown parameter(s)}

dt), t=ty, ta, ...ty d(t)

 In most cases the unknown parameters are constant

« T={t, ta, ..., tn} set of the observation time-instants

« In general, there is no need of equally-spaced ¢;
- If there is the possibility of choosing the instants ¢; when to get experimental data, it is
convenient to have more observations where the experiment is more significant.
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d(ty) — |

d(tp) — f() 9(t)

d(tn)

The estimator is a deterministic function yielding as output the unknown parameters
on the basis of the observed data as inputs
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Estimation of constant parameters

d(t1)
d(tp) ——

9(t)

d(f/N) —.

- If ¥(t) = 9 = const we have a parametric estimation or identification problem.

- The estimate given by the estimator is denoted as ¥ or 1 to enhance the set of
observation time-instants.

 The “true” value of the parameter is denoted as ¥°.
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Estimation of time-varying parameters

d(t1) —

) = O

dty) ———

9(t)

ifwecanset7T ={1,2, ..., N}.
Typically we have three cases:

« t > tn: problem of prediction

« t =ty : problem of filtering

« t < tn: problem of smoothing
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The estimate generated by the estimator is denoted as 1 (| T') or simply as 7 (¢| N)
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The estimation problem

Dynamical systems identification: the
prediction problem



The prediction problem

It is a fundamental problem in the context of dynamical systems identification

+ To set the basics, let us focus on the case of time-series

« A sequence of observations y(1), y(2), ..., y(t) of avariable y(-) is available.
« We want to estimate y(t + 1)

« Therefore, we want to design a predictor

gl +11t) = fly@®), yt—1), ..., y(1)]
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The prediction problem (cont.)

* The predictor expresses an estimate (¢ + 1|t) of y(¢ + 1) as a function of ¢ past
values of y (+)

past
/_J%

12 tt+1

« A predictor is linear if
gE+11t) =ai(t) - y(t) + -+ ax(t) - y(1)
« A predictor is finite-memory (hence uses a limited memory of the past) if

ga+1t) =a(®) y(t) +---+an(t) y(E-—n+1)
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The prediction problem (cont.)

« A predictor is linear time-invariant if
gE+1t)=aylt)+ - +a,y(t—n+1)

where the parametersa;, ..., a, are constant

+ We define the vector of parameters 97 = [ar, ..., ay)

Determining a “good” predictor means determining a
suitable vector 9 such that the prediction ¢ (¢t + 1t)
is the more accurate possible

DIA@UniTS -  267MI -Fall 2023 TPGF - L7-p8



The prediction problem (cont.)

More precisely:

« Consider a finite-memory linear time-invariant predictor
JgE+1t)=aylt)+ - +a,y(t—n+1)

where n is “small” with respect to the number of data observed till time-instant ¢

 The performances of the predictor can be evaluated on the already-available data:
y(@)i=1, ..., t
- we compute
ge+1l)=aiyl@)+---+any(i—n+1), Vi>n

+ We evaluate the prediction error

e(i+ 1) =yli+1)—gli+1]i), Vi>n
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The prediction problem (cont.)

The vector ¥7 = [a;, ..., a,] is “good”
if ¢ is “small” over the available data.

* Introduce the criterion:

* Hence

9¥° = argmin J ()
0

The determination of 9° is thus reduced to the solution of an optimization
problem.
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It is very important to clarify the meaning of ¢ “small”

[The minimization of J (J) is not per se a fully satisfactory criterion]

|
~

£ 1191 ®)
(a) i

+ CAsE (A): not satisfactory because the average error ¢ is not zero = systematic error
+ CASE (B): despite the fact that the average error £ is zero, it is not satisfactory
because the sequence is alternatively positive and negative; hence, at any

time-instant the sign of the next error is known in advance = The predictor does
not embed all the information
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The ideal situation

Prediction error ¢ with smallest possible average and “as much as unpredictable as
possible”

white noise variance

average
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Predictor as a dynamic system

gtlt—1)=ayt—1)+ -+ axy(t —n)
e(t)=y@)—gtlt—-1) = y)=e@®)+gE[t-1)
y(t) = ary(t — 1) +--- +any(t —n) +(t)

y(t) = (@mz7" 4+ 4 anz") yt) + 2(t)

AZ)yt) =e(®) with A(z) =1 —a1z7' —apz™> — - —a,z™"

y(t) = ——e(t) e(t) 1 y(t)
A(z)
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A Glimpse on Estimation theory &
Estimators’ characteristics




A Glimpse on Estimation theory &
Estimators’ characteristics

General concepts and definitions



General concepts and definitions

« In general we have:
d=d(s, 9°)

where
+ d <= observed (measured) data
+ 9¥° <= unknown quantity to be estimated
« s <= result of the random experiment

» The estimator is a function:
U= fld(s, ¥°)]

The estimator is a random variable because
its value depens on the result s of the random

experiment
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- In general, the estimator 9 = f [d (s, ©¥°)] is unbiased if
£ (9) =

« Clearly, it is important to try to ensure that the estimator is unbiased.

In this example, the estimators
are both biased but the

estimator 9 is characterized
by a lower bias i

B @Zl)} . [55(2)} 9
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Minimum variance

+ The “unbiasedness” (correctness) is not the only criterion to be used to evaluate
the quality of an estimator.

In this case, both estimators are EED)
unbiased.
However:
9(1) 9(2) I ¢
var [19 } < var [19 } E [3(1)} —E [@(2)] —9° 9

- Hence, the estimator 9! has a higher probability of yielding estimates closer to
the true value ¢¥° as compared with the estimator 9

« Therefore, the goal is to reduce the variance of the estimator as much as possible.
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Minimum variance (cont.)

- In general, under the same bias characteristics, we say that the estimator 9 is
better than the estimator 9@ if

war [90] < v [39]
that is, if the matrix ( ¥ may be a vector)
var [99] —var [90] 2 0
- Recallingthat A >0 = det A >0, \; >0, a; >0, we have
var [99] —var [90] 2 0 e var [09] 2 var [941]

where 9!' | 9{* denote the i-th components of the vectors 9(' , 9 .
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Estimate’s confidence

Consider an estimator ¥ :

area = (1 — )

\4

-0 ¥° ©

The estimate ) belongs to the interval (—©, ©) around ¥° with confidence
(1—B)-100%.
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Asymptotic characteristics

« If the number N of available data increases over time
- the available information to compute the estimate increases
« the uncertainty decreases

- From this perspective the estimator 9y is “good” if

B[IW] = B[9?] = £ [i®) = s>
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Convergence in “quadratic mean”

« When the estimate 9 is computed on the basis of a time-increasing amount of
data N, another estimate’s quality criterion is

fin g WN _ e

N —o0

1 —0 ()

If (x) holds we say that the estimate I N converges to 9° in “quadratic mean”

- Notice that Jy is a random vector, ¥° is a constant vector and HﬁN —9°|| isa

scalar random variable with a well-defined expected value.
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Almost-sure convergence

» Recall that the estimator based on IV data is

In (37 190) :f[d(sv 7‘90)]

+ Foragiven 5 € S, we have a sequence

19] (Sa 190) ) 192(51 190) g coo g 1§N(S7 ﬂo) p ooo
« It may happen that:

§ES~ lim ’(§N(§7’[90):790

N—o0

§ €S m— lim Oy (5, 9°) % 0O°
N—o0
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Almost-sure convergence (cont.)

« Introduce the set of random experiment results

AC&Az{sES: lim 1§N(s,19°):z9°}

N—o0
¢ If A= S == Sure convergence
«If AC Sand P(A) = 1 === Almost-sure convergence

Note that, if the measure of the set S\ A is zero, this implies P(4) = 1
and hence almost-sure convergence.

*ClearlyA=S = P(4) =1
Sure convergence =P Almost-sure convergence

+ An estimator characterized by almost-sure convergence properties is called
consistent.
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A Glimpse on Estimation theory &
Estimators’ characteristics

Examples



- Consider N scalar data d(1), d(2), ..., d(N) such that
E[dG@)]=v9°, i=1,2,..., N
« Assume that data are mutually un-correlated, that is
E{[d(i) —9°] [d(j) —9°]} =0, Vi#j

» Consider the estimator

N
- 1 ) .
In = i .E_l d(7) Sampled-average estimator
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Example 1(cont.)

- Bias:
; <5 (RN IRCLARE
B[ov] =B+ WO = 5 Y B0 = x>0 =9
=i =il =i
[the estimator is unbiasedJ
 Variance:

Z

I
-
Il

1
N2
N
_ Z var [d(i)] the “cross—te.rms" are zero because of
the assumption on un-correlated data
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Example 1(cont.)
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[the estimator converges in quadratic mean]
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Sampled Average Estimator: Unbiasedness and Mean Square Convergence

Matlab live script
The features of the sampled-average estimator can be experimented

using a Matlab live script. We highlight those features pointed out in ‘
the previous example.

Steps to retrieve the live script:

- Download as a ZIP archive the whole contents of the folder named "Lecture?7,”
available in the "Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

- Add the chosen folder and subfolders to the Matlab path.
« Open the live script using the Matlab command:

open( 'L7_SampledAverageEstimator examplel .mlx');

« Explore the live script and run it.

DIA@UniTS -  267MI -Fall 2023 TPGF - L7-p26



« Consider N scalar data d(1), d(2), ..., d(N) such that
E[dG@)]=v9°, i=1,2,..., N
« Assume that the data are mutually un-correlated, that is
E{[d(:) - 9°] [d(j) —9°]} =0, Vi#j

» Consider the estimator

) N
In = Z o) d(7)
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Example 2 (cont.)

- Bias:

N
The estimator is unbiased <=~ " a(i) =1 (%)

=1

N.B. in the previous case a(i) = % and hence (%) holds

Condition (x) is a constraint to be satisfied so that the
estimator is unbiased.
This constraint characterizes a class of unbiased estimators
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Example 2 (cont.)

+ Let us now determine the best estimator among the unbiased ones (hence
satisfying the constraint (x) ) choosing the minimum variance one

xun—correlated data

min var (1§N) = min Z 2 var [d(q)]

N
—Za(i) =0

i=1

By using the Lagrange multipliers technique we have:

1(3) = -0 ettt 2 (1300

i=1
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Example 2 (cont.)

o _ 0 < 2a(i)var[d(i)] — A =0 <= ai) = A

9a(d) 2 var [d(i)]
« Now, imposing the constraint (x) for unbiasedness
S el 3 cles A= 2
- ! Zi [d00)]
ali) = Var[ld(i)]a with o= 1

g=il
Hence, «(7) is chosen to be inversely proportional to the data variance var [d(i)]: the
bigger the data variance, the smaller the associated weight (consistent with
intuition).
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Example 2 (cont.)

« Let us compute the estimator’s variance:

e () = B { [ - (ﬁw)f} . { [XN: o(i)d(i) — 0° ia(z‘)r}

_E{

Yoo -, o 1
=2 (@)’ ver ()] = o Z var [d(3)]

i=1 3=l

=1

N 2 N
> ali) () - ﬂﬂ } =Y G E{1a6) - 9}
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Example 2 (cont.)
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[the estimator converges in quadratic mean]
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Weighted Sampled Average Estimator: Unbiasedness and Mean Square Conver-

gence

Matlab live script
The features of the weighted sampled-average estimator can be

experimented using a Matlab live script. We highlight those features ‘
pointed out in the previous example.

Steps to retrieve the live script:

- Download as a ZIP archive the whole contents of the folder named "Lecture?,”
available in the "Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

- Add the chosen folder and subfolders to the Matlab path.
« Open the live script using the Matlab command:

open( 'L7_Weighted SampledAverageEstimator__example_2.mlx ") ;

« Explore the live script and run it.
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« When the quantities to be estimated are time-varying, it is necessary to modify the
estimators’ quality indexes.

- Denote with ¥ (¢ |t — 1) the estimate of ¥°(¢) exploiting data collected till
time-instant ¢ — 1

- Clearly, as 9°(t) varies over time, it does not make sense to talk about asymptotic
convergence in terms of data in the past that may turn up not to be meaningful any
more.

« Atypical criterion is
E [Hé(ﬂt 1) - ﬂo(t)‘ﬂ <ec

where c is a suitably small positive scalar

- In this time-varying case what matters is not “convergence” but “boundedness”
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