La teoria del legame di valenza

La teoria di Lewis (postulata **prima** dell'avvento della meccanica quantistica) considera gli elettroni di valenza degli atomi che formano legami, ma prescinde totalmente dal fatto che tali elettroni sono descritti da orbitali atomici. La teoria del legame di valenza integra il modello di Lewis nell'ambito della meccanica quantistica, mettendo in relazione il legame fra due atomi con gli orbitali atomici che descrivono gli elettroni implicati nel legame stesso

Ciò che nella teoria di Lewis è descritto come "condivisione" di una coppia di elettroni, nella teoria del legame di valenza diventa "sovrapposizione" di opportuni orbitali atomici. La conseguenza è sempre la stessa: un aumento della densità elettronica fra i nuclei dei due atomi che si legano, con conseguente abbassamento dell'energia del sistema.

110

La teoria del legame di valenza

I postulati fondamentali della teoria del legame di valenza:

- Il legame fra due atomi si realizza mediante sovrapposizione di due opportuni orbitali atomici, uno per ciascun atomo. Nella maggioranza dei casi, si può assumere che i due orbitali che si sovrappongono per formare il cosiddetto orbitale di legame siano semioccupati, cioè contengano un elettrone ciascuno
- Nell'orbitale di legame che si viene a formare si vengono così a trovare due elettroni con spin antiparallelo.

Visto che ciò che tiene uniti due atomi è la densità elettronica che si viene a formare fra essi in seguito alla sovrapposizione di orbitali atomici, è naturale pensare che la forza di un legame sarà tanto maggiore quanto maggiore è la sovrapposizione fra i due orbitali .

- In generale solo le coppie di orbitali atomici che si sovrappongono nella direzione del legame possono sovrapporsi in modo efficace!
- A parità del tipo di orbitali che si vanno a sovrapporre, la sovrapposizione è maggiore quanto minore è la differenza di energia tra i due orbitali atomici.

112

Principio della massima sovrapposizione

• Gli orbitali di tipo s hanno simmetria sferica e quindi la sovrapposizione fra due orbitali di tipo s non presenta vincoli direzionali. Es. la molecola di H₂

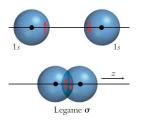


Figura 2F.1 Quando elettroni di spin opposto (rappresentati come ↑ e ↓) in due orbitali 1s di idrogeno si appaiano e gli orbitali si sovrappongono, si forma un legame σ. La nube presenta simmetria cilindrica intorno all'asse internucleare e si espande su tutti e due i nuclei. Nelle illustrazioni di questo testo i legami σ sono solitamente colorati in blu.

Animazione 2F.1

- Un orbitale p e un orbitale s possono sovrapporsi in modo efficace solo quando l'orbitale s giace lungo l'asse che contiene i due lobi dell'orbitale p
- La sovrapposizione fra due orbitali di tipo p può avvenire in modo efficace se i due orbitali sono disposti lungo lo stesso asse.
- In tutti i casi appena visti (s-s, s-p ed p-p lungo lo stesso asse), la densità elettronica è concentrata lungo l'asse di legame e presenta simmetria cilindrica: si parla in questo caso di legame σ

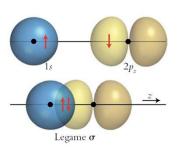
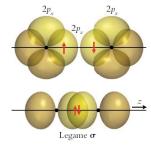



Figura 2F.2 Si può formare un legame σ anche quando si appaiano elettroni di un orbitale 1s e di un orbitale $2p_z$ (dove z è la direzione dell'asse internucleare). I due elettroni nel legame si espandono nell'intera regione di spazio delimitata dalla superficie di contorno.

Figura 2F.3 Si forma un legame σ appaiando gli spin elettronici nei due orbitali $2p_z$ di due atomi contigui. Per il momento ignoreremo le eventuali interazioni tra gli orbitali $2p_x$ e $2p_y$ che contengano elettroni spaiati, perché comunque non possono dare origine a legami σ. Si noti che nel legame σ sopravvive il piano nodale di ciascun orbitale p_z .

114

Principio della massima sovrapposizione

- Due orbitali p possono sovrapporsi efficacemente anche in un altro modo, consistente nella sovrapposizione "laterale" dei rispettivi lobi. In tal modo, si ha un aumento di densità elettronica sopra e sotto un piano contenente i due nuclei e perpendicolare all'asse degli orbitali p che si sono sovrapposti, mentre su tale piano la densità elettronica è nulla. Si parla in questo caso di legame π e il piano sul quale la densità elettronica è nulla viene detto piano nodale
- Un legame di tipo π si può ottenere anche per sovrapposizione di un orbitale p con un orbitale d, opportunamente orientato.

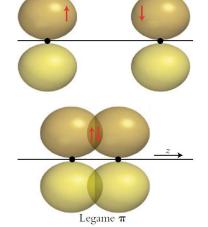
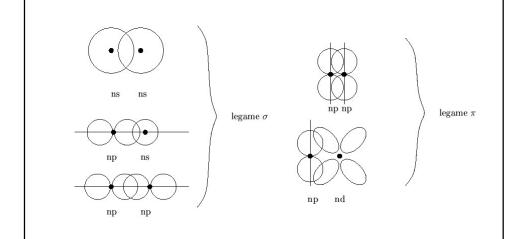
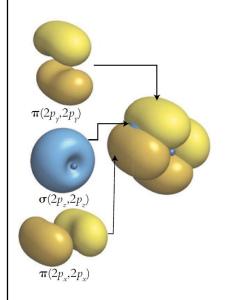




Figura 2F.4 Si forma un legame π quando elettroni posti in due orbitali 2p di atomi contigui si appaiano e si sovrappongono lateralmente. La parte inferiore della rappresentazione mostra la corrispondente superficie di contorno. Il legame, pur avendo una sagoma più complicata, con due lobi, è occupato comunque da una coppia di elettroni e conta per un legame. In questo testo i legami π sono di solito colorati in giallo.

116

Principio della massima sovrapposizione

Figura 2F.5 Lo schema del legame nella molecola di azoto, N_2 . I due atomi sono tenuti insieme da un legame σ (in blu) e da due legami π perpendicolari a esso (in giallo). Benché qui siano mostrati separatamente, in realtà, i due π si fondono per dare una lunga nube a forma di ciambella, che circonda la nube del legame σ ; la struttura di insieme ricorda dunque la forma di un hot dog cilindrico.

118

Ibridazione di orbitali

- L'ibridazione degli orbitali è introdotta nella teoria VB per rendere conto delle geometrie molecolari sperimentalmente osservate e non riconducibili alla semplice sovrapposizione di orbitali atomici di tipo s, p o d. Ad esempio, la struttura del metano CH₄ è di tipo tetraedrico con quattro legami C-H equivalenti. Tale struttura non può essere ottenuta in alcun modo per sovrapposizione degli orbitali 2s e/o 2p dell'atomo di carbonio con gli orbitali 1s degli atomi di idrogeno.
- Si ammette allora che, prima della sovrapposizione con gli orbitali atomici di un altro atomo, gli orbitali atomici di un dato atomo possano essere combinati linearmente per dare origine a cosiddetti orbitali ibridi. La giustificazione di ciò poggia sulla proprietà dell'equazione d'onda secondo cui, se un certo set di funzioni sono delle sue soluzioni, allora anche una qualsiasi loro combinazione lineare continua a soddisfarla.
- L'orientazione degli orbitali ibridi che si ottengono in tal modo dipende dal tipo e dal numero degli orbitali atomici combinati, mentre il numero di orbitali ibridi è sempre uguale al numero totale di orbitali atomici che sono stati combinati.

Ibridazione di orbitali

- Tutti gli orbitali ibridi che si ottengono con una data combinazione hanno la medesima energia, il cui valore è una media dell'energia degli orbitali atomici componenti.
- I principali tipi di ibridazione (cioè combinazione lineare di orbitali atomici dello stesso atomo) sono:

sp due orbitali ibridi orientati a 180°

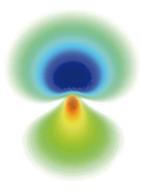
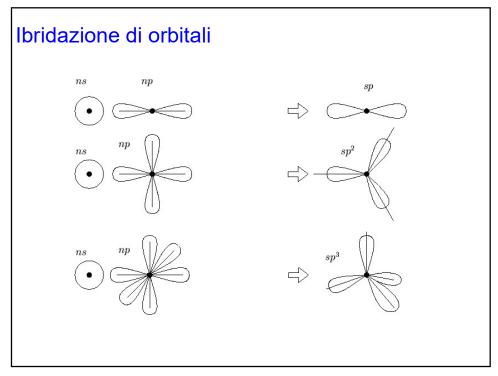
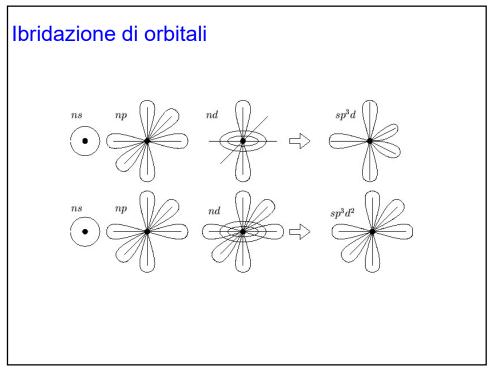
sp² tre orbitali ibridi con geometria trigonale planare

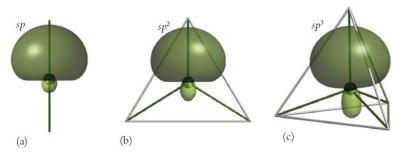
sp³ quattro orbitali ibridi con geometria tetraedrica

sp³d cinque orbitali ibridi con geometria bipiramidale trigonale

sp³d² sei orbitali ibridi con geometria ottaedrica

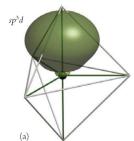
120

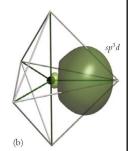





Figura 2F.6 Questi contorni indicano l'ampiezza della funzione d'onda di un orbitale ibrido sp^3 in un piano che lo biseca e passa per il nucleo. I colori indicano la variazione della densità elettronica nell'orbitale: le regioni ad alta densità elettronica sono in rosso; quelle a bassa densità elettronica sono in blu. Ogni orbitale ibrido sp^3 punta verso un vertice di un tetraedro.

Animazione 2F.6

Ibridazione di orbitali




Figura 2F.9 Tre comuni schemi di ibridizzazione illustrati come superficie di contorno della funzione d'onda e in funzione dell'orientazione degli orbitali ibridi. (a) Un orbitale s e uno p si ibridizzano, producendo due orbitali ibridi sp, orientati in verso opposto, così da fornire una molecola di forma lineare. (b) Un orbitale s e due orbitali p possono combinarsi a dare tre orbitali ibridi sp^2 orientati secondo i vertici di un triangolo equilatero. (c) Un orbitale s e tre orbitali p possono combinarsi, formando quattro orbitali ibridi sp^3 orientati verso i vertici di un tetraedro regolare. Animazione 2F.9

124

Ibridazione di orbitali

Figura 2F.10 Due dei cinque orbitali ibridi sp^3d : in (a) è rappresentato un orbitale assiale, in (b) un orbitale equatoriale. I cinque orbitali ibridi sp^3d giustificano l'assetto a bipiramide triangolare delle coppie di elettroni. Lo schema di ibridizzazione sp^3d è applicabile solo quando l'atomo centrale dispone di orbitali d. Animazione 2F.10

Ibridazione di orbitali

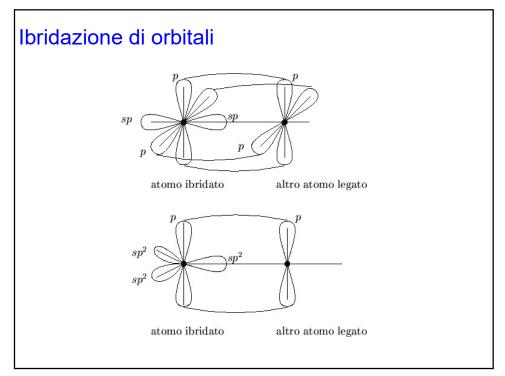


Figura 2F.11 Uno dei sei orbitali ibridi sp^3d^2 e la loro orientazione nello spazio; essi possono formarsi quando sono disponibili orbitali d e occorre per un assetto ottaedrico delle coppie di elettroni. Animazione 2F.11

126

Ibridazione di orbitali

- L'impiego di orbitali ibridi porta sempre alla formazione di legami σ.
- Nell'ibridazione di tipo sp, solo uno dei tre orbitali p viene utilizzato. Rimangono così due orbitali p puri orientati perpendicolarmente fra loro e rispetto all'asse degli ibridi sp. Analogamente, nell'ibridazione di tipo sp² "avanza" un orbitale p puro, orientato perpendicolarmente rispetto al piano dei tre orbitali ibridi sp².
- Questi orbitali p puri possono venire impiegati per la formazione di legami π mediante sovrapposizione con orbitali di opportuna simmetria sull'altro atomo implicato nel legame, secondo lo schema di sovrapposizione laterale prima citato.
- Può accadere che per la formazione dei legami π ci siano diverse possibilità: in questo caso, la molecola sarà descritta con varie strutture di risonanza che differiscono solo per lo schema dei legami π (risonanza π).

Geometrie molecolari

La procedura per la descrizione delle molecole con la teoria del legame di valenza può essere così schematizzata:

- Disegnare la struttura di Lewis della molecola e determinare gli elettroni di valenza di ciascun atomo nel composto, considerando ogni legame come covalente puro (esattamente come visto per la carica formale)
- Determinare la geometria delle coppie strutturali intorno all'atomo centrale con la teoria VSEPR e in base a tale geometria determinare l'ibridazione necessaria:

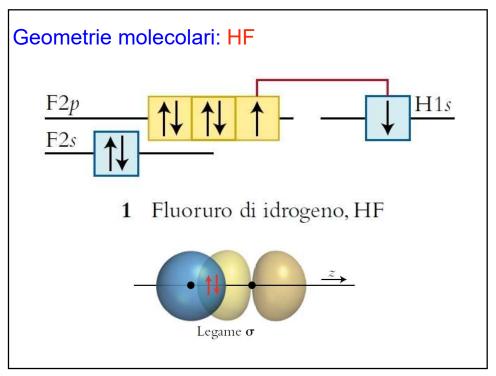
sp lineare

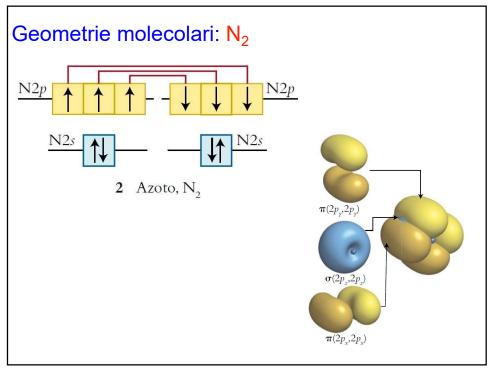
sp² trigonale piana

sp³ tetraedrica

sp³d bipiramidale trigonale

sp³d² ottaedrica


Geometrie molecolari


- Rappresentare la configurazione elettronica di ciascun atomo nella molecola con lo schema a caselle
- Per quanto riguarda l'atomo centrale, assegnare gli elettroni di valenza agli orbitali ibridi e ad eventuali orbitali p o d puri basandosi sulla struttura di Lewis precedentemente disegnata tenendo presente che:
 - coppie di non legame vanno assegnate agli orbitali ibridi
 - \bullet saranno necessari tanti orbitali ibridi semioccupati quanti sono i legami $\,\sigma$ formati dall'atomo centrale
 - \bullet saranno necessari tanti orbitali p $\,$ o d $\,$ puri semioccupati quanti sono i legami π formati dall'atomo centrale
 - solo gli elementi con numero quantico n $\geq \! 3 \,$ hanno orbitali d ad energia sufficientemente bassa da poter essere impiegati per la formazione di legami π

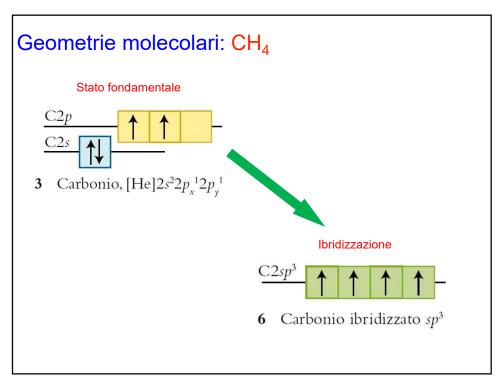
130

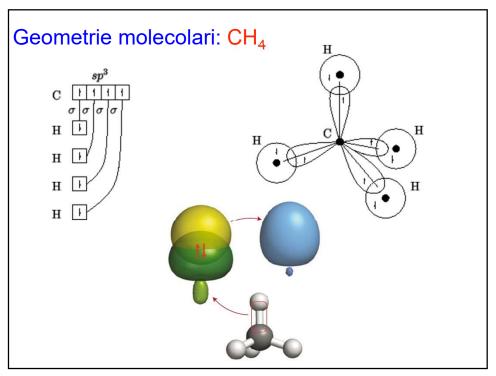
Geometrie molecolari

- In generale, gli atomi terminali non necessitano ibridazione: gli elettroni vanno assegnati seguendo il principio di Pauli e la regola di Hund
- Descrivere la formazione dei legami σ e π mediante sovrapposizione degli opportuni orbitali sull'atomo centrale e sugli atomi terminali; le coppie elettroniche in ogni orbitale di legame così formato debbono avere spin antiparalleli
- Quando per la formazione dei legami π esistono più possibilità fra loro equivalenti, la molecola deve essere descritta da tutte le corrispondenti forme di risonanza
- Infine, si possono schematizzare gli orbitali presenti sui vari atomi ed evidenziare lo schema di sovrapposizione σ e π

Geometrie molecolari: CH₄

Con la procedura generale si disegna la formula di Lewis per la molecola CH_4 . Gli elettroni di valenza di ciascun atomo risultano:

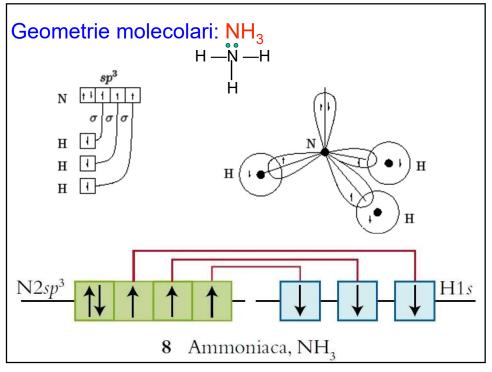

C 4 H 1


L'atomo di C è circondato da 4 coppie strutturali e quindi richiede un'ibridazione di tipo sp^3 , ottenuta combinando l'orbitale 2s con i tre orbitali 2p. Dalla formula di Lewis si vede che l'atomo di C deve formare legami σ : i 4 orbitali ibridi sp^3 dovranno perciò essere semioccupati; ciò si realizza disponendo i 4 elettroni di valenza dell'atomo di C uno per ciascun orbitale ibrido.

Ciascun atomo di idrogeno possiede 1 elettrone di valenza che verrà sistemato nell'orbitale 1s. Inoltre, sempre dalla formula di Lewis, si vede che ciascun atomo di idrogeno forma un legame σ con l'atomo di carbonio: tale legame sarà ottenuto dalla sovrapposizione di un orbitale ibrido sp³ dell'atomo di carbonio con l'orbitale 1s dell'atomo di idrogeno; da notare come gli elettroni di ciascun legame siano indicati con spin antiparallelo.

Non ci sono legami π .

134

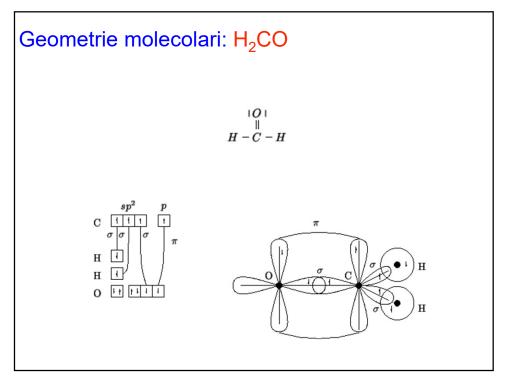

Geometrie molecolari: NH₃

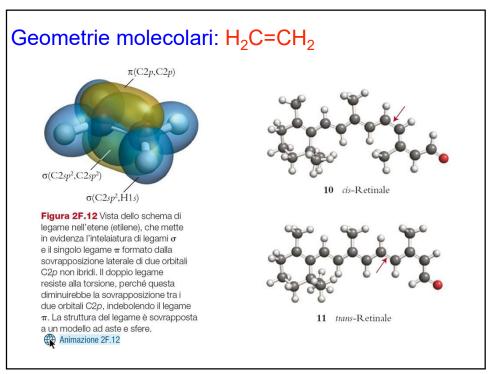
Con la procedura generale si disegna la formula di Lewis per la molecola NH₃. Gli elettroni di valenza di ciascun atomo risultano:

N 5 H 1

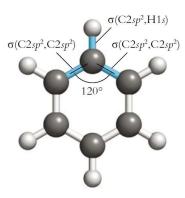
L'atomo di N è circondato da 4 coppie strutturali e quindi richiede un'ibridazione di tipo sp^3 , ottenuta combinando l'orbitale 2s con i tre orbitali 2p. Dalla formula di Lewis si vede che l'atomo di N possiede una coppia di non legame e deve formare 3 legami σ : uno dei 4 orbitali ibridi sp^3 sarà quindi completamente occupato, mentre i rimanenti dovranno essere semioccupati. Ciò si realizza accoppiando 2 dei 5 elettroni di valenza in un orbitale ibrido sp^3 e disponendo gli altri 3 uno per ciascuno dei rimanenti 3 orbitali ibridi sp^3 .

Ciascun atomo di idrogeno possiede 1 elettrone di valenza che verrà sistemato nell'orbitale 1s. Inoltre, sempre dalla formula di Lewis, si vede che ciascun atomo di idrogeno forma un legame σ con l'atomo di azoto: tale legame sarà ottenuto dalla sovrapposizione di un orbitale ibrido ${\rm sp^3}$ dell'atomo di carbonio con l'orbitale 1s dell'atomo di idrogeno; da notare come gli elettroni di ciascun legame siano indicati con spin antiparallelo. Non ci sono legami $\pi.$




Geometrie molecolari: H₂CO

Con la procedura generale si disegna la formula di Lewis per la molecola H₂CO. Gli elettroni di valenza di ciascun atomo risultano:


H1 C4 O6

L'atomo di C è circondato da 3 coppie strutturali e quindi richiede un'ibridazione di tipo sp2, ottenuta combinando l'orbitale 2s con 2 dei 3 orbitali 2p. Rimane un orbitale p normale al piano contenente i 3 orbitali ibridi sp2. Dalla formula di Lewis si vede che l'atomo di C deve formare 3 legami σ e 1 legame π ; quindi, i 3 orbitali ibridi sp² e l'orbitale p puro dovranno essere semioccupati per formare i 3 legami σ e il legame π , rispettivamente. Ciò si realizza assegnando ciascuno dei 4 elettroni di valenza ad un orbitale diverso. Sistemando i 6 elettroni di valenza dell'atomo di ossigeno secondo il principio di Pauli e la regola di Hund, si ottengono 2 orbitali 2p semioccupati: uno di essi avrà simmetria σ e sovrapporrà con un orbitale ibrido dell'atomo di carbonio; l'altro avrà simmetria π e potrà sovrapporsi all'orbitale p puro dell'atomo di carbonio. Ciascun atomo di idrogeno possiede 1 elettrone di valenza che verrà sistemato nell'orbitale 1s, che potrà sovrapporsi con il relativo orbitale ibrido dell'atomo di carbonio. Gli elettroni di ciascun legame vanno indicati con spin antiparallelo.

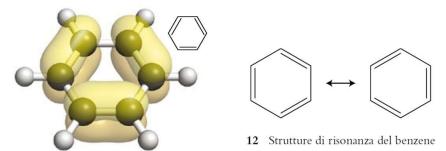

Geometrie molecolari: Benzene C₆H₆

Figura 2F.13 L'intelaiatura dei legami σ del benzene: ciascun atomo di carbonio è ibridizzato sp^2 e l'insieme degli orbitali ibridi combacia con gli angoli di legame (120°) della molecola esagonale. Sono stati contrassegnati i legami intorno a un solo atomo di carbonio; gli altri sono uguali a questi.

142

Geometrie molecolari: Benzene C₆H₆

Figura 2F.14 Gli orbitali 2p del carbonio non ibridizzati possono formare un legame π con l'uno o con l'altro degli atomi contigui. Sono possibili due disposizioni, ciascuna corrispondente a una diversa struttura di Kekulé. Qui si riporta una sola struttura di Kekulé, insieme con i legami π corrispondenti.

Geometrie molecolari: Benzene C₆H₆

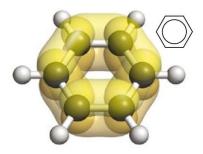
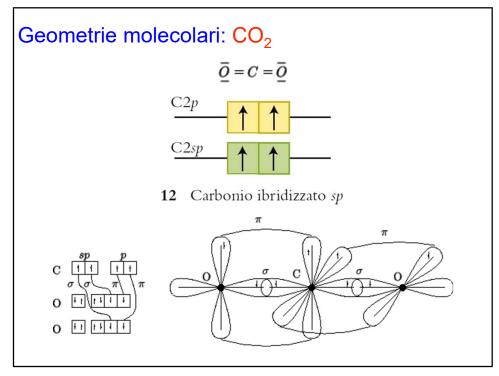


Figura 2F.15 Per effetto della risonanza tra due strutture come quella illustrata nella Figura 2F.14 (corrispondente alla risonanza tra due strutture di Kekulé), gli elettroni π formano una nube a forma di doppia ciambella (sopra e sotto il piano dell'anello). Animazione 2F.15

144


Geometrie molecolari: CO₂

Con la procedura generale si disegna la formula di Lewis per la molecola CO₂. Gli elettroni di valenza di ciascun atomo risultano:

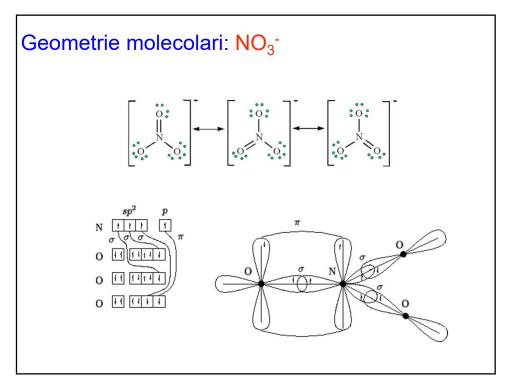
C 4 O 6

L'atomo di C è circondato da 2 coppie strutturali e quindi richiede un'ibridazione di tipo sp, ottenuta combinando l'orbitale 2s con 1 dei 3 orbitali p. Rimangono 2 orbitali p puri, normali fra loro e alla direzione dei 2 orbitali ibridi. Dalla formula di Lewis si vede che l'atomo di C deve formare 2 legami σ e 2 legami π ; quindi, i 2 orbitali ibridi e i 2 orbitali p puri dovranno essere semioccupati. Ciò si realizza assegnando ciascuno dei 4 elettroni di valenza ad un orbitale diverso.

Sistemando i 6 elettroni di valenza di ciascun atomo di ossigeno secondo il principio di Pauli e la regola di Hund, si ottengono 2 orbitali p semioccupati: uno di essi avrà simmetria σ e sovrapporrà con un orbitale ibrido dell'atomo di carbonio; l'altro avrà simmetria π e potrà sovrapporsi all'orbitale p puro dell'atomo di carbonio. Da notare che i piani nodali dei 2 legami π che si formano sono fra loro perpendicolari. Gli elettroni di ciascun legame vanno indicati con spin antiparallelo.

Geometrie molecolari: NO₃-

Con la procedura generale si disegna la formula di Lewis per la molecola. Lo ione viene descritto come ibrido di risonanza tra 3 strutture limite equivalenti. Gli elettroni di valenza di ciascun atomo risultano:


N 4 O 6 (doppio legame) O 7 (legame singolo)

L'atomo di N è circondato da 3 coppie strutturali e quindi richiede un'ibridazione di tipo $sp^2,$ ottenuta combinando l'orbitale 2s con 2 dei 3 orbitali 2p. Rimane 1 orbitale 2p puro, ortogonale al piano degli orbitali ibridi. Dalla formula di Lewis si vede che l'atomo di N deve formare 3 legami σ e 1 legame $\pi;$ quindi, i 3 orbitali ibridi e l'orbitale p puro dovranno essere semioccupati. Ciò si realizza assegnando ciascuno dei 4 elettroni di valenza ad un orbitale diverso.

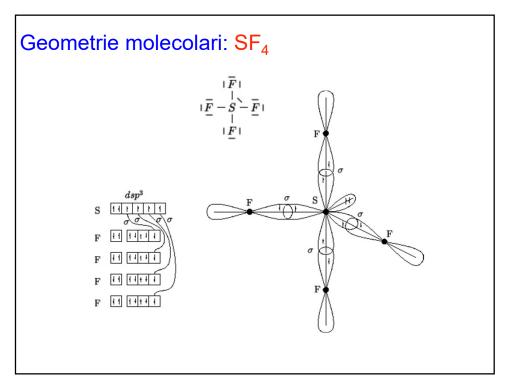
Geometrie molecolari: NO₃-

Per quanto riguarda i 3 atomi di ossigeno, 2 di essi formano un legame singolo, mentre 1 forma un legame doppio. Gli atomi di ossigeno che formano solo un legame singolo possiedono 7 elettroni di valenza e quindi 1 orbitale p semioccupato che potrà sovrapporre con 1 orbitale ibrido dell'atomo di azoto per la formazione di un corrispondente orbitale di legame σ . L'atomo di ossigeno che forma un doppio legame possiede 6 elettroni di valenza che, sistemati secondo il principio di Pauli e la regola di Hund, lasciano 2 orbitali p semioccupati, che formeranno un legame σ e 1 legame π per sovrapposizione con il terzo orbitale ibrido e l'orbitale p puro dell'atomo di azoto, rispettivamente. Naturalmente, l'atomo di ossigeno che forma il doppio legame può essere qualsiasi dei 3 presenti nella molecola: si hanno quindi tre possibili forme di risonanza, corrispondenti alle tre possibili strutture di Lewis. Lo schema finale indicato si riferisce ad una sola forma limite. Gli elettroni di ciascun legame vanno indicati con spin antiparallelo.

148

Geometrie molecolari: SF₄

Con la procedura generale si disegna la formula di Lewis per la molecola, che prevede 4 legami σ S-F e una coppia di non legame sull'atomo centrale.


Gli elettroni di valenza di ciascun atomo nella molecola risultano: S 6 F 7

L'atomo di zolfo è circondato da 5 coppie strutturali (valenza espansa) e richiede pertanto un'ibridazione di tipo dsp³, che si ottiene combinando l'orbitale 3s con i 3 orbitali 3p e 1 degli orbitali 3d, che nello zolfo, appartenente al terzo periodo, hanno energia sufficientemente bassa. Dei cinque orbitali ibridi così ottenuti, quattro sono semioccupati per formare i 4 legami σ con gli atomi di fluoro mentre il quinto contiene una coppia solitaria. In accordo con la teoria VSEPR, la coppia solitaria andrà sistemata in uno dei 3 orbitali ibridi del piano equatoriale.

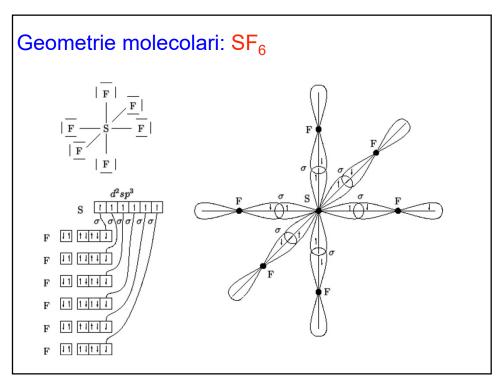
Ciascun atomo di fluoro possiede un orbitale p semioccupato che formerà il legame σ con l'atomo di zolfo.

Gli elettroni di ciascun legame vengono indicati con spin antiparallelo.

150

Geometrie molecolari: SF₆

Con la procedura generale si disegna la formula di Lewis 6, che prevede 6 legami $\,\sigma$ S-F 6.

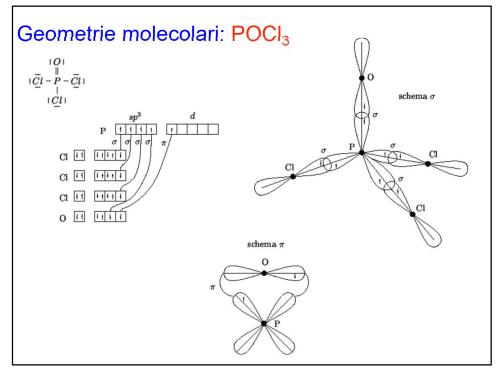

Gli elettroni di valenza di ciascun atomo nella molecola risultano: S 6 F 7

L'atomo di zolfo è circondato da 6 coppie strutturali (valenza espansa) e richiede pertanto un'ibridazione di tipo d^2sp^3 , che si ottiene combinando l'orbitale 3s con i 3 orbitali 3p e 2 degli orbitali 3d, che nello zolfo, appartenente al terzo periodo, hanno energia sufficientemente bassa. Ciascuno dei sei elettroni di valenza dello zolfo nella molecola viene asegnato ad un orbitale ibrido.

Ciascun atomo di fluoro possiede un orbitale p semioccupato che formerà il legame σ con l'atomo di zolfo.

Gli elettroni di ciascun legame vengono indicati con spin antiparallelo.

152



Geometrie molecolari: POCl₃

Con la procedura generale si disegna la formula di Lewis per la molecola, che prevede 3 legami σ P-Cl e 1 legame doppio P=O. Gli elettroni di valenza di ciascun atomo nella molecola risultano: P 5 Cl 7 O 6

L'atomo di fosforo è circondato da 4 coppie strutturali e richiede pertanto un'ibridazione di tipo sp^3 , che si ottiene combinando l'orbitale 3s con i 3 orbitali 3p. Siccome il fosforo deve formare 4 legami σ (3 con gli atomi di cloro e 1 con l'atomo di ossigeno), i 4 orbitali ibridi dovranno essere semioccupati. Inoltre, siccome deve essere formato anche 1 legame π tra fosforo e ossigeno, il quinto elettrone di valenza del fosforo dovrà occupare un orbitale a simmetria π : questo sarà uno degli orbitali 3d, che nel fosforo (terzo periodo) hanno energia accessibile. Per quanto riguarda gli atomi di cloro, ciascuno possiede un orbitale 3p semioccupato che viene utilizzato per formare il legame σ con l'atomo di fosforo. L'atomo di ossigeno possiede 2 orbitali 2p semioccupati: quello disposto lungo l'asse di uno degli orbitali ibridi del fosforo formerà il legame σ , mentre il secondo sovrapporrà con l'opportuno orbitale d del fosforo per formare il legame π . Gli elettroni di ciascun legame vengono indicati con spin antiparallelo.

154

Geometrie molecolari: SO₂

Applicando la procedura generale per disegnare le formule di Lewis, la molecola di SO_2 dovrebbe essere descritta come ibrido di risonanza tra due formule limite identiche, con un legame S-O singolo ed uno doppio. In tale formulazione, tuttavia, le cariche atomiche formali sullo zolfo e sull'ossigeno legato con legame singolo sarebbero +1 e -1, rispettivamente. Siccome lo zolfo può dare valenza espansa, un'altra possibile descrizione della molecola si ottiene assumendo che entrambi i legami S-O siano doppi: in tal modo lo zolfo è circondato da 10 e-, ma la carica atomica formale su ciascuno dei tre atomi costituenti la molecola è nulla. Questa descrizione è supportata dai dati sperimentali che indicano un considerevole carattere di legame multiplo tra zolfo ed ossigeno: si può pertanto considerare la molecola di SO_2 come un ibrido di risonanza tra le due strutture citate (di cui la prima, come detto, è espressa a sua volta con due formule limite equivalenti):

 $\overline{Q} = \overline{S} - \overline{Q} \cup \overline{Q} - \overline{S} = \overline{Q}$ $\overline{Q} = \overline{S} = \overline{Q}$

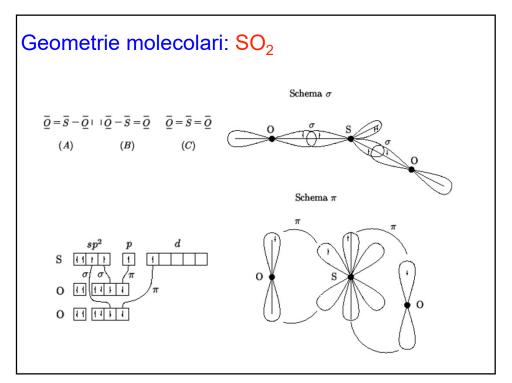
 $(A) \qquad \qquad (B) \qquad \qquad (C)$

156

Geometrie molecolari: SO₂

Limitandoci alla descrizione della molecola con 2 doppi legami (struttura C), gli elettroni di valenza di ciascun atomo risultano:

L'atomo di S è circondato da 3 coppie strutturali e quindi richiede un'ibridazione di tipo sp^2 , ottenuta combinando l'orbitale 3s con 2 dei 3 orbitali 3p. Dalla formula di Lewis si vede che l'atomo di S possiede una coppia di non legame e deve formare 2 legami σ e 2 legami π ; quindi, i 6 elettroni dello zolfo andranno sistemati come segue: una coppia solitaria occupa uno dei 3 orbitali ibridi, 2 elettroni vengono sistemati, uno per orbitale, nei rimanenti 2 orbitali ibridi. Gli ultimi 2 elettroni devono restare spaiati per formare i due legami π : uno di essi occupa l'orbitale 3p puro perpendicolare al piano degli orbitali idridi e l'altro occupa uno dei 5 orbitali 3d liberi, che nello zolfo, appartenente al terzo periodo, hanno energia accessibile (questo è il motivo per cui lo zolfo può dare valenza espansa).


Geometrie molecolari: SO₂

I 2 atomi di ossigeno possiedono 6 elettroni di valenza ciascuno. Sistemando tali elettroni secondo il principio di Pauli e la regola di Hund, rimangono su ciascun ossigeno 2 orbitali 2p semioccupati, che formano il legame σ e quello π con lo zolfo. In particolare, il legame σ viene formato per sovrapposizione dell'orbitale 2p semioccupato di opportuna simmetria con il corrispondente orbitale ibrido semioccupato dello zolfo; per la formazione dei legami π , un atomo di ossigeno sovrappone il secondo orbitale 2p semioccupato con l'orbitale 3p puro (anch'esso semioccupato) dello zolfo, mentre l'altro atomo di ossigeno sovrappone il secondo orbitale 2p semioccupato con l'orbitale 3d semioccupato dello zolfo.

Naturalmente, questo schema di legame π è perfettamente intercambiabile, nel senso che si possono scrivere due formule limite di risonanza in cui la sovrapposizione π degli atomi di ossigeno è scambiata.

Gli elettroni di ciascun legame vanno indicati con spin antiparallelo.

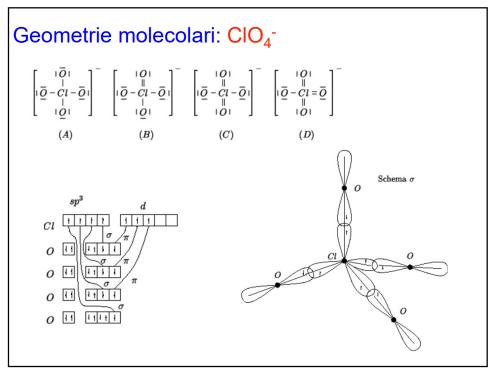
158

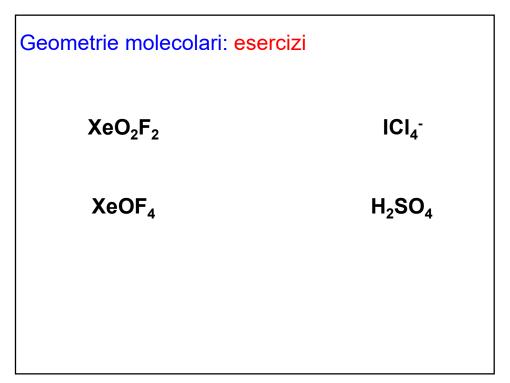
Geometrie molecolari: CIO₄-

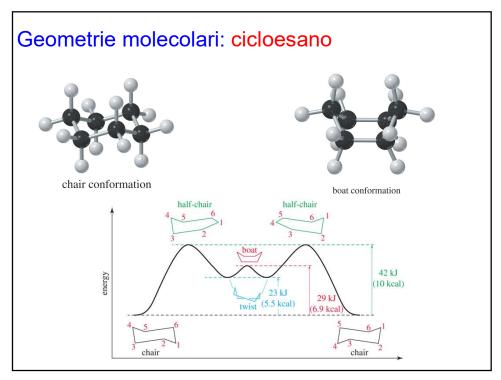
Con la procedura generale si disegnano le possibili formule di Lewis per la molecola. Sulla base del calcolo della carica formale, si deduce che la formula limite più stabile è la D (vedere la figura). Chiaramente, si possono scrivere 4 formule di tipo D , tutte equivalenti fra loro. Gli elettroni di valenza di ciascun atomo nella formula limite più stabile risultano:

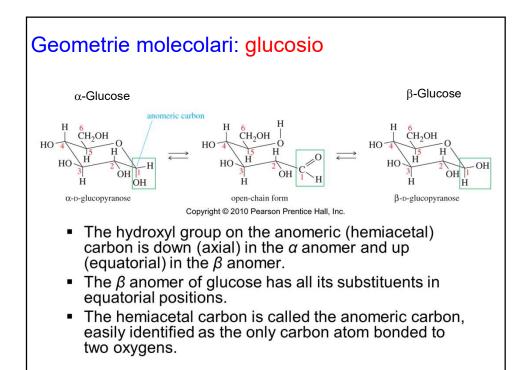
Cl 7 O 6 (doppio legame) O 7(legame singolo)

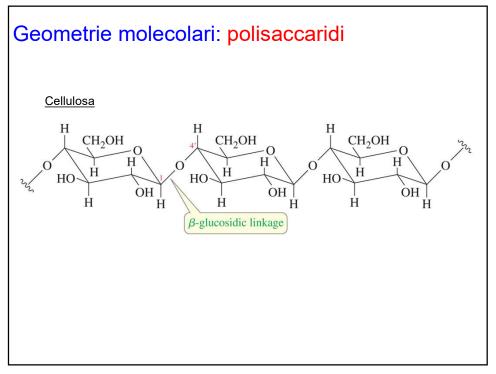
L'atomo di Cl è circondato da 4 coppie strutturali e quindi richiede un'ibridazione di tipo sp³, ottenuta combinando l'orbitale 3s con i 3 orbitali 3p. Dalla formula di Lewis si vede che l'atomo di Cl deve formare 4 legami σ e 3 legami $\pi;$ i 4 orbitali ibridi dovranno perciò essere semioccupati. Inoltre, dal momento che il cloro appartiene al terzo periodo, i 3 legami π potranno essere formati grazie ad altrettanti orbitali d semioccupati (visto che tutti gli orbitali p sono stati impiegati per l'ibridazione). Ciò si realizza assegnando i 7 elettroni di valenza ai quattro orbitali ibridi e a 3 dei 5 orbitali d puri disponibili.

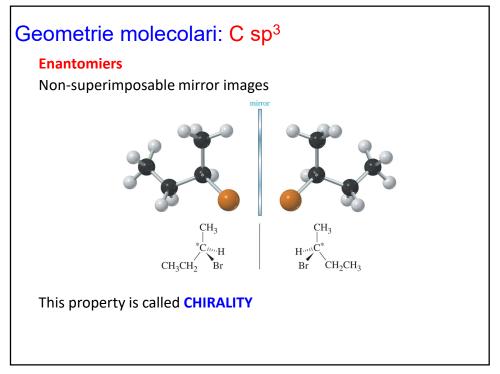

160

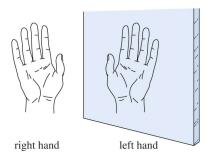

Geometrie molecolari: CIO₄-


Per quanto riguarda i 4 atomi di ossigeno, 3 di essi formano un legame doppio, mentre 1 forma un legame singolo. L'atomo di ossigeno che forma solo un legame singolo possiede 7 elettroni di valenza e quindi 1 orbitale p semioccupato che potrà sovrapporre con 1 orbitale ibrido dell'atomo di cloro per la formazione di un corrispondente orbitale di legame σ . Gli atomi di ossigeno che formano un doppio legame possiedono 6 elettroni di valenza che, sistemati secondo il principio di Pauli e la regola di Hund, lasciano 2 orbitali p semioccupati, che formeranno un legame σ e un legame π per sovrapposizione con gli orbitali ibridi ed opportuni orbitali d puri dell'atomo di cloro, rispettivamente.


Naturalmente, l'atomo di ossigeno che forma il legame singolo può essere qualsiasi dei 4 presenti nella molecola: si hanno quindi 4 possibili forme di risonanza, corrispondenti alle 4 possibili strutture di Lewis di tipo D. Lo schema finale indicato si riferisce ad una sola forma limite.


Gli elettroni di ciascun legame vanno indicati con spin antiparallelo.



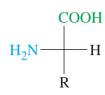


Enantiomers

Chirality

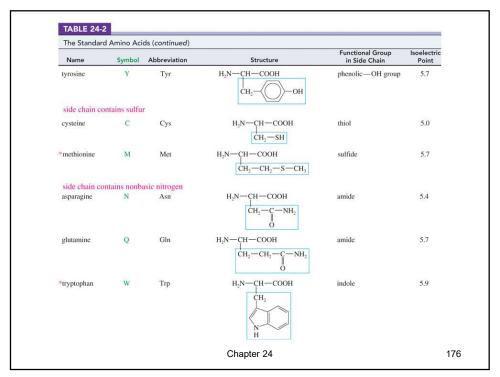
Mirror-image object is different from the original object.

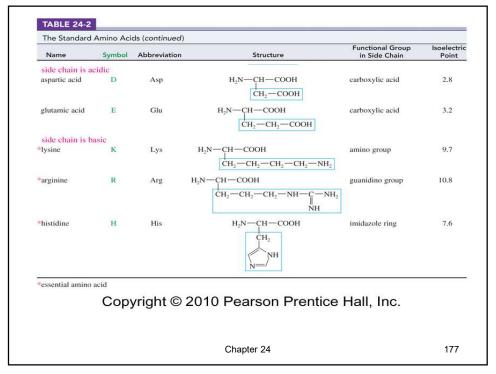
172


Chiral Carbons

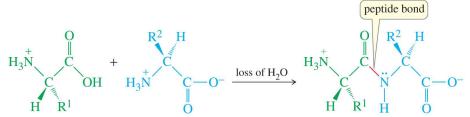
Carbons with four different groups attached are chiral. It's mirror image will be a different compound (enantiomer).

Stereochemistry of α -Amino Acids




an L-amino acid (S) configuration

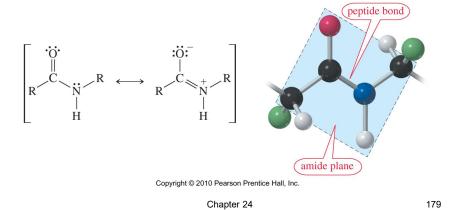
- \bullet Twenty standard $\alpha\text{-amino}$ acids.
- Differ in side-chain characteristics


174

	The Standard Amino Acids Functional Group Isoelectric					
Side chain contains an — OH Side	Name	Symbol	Abbreviation	Structure		Point
H H H H H H H H H H						
*leucine L Leu H ₂ N-CH-COOH alkyl group 6.0 *leucine L Leu H ₂ N-CH-COOH alkyl group 6.0 *sioleucine I Ile H ₂ N-CH-COOH alkyl group 6.0 *phenylalanine F Phe H ₂ N-CH-COOH aromatic group 5.5 proline P Pro HN-CH-COOH rigid cyclic structure 6.3 *side chain contains an —OH serine S Ser H ₂ N-CH-COOH hydroxyl group 5.6 *threonine T Thr H ₂ N-CH-COOH hydroxyl group 5.6	glycine	G	Gly	-	none	6.0
*isoleucine I lle H ₂ N-CH-COOH alkyl group 6.0 *phenylalanine F Phe H ₂ N-CH-COOH aromatic group 5.5 proline P Pro HN-CH-COOH rigid cyclic structure 6.3 *side chain contains an —OH serine S Ser H ₂ N-CH-COOH hydroxyl group 5.6 *threonine T Thr H ₂ N-CH-COOH hydroxyl group 5.6	alanine	Α	Ala		alkyl group	6.0
**Ileucine L Leu H ₂ N-CH-COOH CH ₃ CH ₃ CH ₃ alkyl group 6.0 **Isoleucine I IIe H ₂ N-CH-COOH CH ₃ CH ₃ alkyl group 6.0 **Isoleucine I IIe H ₂ N-CH-COOH CH ₃ CH ₃ aromatic group 5.5 **Isoleucine F Phe H ₂ N-CH-COOH CH ₃ CH ₂ rigid cyclic structure 6.3 **Incomine P Pro H ₂ N-CH-COOH CH ₃ hydroxyl group 5.7 **Stide chain contains an -OH serine S Ser H ₂ N-CH-COOH hydroxyl group 5.7 **CH ₂ -OH T Thr H ₂ N-CH-COOH hydroxyl group 5.6	*valine	V	Val	CH	alkyl group	6.0
*phenylalanine F Phe $H_2N-CH-COOH$ aromatic group 5.5 proline P Pro $HN-CH-COOH$ rigid cyclic structure 6.3 *side chain contains an $-OH$ serine S Ser $H_2N-CH-COOH$ hydroxyl group 5.7 *threonine T Thr $H_2N-CH-COOH$ hydroxyl group 5.6	*leucine	L	Leu	H ₂ N-CH-COOH CH ₂ -CH-CH ₃	alkyl group	6.0
proline P Pro $HN-CH-COOH$ rigid cyclic structure 6.3 H_2C CH_2	*isoleucine	I	Ile		alkyl group	6.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*phenylalanine	F	Phe		aromatic group	5.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	proline	P	Pro	H,C CH,	rigid cyclic structure	6.3
*threonine T Thr H ₂ N—CH—COOH hydroxyl group 5.6	side chain con	tains an —	ОН			
	serine	S	Ser	2 10 10 10 10 10 10 10 10 10 10 10 10 10	hydroxyl group	5.7
	*threonine	Т	Thr		hydroxyl group	5.6
Copyright © 2010 Pearson Prentice Hall, Inc.			Copyright	© 2010 Pearson Prentice Hal	I, Inc.	

Peptide Bond Formation

Copyright © 2010 Pearson Prentice Hall, Inc.

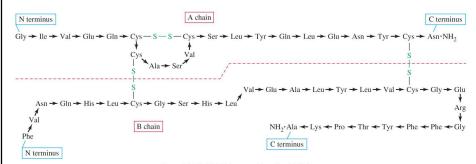

- The amino group of one molecule condenses with the acid group of another.
- Polypeptides usually have molecular weight less than 5,000.
- Protein molecular weight is 6,000-40,000,000.

Chapter 24 178

178

Resonance Stabilization

- The peptide bond is an amide bond.
- Amides are very stable and neutral.

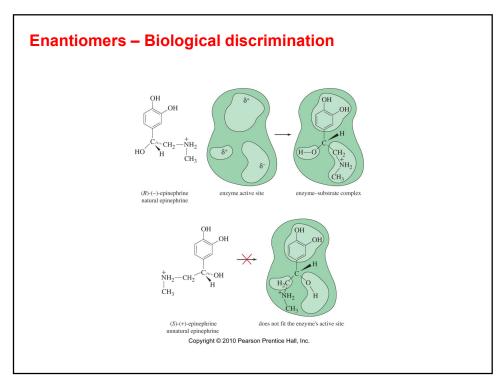


Human Oxytocin

 Oxytocin is a nonapeptide with two cysteine residues (at Positions 1 and 6) linking part of the molecule in a large ring.

180

Bovine Insulin



Copyright © 2010 Pearson Prentice Hall, Inc.

 Insulin is composed of two separate peptide chains, the A chain containing 21 amino acid residues, and the B chain containing 30.

Chapter 24 181

180

