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By considering three mechancial elements – mass, damping, spring - we introduced some of the mechanical concepts required to 

understand how forces influence protein and cells. 

Vibration of chemical bonds  ex. H-Cl , f= 89.6 1012 Hz; mass m~1.63 10 -27 kg → k = m ω2= 517 N/m – very stiff

The mass and spring with damping illustrate that system can respond to mechanical forces int two ways:            

they can oscillate or they can move monotonically.

𝛾2

4𝑚𝑘
> 1

𝜏 =
𝛾

𝑘

𝜏 =
𝑚

𝛾

protein that undergoes a global conformational change (𝜏 = 15 𝑛𝑠) 

movement of a cell / bacterium or a protein through a liquid, inertia of a protein (100 kDa), 
measured as time to stop ( 𝜏 = 3 𝑝𝑠) 

𝜔 =
𝑘

𝑚
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• Due to the small size of proteins, the viscous forces are preponderent over the inertial forces→ global motions

of proteins, especially less rigid ones, are overdamped→ they creep rather than oscilate when subject to forces

• The motion of long, thin cytoskeletal filaments are also overdamped, due to their large aspect ratios, this in 

turn causes the motion of the cells to be overdamped.

• The rigidity of cytoskeleton proteins as actin, tubulin, keratin is similar to that of hard plastics but less than that

of other materials such as glass or metal, because proteins are held together by weak Van der Waals bonds 

• The rigidity of protein machines/motors undergoing large conformational changes as they transduce chemical

energy into mechanical work is expected to be much less than that of structural proteins

• As proteins move and change shape, they experience damping forces from the surrounding fluid as well from 

the internal friction. These forces arise from the rapid making and breaking of bonds.

𝛾2
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6Thermal forces and diffusion

In addition to mechanical forces, proteins and cells are subject to thermal forces, arising from collisions with water and other 

molecules in the surrounding fluid

Thermal forces → thermal energy → thermal / Brownian motion

The magnitude of thermal energy is in the range of the energies of chemical reactions driving biological processes, which are just a 

little bit higher than thermal energy  →  thermal fluctuations are necessary for proteins to reach their transition states

Molecular machines operate in diffusive environment, differently from macroscopic machines of our everyday world

Boltzmann Distribution Law

describes how the probability of a molecule having a certain energy depends on the surrounding temperature

Principle of Equipartition of Energy 

 states how much thermal energy a molecule has at a certain temperature  
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Boltzmann distribution Law (Boltzmann’s distribution, equation or formula)

if a particle (or a group of particles) is in thermal equilibrium, the probability pi of finding the particle in the state i , 

characterized by energy Ui is given by:

where: 

is the partition function (∑pi = 1)

K    is the Boltzmann constant, K = 1.381 x 10 -23 [J K-1]   

T is the absolute temperature.

𝑍 = 𝑐𝑡 = 

𝑖

𝑒𝑥𝑝 −
𝑈𝑖

𝑘𝑇

𝑝𝑖 =
1

𝑍
𝑒𝑥𝑝 −

𝑈𝑖

𝑘𝑇

𝑝2

𝑝1
=𝑒𝑥𝑝 −

Δ𝑈

𝑘𝑇

• Boltzmann distribution allows to calculate the probability of observing 

a system at finite temperature in any particular microstate. 

• The probability only depends on the energy (free energy) of the state.

Molecules in a two-state energy landscape: 
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A two-dimensional free energy diagram allowing for multiple 
unfolding pathways. 

x1 and x2 represent generalized unfolding reaction coordinates.

Anticipating: Protein unfolding – free energy landscape

Transition path

A one-dimensional free energy diagram allowing for single unfolding 
pathway – transition path. 

The extension x represents the unfolding reaction coordinates



Boltzmann’s Law 9

Planck constant h= 6.6 x 10-34 [J s]

values

≈ 100 KT

≈  25  KT

= 1     KT

For T= 298.15 K  (Tc= 25 C) the energy KT =  4.116  x  10-21 [J ]  → 1 KT  ≈  4.1  [pN nm]

Thermal energy KT is a convenient energy unit for processes at molecular and cellular level 

Comparison with other biologically relevant energies:



Boltzmann’s Law 10

Boltzmann’s law is very general 

The energy could correspond to the particle’s potential energy (gravitational, elastic, or electrical), kinetic energy,  

or other energy associated with its phase, or electronic or chemical state.

Note: 

the state of a particle (or group of particles ) is specified by the position and velocity of the constituent atoms as well their electronic states.

Boltzmann’s law is fundamental because: 

One can use it to define equilibrium and temperature:

• A system is at equilibrium if Boltzmann’s law holds

• The temperature is defined as the corresponding constant in the exponent of the 

Boltzmann’s law formula

Boltzmann’s law is a very important physical law in biology and chemistry. 



11Boltzmann’s Law – application examples

1. Earth’s athmosphere

Knowing that the density of molecules in a gravitational field falls exponentially with the height,     

 estimate the Earth’s atmosphere scale height, SH.

SH : the height for which the density falls by 1/e (= 37%)

Consider the gravitational potential energy: U = mgh, of a particle of mass m, at a height h above the Earth’s surface. 

Molar mass for oxygen MM=32 g/mol  , 1 mole has ≈ 6 .022 1023 units (Avogadro’s number) 

A: SH ~ 7.5 km

2. Settling of beads
Same problem, considering glass microspheres of diameter d= 200 nm, (mass density of glass: 2 g/cm3)

A: SH ~ 100 µm 

3. Analytic centrifugation
Measuring the mass m of a protein with the analytic centrifuge.

 U= (m-mw)ach - potential energy;

m-mw – additional mass over that of the displaced solvent (water);                            

h – height above the bottom of the centrifuge tube; ac – centrifuge acceleration. 

One measures the height SH10 for which the density of protein falls by 1/e10 (exp term vanishes) 

    → U0 ≈ 10 kT     → m = mw + 10 kT/(ac SH)

 Exp values: ac ~ 103 g ; SH10 ~ 10 mm → m= ?
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12Boltzmann’s Law – application examples

4. Nernst equation

Considering a set of molecules with charge q that are free to equilibrate between two compartments at electrical potential 0 and V volts, 

Find the ratio of the concentration of molecules in the two compartments.

A:

𝐶𝑉

𝐶0
=

𝑝𝑉

𝑝0
= 𝑒𝑥𝑝 −

𝑈

𝑘𝑇
= 𝑒𝑥𝑝 −

𝑞𝑉

𝑘𝑇

q= 1.6 x 10-19 C 

At room temperature K= 300 K, kT/q = 25.6 mV 

 - -> for each 25.6 mV increase in voltage, the concentration of monovalent cations decreases e-fold.
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The average thermal energy of a molecule (or system of molecules)

Example

Suppose a molecule is at equilibrium in an energy landscape U(x), that 

varies with position x (but not with time); 

e.g. the molecule could be connected to a spring with potential energy:

U(x)= ½ k x2

Due to thermal agitation, the molecule is constantly changing position.  

Aim:

Calculate the statistical properties of the molecule’s position: 

mean, mean squared, variance

Principle of Equipartition of Energy : states how much thermal energy a molecule has at a certain temperature 
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The statistical properties of a molecule’s position, such as its mean or its variance can be calculated in two ways:

1. Follow the molecule over a long period of time T, and measure its time-averaged mean position or mean-squared position :

mean mean-squared
𝜎𝑥

2 = 𝑥 − 𝑥 2 =
= 𝑥2 − 𝑥 2

variance

2. Use the Boltzmann’s law to calculate the probability p(x) of finding the molecule at position x and then calculate the 

expected values E(x) of the position or position squared according to:

If we measure for a long enough time, then the estimates of the average position should agree:

In this way we can relate measurements (time averages) to the expectations, based on Boltzmann’s law.

The Equation above is the link between experiments and theory!

It holds generally for any function of x : E[f(x)]=<f(x)>. In particular it holds for the variance of 𝜎𝑥
2 of x.
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This approach can be used to calculate the average energy of a molecule. 

For instance, for the molecule attached to a spring, the average energy is:
using Boltzmann’s law for p(x):

𝑝(𝑥) =
1

𝑍
𝑒𝑥𝑝 −

𝑈(𝑥)

𝑘𝑇

The result above is remarkable because the average energy <U> does not depend on the stiffness of the spring !

It only depends on the temperature T ! 

This is a special case of a general theorem known as the Principle of Equipartition of Energy which states that

if the energy of a molecule depends on the square of a parameter (such as position or speed), 

the mean energy associated with the degree of fredom measured by the parameter is: 

𝑼 =
𝟏

𝟐
𝑲𝑻

(appendix 4.1. Book Howard, integrals tabel)

Principle of Equipartition of Energy



16Principle of Equipartition of Energy

Another example of the principle is that the average kinetic energy of a 

molecule (in one direction) with mass m is:

Examples of vrms at 25 C , for:

• Water molecule, vrms= 640 m/s

• Protein, 100 kDa, vrms= 8.6 m/s

• Bacterium of volume 1 μm3= 3.5 mm/s

𝑲. 𝑬. =
𝟏

𝟐
𝒎 𝒗𝟐 =

𝟏

𝟐
𝑲𝑻

If there are more degrees of freedom, that are independent, then each degree of freedom contains ½ KT of energy.

E.g. : the velocities of a molecule in x, y, z directions are independent for 3 degrees of freedom. 

Thus, the total kinetic energy is: 3/2 kT. 

The root mean-square speed, vrms, of a molecule in three dimensions is therefore:

𝒗𝒓𝒎𝒔 = 𝒗𝟐 =
𝟑𝑲𝑻

𝒎



17Equipartition of Energy

The Principle of Equipartition of Energy is generally true only if the energy dependence is quadratric.

If, for instance, U(x) ~ x   → <U> = KT (and not 1/2 KT)

It breaks down also if KT is small compared to energy levels between different quantum states.

For proteins at room temperature thermal energy is large compared to the vibrational energy levels 

because proteins are relatively soft materials 

(appendix 4.1 for details)

Thermal energy KT ~ 4 x 10-21 J  while vibrational energy  h ν ~ 10-22 J (ω ~1012 Hz , h ~ 6.6 10-34 m2kg/s)  

→ hν < KT

→ the principle of equipartition of energy applies to elastic deformation of proteins



18Diffusion equation and Einstein relation

Molecular collisions cause Brownian motion and diffusion. 

These are forms of random motion that are characterized by frequent, abrupt changes in direction.  

• Einstein – (deserved, not awarded) Nobel prize award for ‘elucidating the molecular mechanism of Brownian motion’

• Perin and Svedberg – Nobel prize – measurements of the diffusion of micron-sized particles, confirmed Einstein’s theory 

and allowed the measurement of Boltzmann’s constant K and the determination of the Avogadro number NA.

• Brownian motion confirmed the atomic theory of gases and liquids and bridged the gap between visible objects and 

invisible molecules.

In Brownian motion, a particle does not have a specific direction to travel → it will move in 

all directions. 

In diffusion the particles will travel from a high concentration to a low concentration. 

Therefore, they have a direction. 

However, the particle movement is random in both scenarios.

Diffusion plays a crucial role in many physical and chemical processes at microscopic scales.



19Diffusion equation and Einstein relation

In the presence of a concentration gradient, the molecules moving in random directions tend to move, in average, 

from areas of high concentration to areas of low concentration. 

𝑱 𝒙 = − 𝑫
𝒅𝒄(𝒙)

𝒅𝒙

Fick’s  first law of diffusion

D – diffusion coefficient

The prediction, confirmed experimentally, is that the concentration flux J(x), 

which is the rate of movement of molecules per unit area, 

is proportional to the concentration gradient dc/dx:
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The diffusion equation (Fick’s 2nd law of diffusion) can be derived from the 1st law: 

The change in concentration over time at any point equals the negative of the flux gradient at that point: 

Note: 

if the system is in steady – state (dc/dt=0), then the concentration flux is the same everywhere in the solution (dJ/dx=0). 

Conversely, if the flux does not change from one position to another, then the concentration does not change with time. 

Substituting equation above into Fick’s  1st  law one gets:

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2

Diffusion equation

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= −

𝜕𝐽(𝑥, 𝑡)

𝜕𝑥

𝐽 𝑥 = − 𝐷
𝑑𝑐(𝑥)

𝑑𝑥

Diffusion equation
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Rather than the concentration c(x,t) of a large number of molecules, we can think about single molecules and want to know the 

probability p(x,t) of finding a molecule at position x at time t.

Because the probability is proportional to the concentration (it is the concentration divided by the total number of molecules) and 

because differentiation is a linear operator, it follows that also the probability p (x,t) satisfies the diffusion equation:

Boltzmann’s law allows to derive an expression that relates the diffusion coefficient to the drag coefficient

 (Einstein relation)  

Suppose that an external force, F(x), acts on a diffusing molecule. 

The force will cause the molecule to move with a velocity v(x)= F(x) / ɣ .This ‘drift’ velocity is an average speed 

superimposed on the diffusive motion.  The external force increases the flux by v(x) c (x,t) or by v(x) p(x,t), if we are 

thinking of the probability flux, j(x):

𝑗 𝑥 = −𝐷
𝑑𝑝 𝑥

𝑑𝑥
+

𝐹 𝑥

𝛾
𝑝(𝑥)

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑝(𝑥, 𝑡)

𝜕𝑥2

𝐽 𝑥 = − 𝐷
𝑑𝑐(𝑥)

𝑑𝑥
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This equation is known as the forward diffusion equation or the Fokker-Planck equation and describes diffusion with drift.

Thus, in the presence of a force, the probability satisfies

the equation (derived from diffusion equation):

If the system is in equilibrium, the probability does not change with time and the F-P equation can be solved in p(x).

(See Appendix 4.2) 

Comparing the solution of the Fokker-Planck with the Boltzmann’s law, it is found that the flux must be equal to zero 

everywhere, and that the diffusion coefficient is related to the drag coefficient by:

𝐷 =
𝐾𝑇

𝛾
Einstein relation

relates the diffusion coefficient of a molecule to its drag coefficient

Einstein relation



23Diffusion equation and Einstein relation

𝐷 =
𝐾𝑇

6𝜋𝜂𝑟

Einstein relation allows to estimate the diffusion coefficient from the size of the particle 

and the viscosity of the solution. 

Conversely, knowledge of the viscosity and the diffusion coefficient permits an estimate of 

the size of the particle.

Example: Diffusion of ions. Consider sodium ion Na+ in water.

The diffusion coefficient for an ion at room temperature (25 C) is D= 1.33 x 10-9 m2/s.  

From the Einstein relation it results an apparent radius r= 1.8 Å , which is about two times 

  the ionic radius of 0.95 Å measured in crystals.

Rule of thumb: 

a diffusion coefficient D= 10-9 m2/s = 1µm2/ms, corresponds to the diffusion of a small ion 

for about 1 µm in 1 ms.



24Diffusion vs Osmosis

Diffusion is the movement of particles from an area of higher concentration to lower concentration. The overall effect is 
to equalize concentration throughout the medium.

Osmosis is the movement of solvent particles across a semipermeable membrane from a dilute solution into a 
concentrated solution. The solvent moves to dilute the concentrated solution and equalize the concentration on both 
sides of the membrane.

Facilitated diffusion is the movement of hydrophilic molecules or ions across the plasma membrane. 
The difference is, the diffusion is facilitated by transport proteins (i.e. carrier proteins or pore proteins).



25Solutions to the diffusion equation

The utility of the diffusion equation is that it allows one to calculate           

how quickly, on average, it takes for a molecule to diffuse through a certain distance. 

This information can be used to evaluate the efficiency of diffusion as a transport process within cells. 

Furthermore, with the aid of the Fokker-Planck equation, we can calculate the time that it takes for a molecule to 

diffuse against an applied force. One can then gain insight into how forces affect chemical rates. 

Solutions of the diffusion equation for some particular cases that are relevant to cellular and molecular mechanics.



26

The diffusion from a point source

If a molecule is released at the origin and allowed to diffuse in one

 dimension, then the probability of finding it at position x at time t is:

How far, on average, does a molecule diffuse in a given time ? 

root-mean-square displacement :      𝒙𝒓𝒎𝒔 = 𝟐𝑫𝒕
(Standard deviation) 

Solutions of the diffusion equation for some particular cases that are relevant to cellular and molecular mechanics.
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Another, relevant question is:  how long on average, does it take a molecule to diffuse through a given distance ? 

 first-passage time:      𝒕 =
𝒙𝟎

𝟐

𝟐𝑫

First passage time is relevant because it allows to calculate the rate of a process that is limited by diffusion. 

The diffusion-limited rate, kdl  is the reciprocal of the first-passage time, t:   kdl = 1/t

In the absence of an external force, the first-passage time for one-dimensional diffusion through a distance x0 is: 

The diffusion from a point source

𝒙𝒓𝒎𝒔 = 𝟐𝑫𝒕𝒕 =
𝒙𝟎

𝟐

𝟐𝑫

The first-passage time can be calculated by solving the diffusion equation for the particular geometry of the problem. 

root-mean-square displacement first-passage time: 
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Case study: Evaluate if diffusion might be a feasible mechanism to transport molecules and organelles in the cell.

Let us consider a globular protein, a potassium ion K+ , and an organelle (mitochondrion).                                   

How long it takes for these three particles to propagate different distances in the cell ? Size of cell: max 100  µm. 

Distance diffused

Object (particle) 1 µm 100 µm 10 mm 1 m

Protein                   (r = 3nm, D ~  100 µm2/s ) 5 ms ~  1 min 6 days 150 years

K+                         (r ~ 0.1 nm, D ~  2000 µm2/s ) 0.25 ms 2.5 ms 7 hrs 8 years

Organelle              (r ~ 500 nm, D ~  0.5 µm2/s ) 1 s 3 hrs 3 years 30 millenia

Diffusion as a cellular transport mechanism

Protein and ion diffusion are efficient, the organelle diffusion is very slow.

Actually, the organelle diffusion is even slower, because the cytoplasm is like a gel with mesh size of about 50 nm.  

Organelles larger than 50 nm are almost immobile. 

Motor proteins are required to move organelles from one place to another. 

On the other side, the low mobility of the organelles is benefic: large organelles stay where they are, and the internal 

structure of the cell will be reasonable stable. 

Size of a cell: 100  µm 

𝒕 =
𝒙𝟎

𝟐

𝟐𝑫
𝐷 =

𝐾𝑇

6𝜋𝜂𝑟
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However, there are several “microscopic” details of diffusive motion that are important to answer questions as:

1. How long, on average, will a free molecule keep moving in one direction before thermal forces randomize its 

direction of motion ? 

  i.e. which is the persistence length (or correlation time) of the velocity ?

2.   How long, on average, will it take for a molecule in a potential well to explore the different energy levels ?  

                           In particular, how long will the molecule spend at each energy level ? 

 i.e. what is the persistence time of the position ?

3.   What are the amplitude and statistical properties of the thermal forces ? 

Correlation Times and Fourier Analysis



30

The root-mean-square velocity: 𝑣𝑟𝑚𝑠 =
3𝐾𝑇

𝑚
≈ 8.6

𝑚

𝑠
 ; 

The time constant 𝜏𝑖 =
𝑚

𝛾
≈ 3 𝑝𝑠 (with 𝛾 ≅ 60 𝑝𝑁 ∙ 𝑠/𝑚)

is the correlation time of the velocity 

The corresponding persistence length: 𝑙 =  𝑣 ∙ 𝜏 = 0.24 𝐴 !

Even if the speed of molecule is large, the high damping it 

experiences in water opposes to inertia and after just a 

fraction of an A it changes direction. 

Diffusion of a free protein vs diffusion of a tethered protein

Protein attached to a spring of stiffness k= 1pN/nm

The root-mean-square displacement (using Th Equipartition  Energy)

 𝑥𝑟𝑚𝑠 = 𝑥2 =
𝐾𝑇

𝑘
≈ 2 𝑛𝑚 ; 

The time constant 𝜏𝑝 =
𝛾

𝑘
≈ 60 𝑛𝑠 = 𝜏𝑖 ∙ 2 ∙ 104

This is the correlation time of the protein’s position,                               

i.e.  the time it takes to the protein to relax to a new position.

For times t< τp, the protein is quite near the same position; 

when t>>τp,  the protein’s position is uncorrelated and 

the probability of finding the protein in a certain position 

depends only on its potential energy and not on time.

m= 166 x 10-24 kg

Free Protein Tethered protein



RECONSIDERING the Motion of Combinations of Mechanical Elements in presence of thermal forces

A) DASHPOT and MASS. Model for the movement of a protein through a liquid 

𝑣 𝑡 =
𝐹

𝛾
1 − exp −

𝑡

𝜏𝑚
𝑑𝑣

𝑑𝑡
+ 𝛾𝑣 = 𝐹

J. Howard – Book, Ch. 2
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Time constant

𝜏 =
𝑚

𝛾

𝜏 = 𝑚/𝛾

Eq of motion Solution (velocity)

vs = 𝐹/𝛾

10-12 s range

We considered F= ct > 0

We did not consider the thermal forces

What if F= 0 ?
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0

10 -12 s 

range

! ! !
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correlation time is infinitely short

2
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https://web.stanford.edu/~peastman/statmech/friction.html

http://physics.gu.se/~frtbm/joomla/media/mydocs/LennartSjogren/kap6.pdf

2



MASS and SPRING with DAMPING

Mechanical model of a protein undegoing a large scale conformational change that is damped by the surrounding fluid, 

and possibly by internal viscosity. 

Elastic solid in liquid

Overdamped: 𝛾2

4𝑚𝑘
> 1

35RECONSIDERING the Motion of Combinations of Mechanical Elements in presence of thermal forces
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Autocorrelation function, WHY ?

variance
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Autocorrelation function, WHY ?



38Fourier transform and power spectrum



39Schematic of a microbead in an optical trap – otpical tweezers

See the lesson on Optical Tweezers for a more detailed discussion

MASS and SPRING with DAMPING model

Model  also for a protein undegoing a large scale conformational change that 

is damped by the surrounding fluid, and possibly by internal viscosity. 

Lorenzian function

Determine  the stiffness of the optical trap k: 

• measure the fluctuations of the bead x(t) over a period of time (e.g. 2 s) at high frequency (10 kHz)

• calculate the power spectrum PS(f) and fit it with a Lorenzian function of parameters fc, γ

ξ(t)



Summary

Boltzmann’s law gives the probability that a molecule is in a given energy state.  

Boltzmann’s law has some corollaries:

1. Principle of the Equipartition of Energy  which says that each degree of freedom of the molecule has ½ KT of energy 

associated with it. KT= 4.1 pN nm (room temperature).

An example of this principle is that the average of the potential energy of a (molecular) spring is ½ KT. 

Another example is that the average kinetic energy of a molecule is 3/2 KT.

The randomly directed collisions with the surrounding molecules cause particles to move randomly (Brownian motion) and 

diffuse . The statistical properties of diffusing particles can be derived by solving the diffusion equation. 

2.The diffusion coefficient D is related to the drag coefficient γ via the equation D= KT/ γ – Einstein equation.  A detailed 

analysis of diffusion shows that the velocity persists (or is correlated) over times shorter than m/ γ . For a protein this time is 

of the order of  ps after which time the protein is likely to be moving in a different direction and with a different speed. If the 

protein is tethered by a spring of stiffness k, the position is correlated over times shorter than γ /k, which ranges from 1 ns to 

1 us for spring constants k between 0.016 and 16 pN/nm.

Langevin equation. 

Using the Fourier analysis it is possible to deduce the molecular properties of a mechanical system, such as stiffness, damping 

and mass, from the analysis of the thermal motion.  

𝑝𝑖 =
1

𝑍
𝑒𝑥𝑝 −

𝑈𝑖

𝑘𝑇
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From a biological point of view, it is interesting to consider diffusion in the presence of an external force. 

e.g. how long does it take for a molecule to diffuse over an energy barrier at x= x0?  

Considering the force constant, the potential energy is U(x)= - Fx,  and the first-passage time: 

Diffusion in presence of an external force

Uphill: against an opposing force the first-passage time t is long 

(and the corresponding diffusion-limited rate is reduced)

Downhill: in direction of the force, t is short.

Time for a 100 kDa protein to diffuse 8 nm in 

presence of a constant force.
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Diffusion of a molecule out of a hemiparabolic 

energy well

tK – Kramers time – basis of the Kramers rate theory, postulating 

that the rate of reactions is limited by diffusion over a high –

energy transition rate.

τ= ɣ/k - time constant. 

Assumption: The energy barrier is high: U0 =U(x0)=1/2 kx0
2 >> KT.

Equation derived in Appendix 4.2.

The external force : F= -k x . 

How long does it take for a molecule to diffuse over an energy barrier at x= x0?  

When the force opposes the motion: F= -k x , the potential energy is U(x)=- k x2,  and the first-passage time: 

Diffusion in presence of an external force



43Correlation Times and Fourier Analysis

So far, we have not needed details on the thermal forces that drive Brownian motion and diffusion. 

We just needed to assume that the thermal forces were randomly directed 

to derive the diffusion equation:   

and relate the diffusion coefficient to the drag coefficient:

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2

𝐷 =
𝐾𝑇

𝛾

In  the presence of force:
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