
Bash scripting
Course titleCourse title

Bash Lecture 3 – Bash Scripting

Bash scripting 2/46

Bash scripting programming:
– What are scripts
– Exec vs source a script
– Bash variables,assignment, hard and soft

quoting
– Functions, variable scope, input parameters
– Special characters
– Read input from command line and files
– Script configuration tips

Traditional service deliveryArguments of this lesson

Bash scripting 3/46

Many shells have scripting abilities:

Executes sequentially multiple commands written

in a script as if they were typed from the

keyboard.

Most shells offer additional programming

constructs that extend the scripting feature into a

programming language.

Traditional service deliveryShell scripting abilities

Bash scripting 4/46

A script is, in the simplest case, a list of system

commands stored in a file.

Place commands in a script is useful
● to avoid having to retype them time and again
● to be able to modify and customize the script for a

particular application
● to use the script as a program/command

Traditional service deliveryWhat is a script

Bash scripting 5/46

Every script starts with the sha-bang (#!) at the head, followed by
the full path name of an interpreter.

Examples:
#!/bin/sh
#!/bin/bash
#!/usr/bin/perl

This tells your system that the file is a set of commands to be fed
to the command interpreter indicated by the path.

The command interpreter executes the commands in the script,
starting at the top (the line following the sha-bang line), and
ignoring comments.

Traditional service deliveryThe sha-bang #!

Bash scripting 6/46

Traditional service deliveryExecute the script
★ The script execution requires the script has “execute”

permissions:
 chmod +rx scriptname (gives everyone read/execute permission)
 chmod u+rx scriptname (gives only the script owner read/execute
 permission)

★ The script can be executed issuing:
./scriptname

★ The script can be made available as a command:
– moving the script to /usr/local/bin (as root), making it available

to all users as a system wide executable. The script could then
be invoked by simply typing scriptname [ENTER] from the
command-line.

– Including the directory containing the script in the user's $PATH

Bash scripting 7/46

Traditional service deliverySummarizing

 1_
 chmod u+x script.sh
 ./script.sh
 2_
 export PATH=.:$PATH
 script.sh
3_
 gedit .bashrc
 echo $PATH
 source .bashrc
 echo $PATH
 script.sh
4_
 source /home/bertocco/script.sh

Bash scripting 8/46

Traditional service deliveryExec vs source (1)

 Both Sourcing and Executing Will Run Commands in the Script.

Example:

- Write the following script
$ cat myScript.sh
#!/bin/bash
echo "Hello, I'm a simple script file."

- Try to source it
source myScript.sh

- Meke it executable and exec it
chmod +x myScript.sh
./myScript.sh

→ The result is the same.
https://www.baeldung.com/linux/sourcing-vs-executing-shell-script

Bash scripting 9/46

Traditional service deliveryExec vs source (2)

Both Sourcing and Executing will Run Commands in the Script.

But:

When a script is “sourced” (source script-name), it is executed in the
current shell. So, if we’ve declared new variables and functions in the
script, after sourcing it, the variables and functions will be valid in the
current shell as well.

When a script is executed, it is executed in a new shell, which is a
subshell of the current shell. Therefore, all new variables and functions
created by the script will only live in the subshell. After the script is
done, the subshell process is terminated, too. Thus, the changes are
gone.

https://www.baeldung.com/linux/sourcing-vs-executing-shell-script

Bash scripting 10/46

Traditional service deliveryExec vs source in practice (1)

Write the script:

#!/bin/bash
echo -e 'This is a script file.\nTo test source vs exec'

UNIVERSITY='Universita` di Trieste'
echo "Now, the variable UNIVERSITY=$UNIVERSITY"

say_university() {
 echo "Hi $1, You are at $UNIVERSITY"
}

say_university "Sara"

Bash scripting 11/46

Traditional service deliveryExec vs source in practice (2)
Source the script and verify that variables and functions defined in the
script are defined in the current shell

Exec the script and verify that varables and functions defined in the
script are not available in the current shell.

Bash scripting 12/46

Traditional service deliveryExercise: a first script

★ Write a script that upon invocation

1) Says “Hello!”

2) shows the time and date

3) The script then saves this information to a logfile

★ Make the script executable

★ Execute the script

★ Make the script available as a command

Bash scripting 13/46

★ Variables are how programming and scripting languages represent
data. A variable is a label, a name assigned to a location holding
data.

★ Standard UNIX variables are split into two categories:
– environment variables:

if set at login, are valid for the duration of the session
– shell variables:

apply only to the current instance of the shell and are used to set
short-term working conditions;

By convention, environment variables have UPPER CASE and shell
variables have lower case names.
★ Environment variables are a way of passing information from the

shell to programs when you run them. Programs look "in the
environment" for variables and if found, will use the values stored.

★ Variables can be set: by the system, by you, by the shell, by any
program that loads another program.

Traditional service delivery
UNIX Variables

Bash scripting 14/46

Variable in bash are untyped.

★ Bash variables are character strings: can contain a
number, a character, a string of characters.

★ Depending on context (i.e. depending whether the
value of a variable contains only digits or not), bash
permits arithmetic operations and comparisons on
variables.

★There is no need to declare a variable, just assigning a
value to its reference will create it.

Traditional service delivery
bash variables

Bash scripting 15/46

It must distinguish between the name (right value) of a variable and its value
(left value).
If variable1 is the name of a variable,
then $variable1 is a reference to its value, i.e. the data item it contains.
$variable1 is actually a simplified form of ${variable1}. In contexts where the
$variable syntax causes an error, the longer form ${variable} may work.

Referencing (retrieving) the variable value is called variable substitution.
=> No space permitted on either side of = sign when initializing variables.
Example:
a=375 # Initialize variable
hello=$a # No space permitted on either side of = sign when initializing variables.
^ ^
What happens if there is a space? Bash will treat the variable name as a program to
execute, and the = as its first parameter. TRY
#
echo hello # hello ## Not a variable reference, just the string "hello" ...
echo $hello # 375 ## This *is* a variable reference, i.e. shows the value.
echo ${hello} # 375 ## Likewise a variable reference, as above.

Traditional service delivery
bash variables: assignment (1)

Bash scripting 16/46

In the previous slide: “In contexts where the $variable syntax causes
an error, the longer form ${variable} may work”. This is called variable
disambiguation.

Example:
If the variable $type contains a singular noun and we want to
transform it on a plural one adding an ‘s’, we can't simply add an ‘s’
character to $type since that would turn it into a different variable,
$types.
Although we could utilize code contortions such as
echo "Found 42 "$type"s"

the best way to solve this problem is to use curly braces:
echo "Found 42 ${type}s",
which allows us to tell bash where the name of a variable starts and
ends

Traditional service delivery
assignment disambiguation with {}

Bash scripting 17/46

Try:

1) STR=’Hello World!’
 echo $STR

2) Try assignment and echo the variable content:

a=5324

a=(1, 3, 4, 6, 5, “otto”) # array

3) Very simple backup script example:
 OF=/tmp/my-backup-$(date +%Y%m%d).tgz
 tar -czf $OF ./subdir_of_where_i_am

Traditional service delivery
Exercise: bash variables

Bash scripting 18/46

#!/bin/bash
With command substitution

a=`echo Hello!` # Assigns result of 'echo' command to 'a' ...
echo $a

a=`ls -l` # Assigns result of 'ls -l' command to 'a'
echo $a # Unquoted, however, it removes tabs and newlines.

echo "$a" # The quoted variable preserves whitespace.

Traditional service delivery
bash variables: assignment examples(2)

Bash scripting 19/46

Try different variable assignments and print the variable
content to standard output
 Simple assignment
 Command output assignment

Exercise 3: practice with variables assignment

Bash scripting 20/46

Quoting means just that, bracketing a string in quotes.
This has the effect of protecting special characters in the string from
reinterpretation or expansion by the shell or shell script. (A character is "special"
if it has an interpretation other than its literal meaning. For example, the asterisk
* represents a wild card character in Regular Expressions).

Partial (or soft) quoting consists in enclosing a referenced value in double
quotes (" ... "). This does not interfere with variable substitution. Sometimes
referred also as "weak quoting."

Full (or hard) quoting consists in using single quotes ('...').
It causes the variable name to be used literally, and no substitution will take
place.

Examples (Try):
a=352
echo $a # 352
echo “$a” # 352
echo ‘$a’ # $a
=> Quoting a variable preserves white spaces.

Traditional service delivery
Bash variables: quoting

Bash scripting 21/46

In a bash script:

 Assign a variable
 Print the variable value
 Print a string containing the variable value
 Print a string containing the partial quoted variable
 Print the same string fully quoted
 Assign a variable containing multiple spaces
 Print this new variable
 Print this new variable quoted

 Run the script
 Run the script redirecting the output on a file

Traditional service delivery
Exercise 2: variables assignment and quoting

Bash scripting 22/46

Functions are used to group sets of commands logically related making them
reusable without the need to re-write them and making the scripts more
readable. A Bash function is a block of reusable code designed to perform a
particular operation. Once defined, the function can be called multiple times
within a script.

Function example:
 #/!bin/bash
 function quit {
 exit
 }
 function hello {
 echo Hello!
 }
 hello
 quit
 echo foo

Functions

Syntax: function func_name {
 command1
 command2
 …..
 }
or
 func_name() {
 command1
 command2
 …..
 }
How to call the function in a script:

 func_name

Bash scripting 23/46

Functions may be declared in two different formats:
1_ function name, followed by parentheses. Preferred and more used.

 function_name () {
 commands
 }

Single line version:

 function_name () { commands; }

2_ start with the reserved word ‘function’, followed by the function name.

 function function_name {
 commands
 }

Single line version:

 function function_name { commands; }

Defining Bash Functions (1)

Bash scripting 24/46

● The commands between the curly braces ({}) are called the body of the
function. The curly braces must be separated from the body by spaces or
newlines.

● Defining a function doesn’t execute it. To call a bash function use the
function name. Commands between the curly braces are executed
whenever the function is called in the shell script.

● The function definition must be placed before any calls to the function.

● When using single line “compacted” functions, a semicolon ; must follow
the last command in the function.

● Always try to keep your function names descriptive.

Defining Bash Functions (2)

Bash scripting 25/46

Parameters does not need to be declared.
It is good practice

● to put a comment before the function definition describing parameters and
their meaning

● Read the parameters at the beginning of the function
Function with parameters example:
#!/bin/bash
function quit {
 exit
}
input parameter msg=”a message”
function my_func {
 msg=$1
 echo $msg
}
my_func Hello
my_func World
quit
echo foo

Functions parameters/arguments

Syntax with parameters:
function func_name {
 command1
 command2
 …..
}

How to call the function with
parameters in a script:

func_name para1 param2 ...

Bash scripting 26/46

To pass any number of arguments to the bash function simply put them right
after the function’s name, separated by a space.
It is a good practice to double-quote the arguments to avoid the misparsing of
an argument with spaces in it.

● The passed parameters are $1, $2, $3 … $n, corresponding to the
position of the parameter after the function’s name.

● The $0 variable is reserved for the function’s name.

● The $# variable holds the number of positional parameters/arguments
passed to the function.

● The $* and $@ variables hold all positional parameters/arguments passed
to the function.

Passing Arguments to Bash Functions

https://linuxize.com/post/bash-functions/

Bash scripting 27/46

Global variables are variables that can be accessed from anywhere in the
script regardless of the scope. In Bash, all variables by default are defined as
global, even if declared inside the function.

Local variables can be declared within the function body with the local
keyword and can be used only inside that function. You can have local
variables with the same name in different functions.

Variables Scope

https://linuxize.com/post/bash-functions/

Bash scripting 28/46

#!/bin/bash
var1='A'
var2='B'
my_function () {
 local var1='C'
 var2='D'
 echo "Inside function: var1: $var1, var2: $var2"
}
echo "Before executing function: var1: $var1, var2: $var2"
my_function
echo "After executing function: var1: $var1, var2: $var2"

The script starts by defining two global variables var1 and var2. Then there is
an function that sets a local variable var1 and modifies the global variable
var2.

Variables Scope: example of use

https://linuxize.com/post/bash-functions/

Bash scripting 29/46

From the output above, we can conclude that:

 When a local variable is set inside the function body with the same name
as an existing global variable, it will have precedence over the global variable.

 Global variables can be changed from within the function.

Variables Scope: example of use

https://linuxize.com/post/bash-functions/

Bash scripting 30/46

Bash functions don’t allow you to return a value when called.

When a bash function completes, its return value is the status of the last
statement executed in the function,

● 0 for success
● non-zero decimal number in the 1 - 255 range for failure.

The return status can be specified by using the return keyword, and it is
assigned to the variable $?.

The return statement terminates the function. You can think of it as the
function’s exit status .

Return Values

https://linuxize.com/post/bash-functions/

Bash scripting 31/46

#!/bin/bash

my_function () {
 func_result="some result"
}

my_function
echo $func_result

Output will be:

some result

Examples of function’s return values (1)

https://linuxize.com/post/bash-functions/

Bash scripting 32/46

cat usage.sh

#!/bin/bash

display_usage() {
 # echo "This script must be run with super-user privileges."
 echo -e "\nUsage:\n$0 [arguments] \n"
}

if less than two arguments supplied, display usage
if [[$# -le 1]]
 then
 display_usage
 exit 1
fi

Add help to a script

Bash scripting 33/46

Example

 #!/bin/bash
 if [-z "$1"]; then # check if one parameter exists
 echo usage: $0 directory
 exit
 fi
 srcd=$1
 bakd="/tmp/"
 mkdir $bakd
 of=home-$(date +%Y%m%d).tgz
 tar -czf $bakd$of $srcd

Add help to a script

Bash scripting 34/46

Positional parameters are a series of special variables ($0 through $9) that
contain the contents of the command line.
If my_script is a bash shell script, we could read each item on the command line
because the positional parameters contain the following:
$0 would contain "some_program"
$1 would contain "parameter1"
$2 would contain "parameter2"
…..

This way, if I call my_script with two parameters:
my_script Hello world
Then inside the script I can read them with:
#!/bin/bash
script_name=$0
first_word=$1
second_word=$2
Echo “$script_name says $first_word $second_word

The mechanism is the same to read functions parameters.

Positional parameters

Bash scripting 35/46

Traditional service deliverySpecial characters (1)

★ Special characters have a meaning beyond its literal meaning

Comments [#]. Lines beginning with a # (with the exception of #!)
This line is a comment.
Comments may also occur following the end of a command.
echo "A comment will follow." # Comment here.
Comments may also follow whitespace at the beginning of a line.
 # Note

Command separator [semicolon ;] Permits putting two or more commands on the same
line.
echo hello; echo world

Escape [backslash \] This is a mechanism to express litterally a special charactrer.
For example the \ may be used to escape " and ' echoing a string:
echo This is a double quote \” # This is a double quote ”

Bash scripting 36/46

Traditional service deliverySpecial characters (2)
Command substitution [backquotes or backticks `]. The `command` construct makes
available the output of command for assignment to a variable.
a=`pwd`
echo $a # display the path of your location

Wild card [asterisk *]. The * character serves as a "wild card", it matches every filename
in a given directory or every character in a string.

Run job in background [and &]. A command followed by an & will run in the background.
 bash$ sleep 10 &
 [1] 850
 [1]+ Done sleep 10
Within a script, commands and even loops may run in the background.
To bring the script in foreground type `fg` or `CTRL Z fg`
To bring the script in background type `fg` or `CTRL Z bg`

Complete reference:
https://www.tldp.org/LDP/abs/html/special-chars.html

Bash scripting 37/46

There are four main wildcards in Linux:

 Asterisk (*) – matches one or more occurrences of
any character, including no character.

 Question mark (?) – represents or matches a
single occurrence of any character.

 Square brackets ([]) – matches any occurrence of
the character(s) enclosed in the square brackets.

 Curly brackets ({ }) – matches any occurrence of
one of the strings enclosed in the square brackets.

Traditional service delivery
Linux wildcards

Bash scripting 38/46

Traditional service delivery
Wildcards examples

[akz] Exactly one character among a, k or z
[0-9] Exactly one character among 0 and 9
[!123] Exactly one character that is not 1 or 2 or 3
[!a-e] Exactly one character that is not a or b or c or d

or e
{fasta,pdb} Exactly one among the two strings fasta and pdb

Bash scripting 39/46

 Write a commented command and execute it

 Write two commands on the same row and execute them

 Make the echo of a string containing one or more escaped
characters

 Make the echo of a command (like ls or pwd) output

 Use wildcard to list all files starting with ‘a’ in your directory

 Download from MS Teams the script loop.sh from folder
General/bash_3/examples, make it executable if needed,
execute it in background, recall it in foreground, stop it

Exercise: special characters

Bash scripting 40/46

Traditional service delivery
`read`

`read` is used in shell scripts to read each field
from a file and assign them to shell variables.

A field is a string of bytes that are separated by a
space or newline character. If the number of fields
read is less than the number of variables
specified, the rest of the fields are unassigned.

Flag -r to treat a \(backslash) as part of the input
record and not as a control character.

Bash scripting 41/46

Traditional service delivery
`read` Examples

Example following is a piece of shell script code
that reads a file by line:

while read -r line
do
 printf 'Line: %s\n' "$line"
done < names_list.txt

The file name can be indicate also with full path
name.

Bash scripting 42/46

● Example on how to read the user’s input:

 #!/bin/bash
 echo Please, enter your name
 read NAME
 echo "Hi $NAME!"

● Example on how to read multiple user’s input:

 #!/bin/bash
 echo Please, enter your firstname and lastname
 read FN LN
 echo "Hi! $LN, $FN !"
 echo "How are you?"

Traditional service delivery
Read the user’s input examples

Bash scripting 43/46

Traditional service delivery
`read` Examples

Example following is a piece of shell script code that reads first
name and last name from namefile and prints them:
- create the file
cat <<EOF > names_list.txt
Sara Bertocco
Mario Rossi
John Doe
EOF
- Read the file by line and print on standard output
while read -r lname fname
do
 echo $lname","$fname
done < names_list.txt

Bash scripting 44/46

Traditional service delivery
Software configuration tips

A software application
● must be indipendent from the location

e.g. if I run my application in /home/myhome/test or in
/home/myhome/bin , its behaviour has to be the same

● must not need code modification to be run
e.g. if I want run my application two times each one with
a different value of a parameter, I do not have to modify
manually the code to change the value of the parameter,
but the code must be written to acquire the parameter
value from command line or from a text configuration file

Bash scripting 45/46

Traditional service deliverySoftware configuration tips:
indipendence from location

Set an environment variable:
$ export MY_PATH=”/home/myhome/myProject”

Read the environment variable to acquire the data file path
$ cat /home/myhome/bin/analyser.py
#!/usr/bin/python3
import os
data_file = os.getenv("MY_PATH")+"/data/sequence_data.txt"
print("Find my data in")
print(data_file)

Bash scripting 46/46

Traditional service deliverySoftware configuration tips:
read parameters from command line

Write a bash script to launch your application setting the
needed environment and reading input parameters from
command line:

$ cat my_app_launcher.sh
#!/bin/bash
export MY_PATH=”/home/myhome/myProject”
echo “Input the number of parameters you want use:”
read param_num
invoke the application execution
./home/myhome/bin/analyser.py param_num

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

