
Advanced Bash Commands
Course titleCourse title

Bash Lecture 2 – Advanced Bash

Advanced Bash Commands 2/46

★Bash configuration and user’s environment manipulation
(export, alias)
★Locating commands (which)
★File information commands (find, file)
★UNIX processes
★Process related commands (kill, ps, wait, nohup, sleep)
★File content related commands (more, less, tail, read, tee, wc)
★Redirection
★File content search commands (grep)
★Status commands (date)
★Unix wildcards (* ? [])

Traditional service delivery
Arguments of this lesson

Advanced Bash Commands 3/46

★Interactive: means that the commands are run with user-
interaction from keyboard. E.g. the shell can prompt the
user to enter input.

★Non-interactive: the shell is probably run from an
automated process. Typically input from standard input and
output to log file.

★Login: shell is run as part of the login of the user to the
system.

★Non-login: any shell run by the user after logging on, or
run by any automated process not coupled to a logged in
user.

Traditional service delivery
Bash types

Advanced Bash Commands 4/46

Bash has more configuration startup files.
They are executed at bash start-up time.
The files and sequence of the files executed differ from the
type of shell.
Complete description at:
http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

Main user bash configuration file is ~/.bashrc
If not there simply create one.

Main system configuration file is /etc/bash.bashrc

Traditional service delivery
Bash configuration

http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

Advanced Bash Commands 5/46

In
 "$HOME/.bashrc"

set PATH so it includes user's private bin directories
PATH="$HOME/bin:$HOME/.local/bin:$PATH"

Traditional service deliverySet user’s PATH environment variable

Advanced Bash Commands 6/46

`export` exports environment variables (also to children of
the current process). Example:
ubuntu~$ export a=test_env
ubuntu:~$ echo $a
test_env
ubuntu:~$ /bin/bash
ubuntu:~$ echo $a
test_env
ubuntu:~$ exit
exit
ubuntu:~$ echo $a
test_env
`export` called with no arguments prints all of the variables
in the shell's environment.
`unset` frees variables

Traditional service delivery
`export`

Advanced Bash Commands 7/46

A shell alias is a shortcut to reference a command.
It can be used to avoid typing long commands or as a
means to correct incorrect input.

Example: it is used to set default options on commands

alias ls=`ls -l`
alias rm=`rm -i`
Exercises:
1) try to define and use the previous aliases
2) Define the aliases in the ~/.bashrc, open a new terminal
and verify the aliases running them

Shell alias

Advanced Bash Commands 8/46

★To execute a command, UNIX has to locate the
command before it can execute it

★UNIX uses the concept of search path to locate the
commands.

★Search path is a list of directories in the order to be
searched for locating commands. Usually it contains
standard paths (/bin, /usr/bin, …)

★Modify the search path for your environment
modifying the PATH environment variable

Traditional service delivery
Locating commands

Advanced Bash Commands 9/46

Traditional service delivery
`which`

★`which` can be used to find whether a particular
command exists in you search path. If it does exist,
which tells you which directory contains that
command.

Examples (try with existing and not existing
commands):
which pippo
which gedit
which vim

Advanced Bash Commands 10/46

★`passwd` changes user’s password

Example: type `passwd`
$ passwd
Changing password for bertocco.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
Sorry, passwords do not match
passwd: Authentication token manipulation error
passwd: password unchanged
$ passwd
Changing password for bertocco.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Traditional service delivery
User related commands: passwd

Advanced Bash Commands 11/46

★`who` show who is logged in

Print information about users who are currently logged in.

★`whoami`

Print the user name associated with the current

effective user ID.

Exercise:

try the commands and then type `man who`

and try some option

Traditional service delivery
User related commands: who and whoami

Advanced Bash Commands 12/46

Traditional service delivery
File information commands

★Each file and directory in UNIX has several
attributes associated with it. UNIX provides several
commands to inquire about and process these
attributes

Advanced Bash Commands 13/46

Traditional service delivery
`find`

★`find` searches for the particular file giving the
flexibility to search for a file by various attributes:
name, size, permission, and so on.

Command general form:
find directory-name search-expression

Advanced Bash Commands 14/46

Traditional service delivery
`find` Examples (try)

find . -name pippo
find /etc -name networking
find /etc -name netw # nothing found
find /etc -name netw*

find -size 18 # 18 blocks files
find -size 1024c # 1024 bytes

find . -print

Read the manual and try other options
Try, if possible, a find case insensitive

Advanced Bash Commands 15/46

Traditional service delivery
UNIX Processes

Usually, a command or a script that you can execute consists of one or
more processes.
The processes can be categorized into the following broad groups:
★ Interactive processes, which are those executed at the terminal.

Can execute either in foreground or in background. In a foreground
process, the input is accepted from standard input, output is
displayed to standard output, and error messages to standard error.
In background, the terminal is detached from the process so that it
can be used for executing other commands. It is possible to move a
process from foreground to background and vice versa (<ctrl+bg>;
<ctrl+fg>.

★ Batch processes are not submitted from terminals. They are
submitted to job queues to be executed sequentially.

★ Deamons are never-ending processes that wait to service requests
from other processes.

Advanced Bash Commands 16/46

Traditional service delivery
Process Related Commands

★a command or a script that you can execute
consists of one or more processes.
The main are:

– `ps`
– `kill
– `nohup`
– `sleep`

Advanced Bash Commands 17/46

Traditional service delivery
`ps`

★`ps` command is used to find out which processes
are currently running.
Exercises:
– Try the following commands, check the differences

in the output. Read the flag meaning using

`man ps`:

ps

ps -ef

ps -aux

Advanced Bash Commands 18/46

Traditional service delivery
`kill`
★`kill` is used to send signals to an executing process. The process must

be a nonforeground process for you to be able to send a signal to it using
this command.

★The default action of the command is to terminate the process by sending
it a signal. If the process has been programmed for receiving such a
signal. In such a case, the process will process the signal as programmed.

★ You can kill only the processes initiated by you. However, the root user
can kill any process in the system.

★The flags associated with the kill commands are as follows:
-l to obtain a list of all the signal numbers and their names that are
supported by the system.
-’signal number’ is the signal number to be sent to the process. You can
also use a signal name in place of the number. The strongest signal you
can send to a process is 9 or kill.

Advanced Bash Commands 19/46

Traditional service delivery
`kill` Exercises

★Look for a process PID of a process belonging of
you (using ps) and kill it using two different signals:
-9 and -15.

★List all available signals and red the differences
between the two signal previously used

Advanced Bash Commands 20/46

Traditional service delivery
`nohup`
★When you are executing processes under UNIX, they can be

running in foreground or background. In a foreground process,
you are waiting at the terminal for the process to finish. Under
such circumstances, you cannot use the terminal until the
process is finished. You can put the foreground process into
background as follows:

ctrl-z

bg
The processes in UNIX will be terminated when you logout of
the system or exit the current shell whether they are running in
foreground or background. The only way to ensure that the
process currently running is not terminated when you exit is to
use the nohup command.

Advanced Bash Commands 21/46

Traditional service delivery
`nohup`

The nohup command has default redirection for the standard
output. It redirects the messages to a file called nohup.out
under the directory from which the command was executed.
That is, if you want to execute a script called sample_script in
background from the current directory, use the following
command:
nohup sample_script &
The & (ampersand) tells UNIX to execute the command in
background. If you omit the &, the command is executed in
foreground. In this case, all the messages will be redirected to
nohup.out under the current directory. If the nohup.out file
already exists, the output will be appended to it.

Advanced Bash Commands 22/46

Traditional service delivery
`nohup`: Examples

nohup grep sample_string * &

nohup grep sample_string * > mygrep.out &

nohup my_script > my_script.out &

Advanced Bash Commands 23/46

Traditional service delivery
`sleep`

`sleep` wait for a certain period of time between execution of
commands. This can be used in cases where you want to
check for, say, the presence of a file, every 15 minutes. The
argument is specified in seconds.
Examples: If you want to wait for 5 minutes between
commands, use:
sleep 300
Small shell script that reminds you twice to go home, with a 5-
minute wait between reminders:
echo "Time to go home"
sleep 300
echo "Final call to go home"

Advanced Bash Commands 24/46

Traditional service delivery
File Content Related Commands

★Commands that can be used to look at the contents
of the file or parts of it. You can use these commands
to look at the top or bottom of a file, search for
strings in the file, and so on.

Advanced Bash Commands 25/46

Traditional service delivery
`more`

★`more` can be used to display the contents of a file
one screen at a time. By default, the more command
displays one screen worth of data at a time. The
more command pauses at the end of display of each
page. To continue, press a space bar so that the next
page is displayed or press the Return or Enter key to
display the next line. Mostly the more command is
used where output from other commands are piped
into the more command for display.
★Try

Advanced Bash Commands 26/46

Traditional service delivery
`less`

★`less` is to view the contents of a file. This may
not be available by default on all UNIX systems. It
behaves similarly to the more command. The less
command allows you to go backward as well as
forward in the file by default.
★Try
★Cat <a big file> | less

Advanced Bash Commands 27/46

Traditional service delivery
`tail`

★`tail` to display, on standard output, a file
starting from a specified point from the start or
bottom of the file. Whether it starts from the top of
the file or end of the file depends on the
parameter and flags used. One of the flags, -f,
can be used to look at the bottom of a file
continuously as it grows in size. By default, tail
displays the last 10 lines of the file.

Advanced Bash Commands 28/46

Traditional service delivery
`tail` exercises

tail -f500 /var/log/syslog

list of flags that can be used with the tail command:
-c number to start from the specified character position number.
-b number to start from the specified 512-byte block position
number.
-k number to start from the specified 1024-byte block position
number.
-n number to start display of the file in the specified line
number.
-r number to display lines from the file in reverse order.
-f to display the end of the file continuously as it grows in size.

Advanced Bash Commands 29/46

Traditional service delivery
`read`

`read` is used in shell scripts to read each field
from a file and assign them to shell variables.

A field is a string of bytes that are separated by a
space or newline character. If the number of fields
read is less than the number of variables
specified, the rest of the fields are unassigned.

Flag -r to treat a \(backslash) as part of the input
record and not as a control character.

Advanced Bash Commands 30/46

Traditional service delivery
`read` Examples

Example following is a piece of shell script code that reads first
name and last name from namefile and prints them:
- create the file
cat <<EOF > names_list.txt
Sara Bertocco
Mario Rossi
John Doe
EOF
- Read the file by line and print on standard output
while read -r lname fname
do
 echo $lname","$fname
done < names_list.txt

Advanced Bash Commands 31/46

Traditional service delivery
`read` Examples

Example following is a piece of shell script code
that reads a file by line:

while read -r line
do
 printf 'Line: %s\n' "$line"
done < names_list.txt

The file name can be indicate also with full path
name.

Advanced Bash Commands 32/46

Traditional service delivery
`tee`

`tee` to execute a command and want its output
redirected to multiple files in addition to the standard
output, use the tee command. The tee command
accepts input from the standard input, so it is possible
to pipe another command to the tee command.

The default of the tee command is to overwrite the
specified file.

-a is an optional flag to append to the end of the
specified file

Advanced Bash Commands 33/46

Traditional service delivery
`tee` Examples (try)

- use the cat command on file1 to display on the
screen and make a copy of file1 on file2, use the tee
command as follows:

cat file1 | tee file2 | more

- make the same but appending file1 to the end of an
already existing file2 using the flag -a :

cat file1 | tee -a file2 | more

Advanced Bash Commands 34/46

Traditional service delivery
`wc`

`wc` counts the number of bytes, words, and lines in
specified files. A word is a number of characters stringed
together delimited either by a space or a newline character.

Following is a list of flags that can be used with the wc
command:

-l to count only the number of lines in the file.
-w to count only the number of words in the file.
-c to count only the number of bytes in the file.

You can use multiple filenames as argument to the wc
command.

Advanced Bash Commands 35/46

Traditional service delivery
`wc` exercices

wc file

wc -w file

cat <file> | wc -l

wc -w <file1> <file2>

Advanced Bash Commands 36/46

Traditional service deliverySpecial characters: Pipe

Pipe [|]. Passes the output (stdout) of a previous command to the input (stdin) of the
next one, or to the shell. This is a method of chaining commands together.

echo ls -l | sh
Passes the output of "echo ls -l" to the shell,
#+ with the same result as a simple "ls -l".

cat *.lst | sort | uniq
Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe sends the stdout of one process to the stdin of another. In a typical case, a
command, such as cat or echo, pipes a stream of data to a command that transforms it
in input for processing:

cat $filename1 $filename2 | grep $search_word

Advanced Bash Commands 37/46

Traditional service deliveryRedirection with pipe and tee examples

Examples of redirection of the output of a command to be used as input of another:
● Display the output of a command (in this case ls) by pages:

ls -la | less
● Count files in a directory:

ls -l | wc -l
● Count the number of rows containing of the word “canadesi” in the file vialactea.txt

grep canadesi vialactea.txt | wc -l
● Count the number of words in the rows containing the word “canadesi”

`tee` is useful to redirect output both to stdout and to a file. Example:
find . -name filename.ext 2>&1 | tee -a log.txt
This will take stdout and append it to log file. The stderr will then get converted to
stdout which is piped to tee which appends it to the log and sends it to stdout which
will either appear on the tty or can be piped to another command.

To go deep: https://stackoverflow.com/questions/2871233/write-stdout-stderr-to-a-
logfile-also-write-stderr-to-screen

Advanced Bash Commands 38/46

Traditional service deliveryExercise: redirection

Create a directory and file tree like this one:
my_examples /ex1.dir
 /ex2.txt
 /ex3.dir
 /ex3.dir/file1.txt
 /ex3.dir/file2.txt
 /ex3.dir/file3.txt

Remove read permissions to directory /ex2.dir
Redirect output on a file. Error is displayed on terminal
Redirect error on a file. Output is displayed on terminal
Verify the content of the files
Stderr redirected to file
Redirect output and errors symultaneously

Use pipe to redirect the output of a command to another command and to a file
Use tee to redirect output both to stdout and to a file

Advanced Bash Commands 39/46

Traditional service delivery
File Content Search Commands

For searching for a pattern in one or more files,
use the grep series of commands. The grep
commands search for a string in the specified
files and display the output on standard output.

Advanced Bash Commands 40/46

Traditional service delivery
`grep`

`grep` extended version of grep command. This
command searches for a specified pattern in one or
more files and displays the output to standard output.
The pattern can be a regular expression to match
any single character.

* to match one or more single characters that precede the
asterisk.
^ to match the regular expression at the beginning of a line.
$ to match the regular expression at the end of a line.
+ to match one or more occurrences of a preceding regular
expression.
? to match zero or more occurrences of a preceding regular
expression.
[] to match any of the characters specified within the brackets.

Advanced Bash Commands 41/46

Traditional service delivery
`grep` Examples

Let us assume that we have a file called file1 whose contents
are shown below using the more command:

more file1
***** This file is a dummy file *****
which has been created
to run a test for egrep
grep series of commands are used by the following types of
people
 programmers
 end users
Believe it or not, grep series of commands are used by pros and
novices alike
***** THIS FILE IS A DUMMY FILE *****

Advanced Bash Commands 42/46

● If you are just interested in finding the number of lines in which
the specified pattern occurs, use the -c flag as in the following
command:

 grep -i -c dummy file1
● If you want to get a list of all lines that do not contain the

specified pattern, use the -v flag as in the following command:
 grep -i -v dummy file1

● If you are interested in searching for a pattern that you want to
search as a word, use the -w flag as in the following command:

 grep -w grep file1

Traditional service delivery
`grep` Examples

Advanced Bash Commands 43/46

`date` command to display the current date and time in a specified format. If
you are root user, use the date command to set the system date.
To display the date and time, you must specify a + (plus) sign followed by the
format. The format can be as follows:
%A to display date complete with weekday name.
%b or %h to display short month name.
%B to display complete month name.
%c to display default date and time representation.
%d to display the day of the month as a number from 1 through 31.
%D to display the date in mm/dd/yy format.
%H to display the hour as a number from 00 through 23.
%I to display the hour as a number from 00 through 12.
%j to display the day of year as a number from 1 through 366.
%m to display the month as a number from 1 through 12.
%M to display the minutes as a number from 0 through 59.
%p to display AM or PM appropriately.
%r to display 12-hour clock time (01-12) using the AM-PM notation.
%S to display the seconds as a number from 0 through 59.

Traditional service delivery
`date`

Advanced Bash Commands 44/46

Other format flags:
%T to display the time in hh:mm:ss format for 24 hour clock.
%U to display the week number of the year as a number from 1 through 53
counting Sunday as first day of the week.
%w to display the day of the week as a number from 0 through 6 with Sunday
counted as 0.
%W to display the week number of the year as a number from 1 through 53
counting Monday as first day of the week.
%x to display the default date format.
%X to display the time format.
%y to display the last two digits of the year from 00 through 99.
%Y to display the year with century as a decimal number.
%Z to display the time-zone name, if available.

Traditional service delivery
`date`

Advanced Bash Commands 45/46

Try some example of `date` command usage with different display of day,
month, year
★If you want to display the date without formatting, use date without any

formatting descriptor as follows:
date
Sat Dec 7 11:50:59 EST 1996
★If you want to display only the date in mm/dd/yy format, use the following

commands:
date +%m/%d/%y
12/07/96
★If you want to format the date in yy/mm/dd format and time in hh:mm:ss

format, use the following command:
date "+%y/%m/%d %H:%M:%S"
96/12/07 11:57:27
★Following is another way of formatting the date:

date +%A","%B" "%d","%Y
Sunday,December 15,1996

Traditional service delivery
`date`: Exercises

Advanced Bash Commands 46/46

There are three main wildcards in Linux:

 Asterisk (*) – matches one or more occurrences of
any character, including no character.

 Question mark (?) – represents or matches a
single occurrence of any character.

 Bracketed characters ([]) – matches any
occurrence of character enclosed in the square
brackets.

Traditional service delivery
Linux wildcards

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

