PULSE SEQUENCES AND CONTRAST MANIPULATION

Image contrast in MRI ü**Parameters of the image sequence that affect image contrast and SNR**

- **Echo time**
	- v**TE**
- **Repetition time** v**TR**
- **Voxel dimensions** v**FOV** v**Nx & Ny** v**Slice thickness**

Pulse Sequence

ü**The properties of the RF pulses and gradients determine the geometrical properties of image**

- **the slice thickness**
- **field of view**
- **spatial resolution**

PULSE SEQUENCES AND CONTRAST MANIPULATION

the contrast between different structures is manipulated by modifying the pattern and timing of RF and gradient pulses

Tissue characterizations

√Tissues are different in T₁ T₂ and **protons density p**

ü**A set of images recording T₁, T₂ and p [weighted images](https://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/Spin-echo-TR-TE) allows tissues recognition**

 $\sqrt{\ }$ The contrast is a **function of a lot of parameters**

• **with different weights**

https://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/Spin-

S(TE)=M_{z0}e^{-TE/T2}

ü**To maximise the contrast between grey matter and white**^(a) **matter a T_F of around 90 ms is a good choice**

√At very long T_F values there is very little signal from grey or white matter, and the image is dominated by CSF

As a general rule, optimal T₂ contrast *occurs if the T_F is set equal to the mean* of the T₂ values of the tissues of interest

- **√ Repetition time T_R: The interval between successive 90o pulses during the series**
- **✓ During T_R longitudinal magnetisation M_z** undergoes T₁-recovery

 \sqrt{R} Recovery is essentially complete at $T_R = 5T_1$

• $M_z = 0.993|M|$

√ If T_R<5T₁, then the amount of M_z recovered for a specific tissue will be $M_z = |M| \left(1 - e^{-\frac{t}{T_1}} \right)$

ü **resulting in recovery of different amount of Mz in different tissues**

√ The maximum difference in recovery between grey matter and white matter in the figure occurs at a T_R value of about 850 ms

• **the mean of the T1 values of the two tissues**

the amount of M_z that has recovered in a specific tissue at T_R determines the amount of **Mxy that will be generated by the 90o pulse**

√ development of T₁and T₂- weighting **over 2 consecutive repetitions of a spinecho pulse sequence**

ü **During the first repetition Mz is reduced to 0 by the initial 90o pulse and then recovering through T₁ relaxation**

ü **During the second repetition the 90o pulse in this repetition of the [sequence converts](https://www.imaios.com/en/e-mri/nmr-signal-and-mri-contrast/tr-and-t-weighting) the M_z that was present at TR into Mxy, which** undergoes T₂ decay ü **An echo signal is collected at T_E**

https://www.imaios.com/en/e-mri/nmr-signal-and-mri-contrast/tr-and-t-we

√ the signal intensity from each tissue type will depend on both T_1 and T_2

$$
I \propto \rho\left(x,y\right) \left(1 - e^{-\frac{T_R}{T_1}}\right) e^{-\frac{T_E}{T_2}}
$$

• r**(x,y) proton density as a function of position within the slice**

Contrast in spin-echo imag

Timing Parameters Required for Different Spin-Echo Image We

ü **to increase T1-weighting short TR** ü **to increase T2-weighing long TE**

• **https://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/TR-and-T1-weighting**

• **https://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/Signal-weighting**

Contrast in spin-echo images

Timing Parameters Required for Different Spin-Echo Image Weighting

Optimization

- $\sqrt{T_R}$ influences the time taken to acquire the MR **image**
- \checkmark There is a strong incentive to minimise T_R from the **perspectives of patient experience and throughput**
	- degree of T₁-weighting is tolerated in a nominally T₂**weighted image**

Contrast in spin-echo images

a) Proton density weighting: TR = 2000 ms TE = 20 ms b) T1-weighting TR = 500 ms TE = 30 ms c) T2-weighting TR = 2000 ms TE = 60 ms d) Heavy T2-weighting TR = 2000 ms

TE = 150 ms

Contrast in spin-echo imag

- ü **CSF appears dark in the T1-weighted image and increasingly bright as T2 [weighting is increased](https://www.imaios.com/en/e-Courses/e-MRI/MRI-Sequences/Spin-echo)**
- ü **Fat around the scalp is the brightest tissue in the T1-weighted image**
	- **reflecting the short T1 of fat (≈ 250 ms at 1.5**
- ü **The bone of the skull is not seen at all**
	- **solid materials have such short T2 values that they cannot be seen**

https://www.imaios.com/en/e-Courses/e-MRI/MRI-Sequences/Spin-echo

T1 e T2 weighted images

- ü **Axial T1-weighted (a) and T2 weighted (b) fast SE images show a low-grade glioma.**
- ü **Because of hypercellularity, the tumor appears with hypointense signal in (a) and hyperintense signal in (b)**
- ü **The cystic components and edema are better depicted in (b)**

than in (a) *R. Bitar et al. RadioGraphics 2006; 26:513–537*

ü **a spin-echo sequence with an additional slice selective 180° pulse before the 90° excitation pulse**

The purpose is to nutate M_z into the -z-direction

• **it is also known as an 'inversion pulse'**

√ The inverted M_z undergoes T₁ recovery

ü **The negative Mz vector gets shorter over time, passes through 0 and then grows along the positive z-axis**

• **until it has fully recovered**

$$
M_z = \left| \mathbf{M} \right| \left(1 - 2e^{-\frac{t}{T_1}} \right)
$$

ü **No transverse magnetisation is generated during this process**

- **v** At T_I a 90° pulse is applied, tipping M_z into the **transverse plane**
	- **inversion time T**
- ü **Differences in T1 between tissues are reflected** in different degrees of recovery at T₁ and in **different amounts of M_{XY} following the 90^o pulse**

√ M_z can take both positive and negative values

• there is potential for much greater T₁ contrast than in **a conventional spin-echo sequence** $M_z = |M| \left(1 - 2e^{-\frac{t}{T_1}}\right)$ v**where only the positive z-axis is used**

- **√ Recovery of M_z in grey matter, white matter, CSF and fat following an inversion pulse**
- ü **distribution of magnetisation in the transverse plane following a 90o pulse applied at time point B**

The Inversion Recovery Sequence

- ü **Inversion recovery images can be presented as real image or magnitude image**
	- **depending on whether or not we pay attention to the 180o phase difference between magnetisation**

The Inversion Recovery Sequence

- **Magnitude Inversion Recovery Image**
- ü **areas outside of the head appear black as does white matter**
	- M_z in white matter is passing **through the 0 point when the 90o pulse is applied**
- ü **signal intensity in CSF and in fat are the same**
	- despite their very different T₁ **values**

The inversion pulse

- $\sqrt{ }$ RF $\gamma H_1 \Delta t = \pi$ $\mathcal{M}_{\mathsf{z}}(0) = -\mathsf{M}_{\mathsf{z}}^{\mathsf{o}}$ $\mathbf{M}_{\mathsf{z}}(t) = \mathsf{M}_{\mathsf{z}}^{\circ}[1\text{-}2 \mathrm{e}^{-t/\mathsf{T}1}]$ $M_{xy}(t)=0$
- ü **What happen if the 90**°**pulse is applied close to the Mz=0 of one tissue**

 $T_1 = \ln 2T_1 \approx 0.693T_1$

STIR sequence

What happen if the 90° **pulse is applied close to the Mz=0 of one tissue ?**

√STIR: Short Tau IR • **Fat suppression**

IR and fat suppression

STIR Short T₁ Inversion Recovery 180^o $90°$

SE and STIR sequences for depiction of bone marrow edema

a) Diagram of the STIR seq

- **TI 100–180 ms for fat**
- **b) Coronal T1-w fast SE image**

c) coronal STIR image *both show pancarpal rheumatoid arthritisthe extent of bone marrow edema is better depicted in c than in b*

Echo pulse

180°

FLAIR: Fluid Attenuated IR • **sequence shows a TI of 1700–2200 ms** *FLAIR sequence*

for CSF suppression

IR and CSF signal suppression

Comparison of fast SE and FLAIR sequences for depiction of lung [cancer metastases to](http://www.imaios.com/en/e-Courses/e-MRI/MRI-Sequences/inversion-recovery-stir-flair) brain

- **a)Diagram of the FLAIR sequence shows a T₁ of 1700for cerebrospinal fluid**
- **b) Axial T2 weighted fast SE image shows white matte abnormalities in the left temporal lobe**
- **c)Axial T2 weighted FLAIR image obtained with nulling** signal from cerebrospinal fluid shows the metastat **lesions more clearly**

www.imaios.com/en/e-Courses/e-MRI/MRI-Sequences/inversion-recove

The acquisition time

In the **SE** sequence is **necessary to acquire echo signals how many rows of k space**

• **Ny**

The repetition time TR is comparable with the T₁

ü **Since the NMR signal is low it may be necessary to repeat identical acquisitions to improve the SNR**

• **Nrep**

Acquisition time Tacq=TR Ny Nrep

Multi-slice sequence

$\sqrt{\frac{1}{n}}$ the number of slices is T_R / T_{slice}

- $\sqrt{T_{\text{slice}}}$ the time to acquire one line of data
	- **slightly longer than TE as it includes the whole of the echo acquisition time**
		- \div **whereas TE is measured to the centre of the echo**

3D spatial encoding

ü **rather than perform 2D tomographic imaging it is possible to collect image data from an entire volume simultaneously and encode it in 3D**

ü **the slice select axis has become 'slab select'**

- **with a gradient and selective excitation pulse used to generate transverse magnetisation within a thick slab of the patient's body**
- ü **Signal from this slab is spatially encoded using frequency encoding on one axis and phase encoding on the other two**

3D spatial encoding

diagram shows the phase encoding gradie 'ladder' on the slab select axis as well as tl **usual phase encoding axis**

http://www.imaios.com/en/e-Courses/e-MRI/Signal-spatial-encoding/3D-spatial-encoding

3D spatial encoding

- **3D imaging allows to overcome a drawback of multislice imaging**
- ü **the slice thickness is frequently greater than the spatial resolution within the slice**
- ü **'Isotropic' imaging: equal spatial resolution in all 3 dimensions**
	- **is an advantage in many clinical applications that require imaging of small and complex anatomical structures**

Anisotropic

http://www.imaios.com/en/e-Courses/e-MRI/Signal-spatial-encoding/3D-spatial-encoding