PULSE SEQUENCES AND CONTRAST MANIPULATION

Image contrast in MRI
 Parameters of the image sequence that affect image contrast and SNR

- Echo time
 - **♦TE**
- Voxel dimensions
 *FOV
 *Nx & Ny
 *Slice thickness

Pulse Sequence

The properties of the RF pulses and gradients determine the geometrical properties of image

- the slice thickness
- field of view
- spatial resolution

PULSE SEQUENCES AND CONTRAST MANIPULATION

the contrast between different structures is manipulated by modifying the pattern and timing of RF and gradient pulses

Tissue characterizations

 Tissues are different in T₁ T₂ and protons density ρ

✓ A set of images
 recording T₁, T₂ and ρ
 weighted images
 allows tissues
 recognition

✓ The contrast is a function of a lot of parameters

with different weights

https://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/Spin-echo-TR-TE

$S(TE)=M_{z0}e^{-TE/T_2}$

✓ To maximise the contrast between grey matter and white^(a) matter a T_E of around 90 ms is a good choice

✓ At very long T_E values there is very little signal from grey or white matter, and the image is dominated by CSF

As a general rule, optimal T_2 contrast occurs if the T_E is set equal to the mean of the T_2 values of the tissues of interest

- Repetition time T_R: The interval between successive 90° pulses during the series
- During T_R longitudinal magnetisation M_z undergoes T₁-recovery

Recovery is essentially complete at T_R = 5T₁

• $M_z = 0.993|M|$

✓ If T_R<5T₁, then the amount of M_z recovered for a specific tissue will be $M_z = |\mathbf{M}| \left(1 - e^{-\frac{t}{T_1}} \right)$

 resulting in recovery of different amount of M_z in different tissues

The maximum difference in recovery between grey matter and white matter in the figure occurs at a T_R value of about 850 ms

• the mean of the T1 values of the two tissues

the amount of M_Z that has recovered in a specific tissue at T_R determines the amount of M_{xy} that will be generated by the 90° pulse

 development of T₁and T₂- weighting over 2 consecutive repetitions of a spinecho pulse sequence

During the first repetition M_z is reduced to 0 by the initial 90° pulse and then recovering through T₁ relaxation

During the second repetition the 90° pulse in this repetition of the sequence converts the M_z that was present at TR into M_{xv}, which undergoes T₂ decay

 An echo signal is collected at T_E

https://www.imaios.com/en/e-mri/nmr-signal-and-mri-contrast/tr-and-t-weighting

 the signal intensity from each tissue type will depend on both T₁ and T₂

$$I \propto \rho(x,y) \left(1 - e^{-\frac{T_R}{T_1}}\right) e^{-\frac{T_E}{T_2}}$$

 ρ(x,y) proton density as a function of position within the slice

Timing Parameters Required for Different Spin-Echo Image Weighting

Weighting	T _R	T _E
Proton density	Long	Short
T_1	Short (\approx mean of tissue T_1 values)	Short
T_2	Long	Long (\approx mean of tissue T_2 values)

✓ to increase T1-weighting short TR ✓ to increase T2-weighing long TE

Iongitudinal relaxation is a recovery process
 transverse relaxation is a decay process

https://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/TR-and-T1-weighting

https://www.imaios.com/en/e-Courses/e-MRI/MRI-signal-contrast/Signal-weighting

Timing Parameters Required for Different Spin-Echo Image Weighting

Weighting	T _R	T _E
Proton density	Long	Short
T_1	Short (\approx mean of tissue T_1 values)	Short
T_2	Long	Long (\approx mean of tissue T_2 values)

Optimization

- T_R influences the time taken to acquire the MR image
- ✓ There is a strong incentive to minimise T_R from the perspectives of patient experience and throughput
 - degree of T₁-weighting is tolerated in a nominally T₂weighted image

a) Proton density weighting: TR = 2000 msTE = 20 msb) T1-weighting TR = 500 msTE = 30 msc) T2-weighting TR = 2000 msTE = 60 msd) Heavy T2-weighting TR = 2000 msTE = 150 ms

- CSF appears dark in the T1-weighted image and increasingly bright as T2weighting is increased
- Fat around the scalp is the brightest tissue in the T1-weighted image
 - reflecting the short T1 of fat (≈ 250 ms at 1.5 T)
- The bone of the skull is not seen at all
 - solid materials have such short T2 values that they cannot be seen

https://www.imaios.com/en/e-Courses/e-MRI/MRI-Sequences/Spin-echo

T₁ e T₂ weighted images

- Axial T1-weighted
 (a) and T2 weighted (b) fast
 SE images show a
 low-grade glioma.
- Because of hypercellularity, the tumor appears with hypointense signal in (a) and hyperintense signal in (b)
- The cystic components and edema are better depicted in (b) than in (a)

R. Bitar et al. RadioGraphics 2006; 26:513–537

 a spin-echo sequence with an additional slice selective 180° pulse before the 90° excitation pulse

The purpose is to nutate M_z into the –z-direction

it is also known as an 'inversion pulse'

The inverted M_z undergoes T₁ recovery

The negative M_z vector gets shorter over time, passes through 0 and then grows along the positive z-axis

until it has fully recovered

$$\boldsymbol{M}_{z} = \left| \mathbf{M} \right| \left(1 - 2e^{-\frac{t}{T_{1}}} \right)$$

	180° 90°	180°	
RF		()	
Slice select			
Frequency encoding			 L
Phase encoding			
Signal			

 No transverse magnetisation is generated during this process

- At T_I a 90° pulse is applied, tipping M_Z into the transverse plane
 - inversion time T_I
- Differences in T₁ between tissues are reflected in different degrees of recovery at T₁ and in different amounts of M_{XY} following the 90° pulse

M_z can take both positive and negative values

• there is potential for much greater T_1 contrast than in a conventional spin-echo sequence \ll where only the positive z-axis is used $M_z = |\mathbf{M}| \left(1 - 2e^{-\frac{t}{T_1}}\right)$

- Recovery of M_z in grey matter, white matter, CSF and fat following an inversion pulse
- distribution of magnetisation in the transverse plane following a 90° pulse applied at time point B

The Inversion Recovery Sequence

- Inversion recovery images can be presented as real image or magnitude image
 - depending on whether or not we pay attention to the 180° phase difference between magnetisation

The Inversion Recovery Sequence

- Magnitude Inversion Recovery Image
- areas outside of the head appear black as does white matter
 - M_z in white matter is passing through the 0 point when the 90° pulse is applied
- signal intensity in CSF and in fat are the same
 - despite their very different T₁ values

The inversion pulse

✓ RF γH₁ Δt = π
 ✓ M_z(0)=-M_z°
 ✓ M_z(t)= M_z°[1-2 e^{-t/T1}]
 ✓ M_{xy}(t)= 0

✓ What happen if the 90° pulse is applied close to the M_z=0 of one tissue

 $T_I = \ln 2T_1 \approx 0.693T_1$

STIR sequence

What happen if the 90° pulse is applied close to the M_z=0 of one tissue ?

STIR: Short Tau IRFat suppression

IR and fat suppression

STIR Short T₁ Inversion Recovery

180°

SE and STIR sequences for depiction of bone marrow edema

a Diagram of the STIR seq

- TI 100–180 ms for fat
- b) Coronal T1-w fast SE image

c) coronal STIR image both show pancarpal rheumatoid arthritisthe extent of bone marrow edema is better depicted in c than in b Echo pulse

900

180º

FLAIR sequence FLAIR: Fluid Attenuated IR • sequence shows a TI of 1700–2200 ms

for CSF suppression

Image Magnitude of M_{τ} (T1) Transverse decay (T2) intensity М_{ху} M_z Fat Gray Fat Gray CSF CSF Time (ms) Time (*ms*) bounce point TF FLAIR ΤI

IR and CSF signal suppression

Comparison of fast SE and FLAIR sequences for depiction of lung cancer metastases to brain

- a) Diagram of the FLAIR sequence shows a T_I of 1700–2200ms for cerebrospinal fluid
- b)Axial T2 weighted fast SE image shows white matter abnormalities in the left temporal lobe
- c) Axial T2 weighted FLAIR image obtained with nulling of the signal from cerebrospinal fluid shows the metastatic lesions more clearly

www.imaios.com/en/e-Courses/e-MRI/MRI-Sequences/inversion-recovery-stir-flair

The acquisition time

In the SE sequence is necessary to acquire echo signals how many rows of k space

• Ny

The repetition time TR is comparable with the T₁

 Since the NMR signal is low it may be necessary to repeat identical acquisitions to improve the SNR

Nrep

Acquisition time T_{acq}=T_R N_y N_{rep}

Multi-slice sequence

✓ the number of slices is T_R / T_{slice}

- \checkmark T_{slice} the time to acquire one line of data
 - slightly longer than TE as it includes the whole of the echo acquisition time
 - whereas TE is measured to the centre of the echo

3D spatial encoding

 rather than perform 2D tomographic imaging it is possible to collect image data from an entire volume simultaneously and encode it in 3D

the <u>slice</u> select axis has become '<u>slab</u> select'

- with a gradient and selective excitation pulse used to generate transverse magnetisation within a thick slab of the patient's body
- Signal from this slab is spatially encoded using frequency encoding on one axis and phase encoding on the other two

3D spatial encoding

diagram shows the phase encoding gradient 'ladder' on the slab select axis as well as the usual phase encoding axis

http://www.imaios.com/en/e-Courses/e-MRI/Signal-spatial-encoding/3D-spatial-encoding

3D spatial encoding

- 3D imaging allows to overcome a drawback of multislice imaging
- the slice thickness is frequently greater than the spatial resolution within the slice
- 'Isotropic' imaging: equal spatial resolution in all 3 dimensions
 - is an advantage in many clinical applications that require imaging of small and complex anatomical structures

Spatial encoding in 3D by adding phase encoding in the 3rd dimension
 Acquisition time: TR x Ny x Nz Long acquisition time !

http://www.imaios.com/en/e-Courses/e-MRI/Signal-spatial-encoding/3D-spatial-encoding