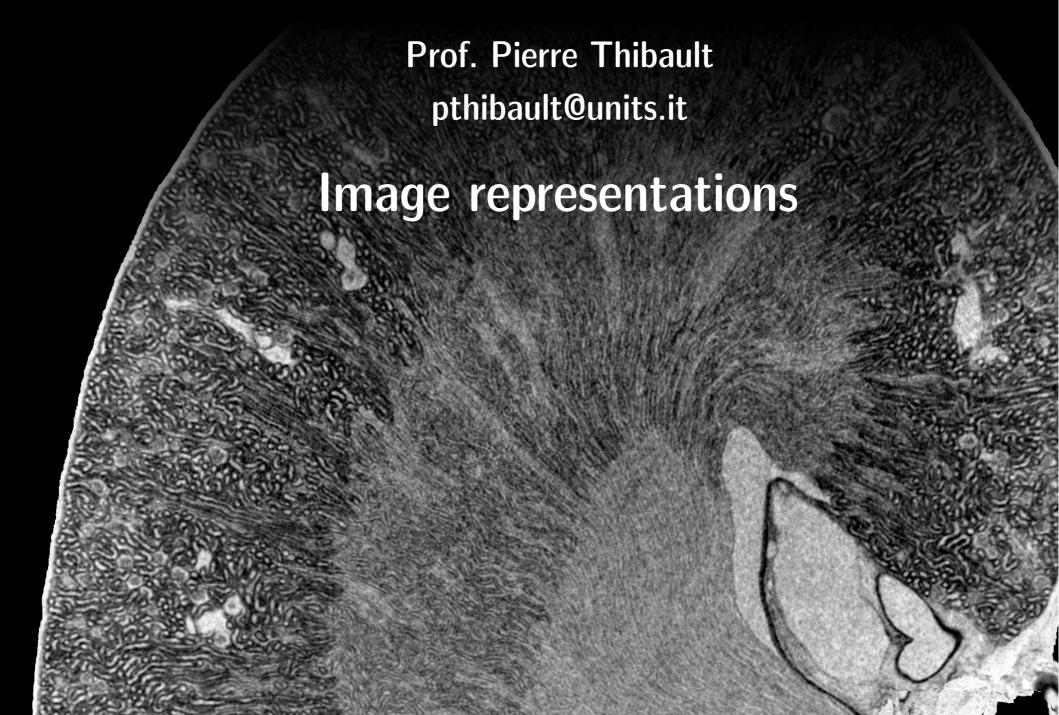
Image Processing for Physicists



Overview

- The Discrete Fourier Transform as a change of basis
- Discrete Cosine Transform
- Windowed Fourier Transform
- Wavelet Transform
- (many others omitted!)

Image representations

$$f(x,y) = \sum_{i} c_{n} B_{n}(x,y)$$
 $C_{n}: coefficients$
 $B_{n}: basis function$

Bn: basis function

(most convenient: orthonormal basis)

$$f(m,n) = \int_{k,l} F_{kl}$$

T:
$$(most convenient: or thonormal basis)$$

$$f(m,n) = \sum_{k,l} F_{kl} e^{2\pi i \left(\frac{m_k}{M} + \frac{nl}{N}\right)} \leftarrow (M,N) \text{ shaped image}$$

Bhe (m,n) DFT bosis

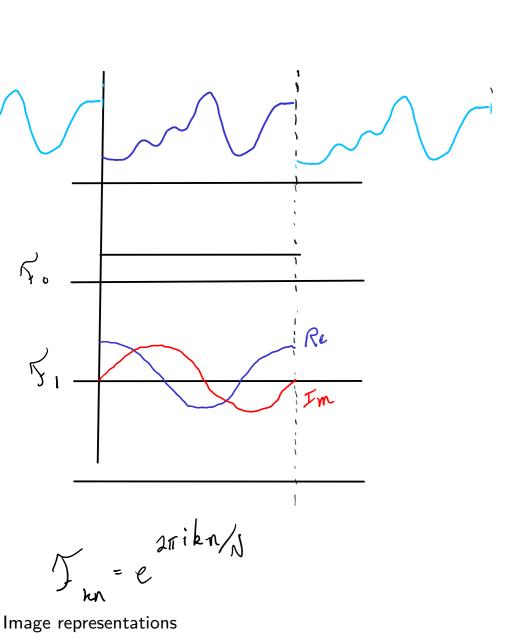
1D:
$$f_n = \sum_{k} F_k e^{2\pi i k n/N}$$

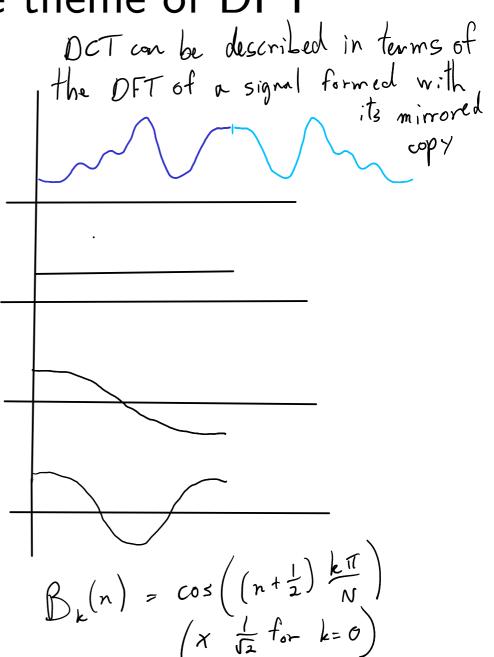
$$z\pi i/N$$
 $z=e$

* remember: assumption
that f is periodic

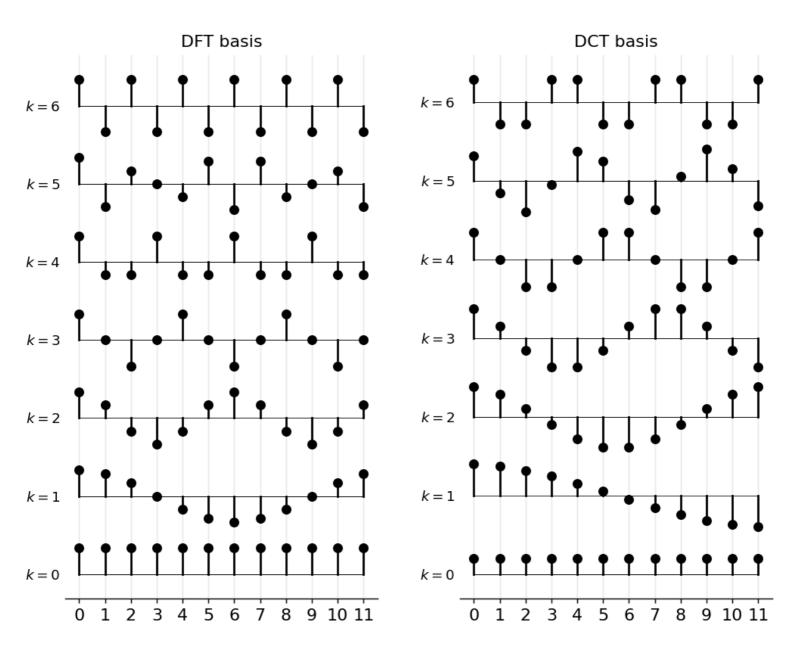
Image representations

A variation on the theme of DFT





(N=12)



64 DCT basis vectors for 8x8 image

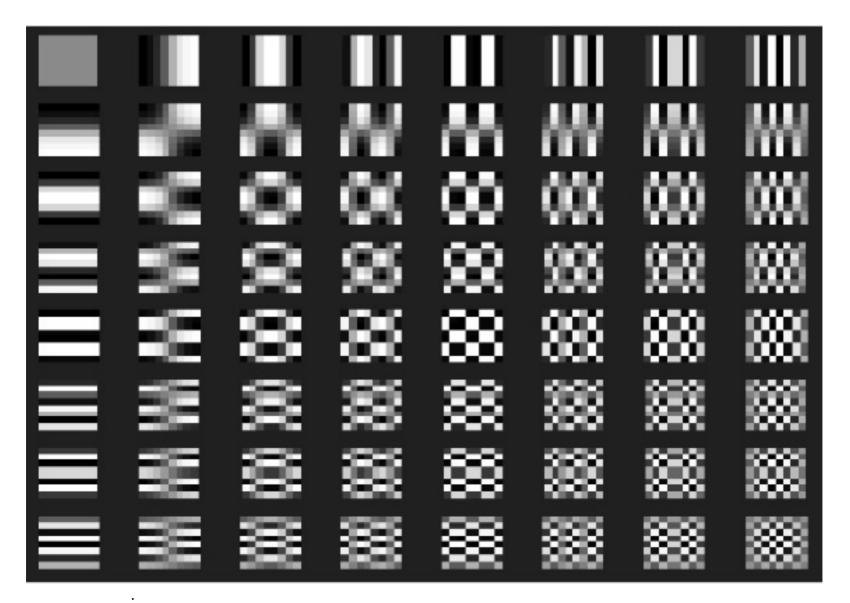


Image compression

1:1 bit rate

32:1 bit rate

8:1 bit rate

128:1 bit rate

JPEG compression

keep in average 8 most significant coefficients

lossy comprission is information is discarded

Historical overview

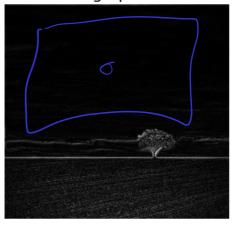
- 1822 Fourier: Fourier transform
- 1946 Gabor: "Gabor transform", Short-time Fourier transform (STFT)
- 1974 Ahmed, Natarajan & Rao: Discrete Cosine Transform
- 1980s Morlet, Mallat, Daubechies, ...: Wavelets

Bandpass filtering

original

low pass

high pass

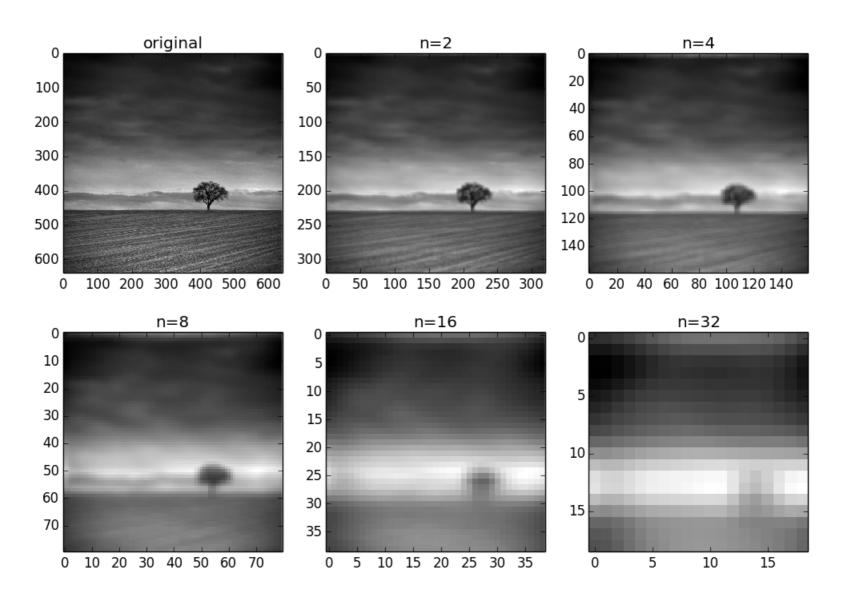


Don't need high spatial resolution

Need high spatial resolution

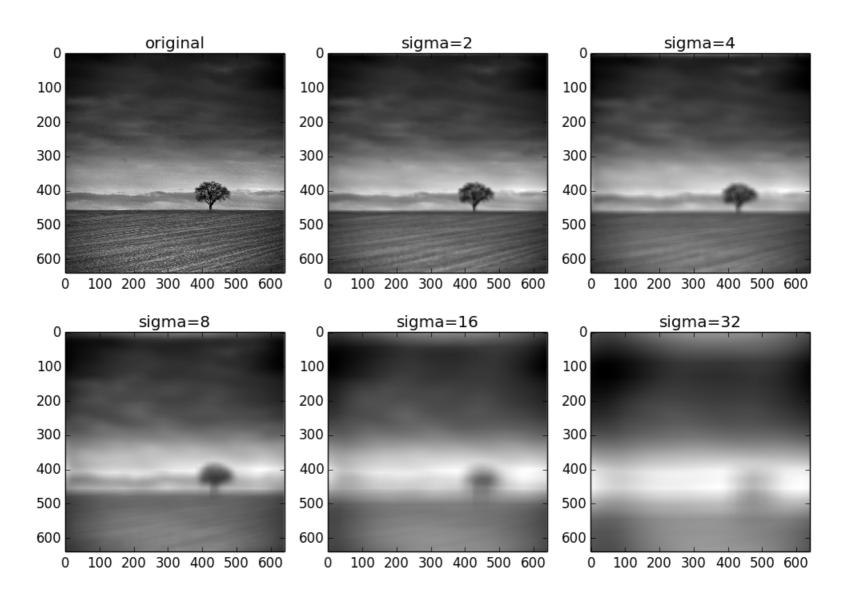
Multiresolution analysis

Subsampling (taking every nth pixel) successively reduces high frequency content



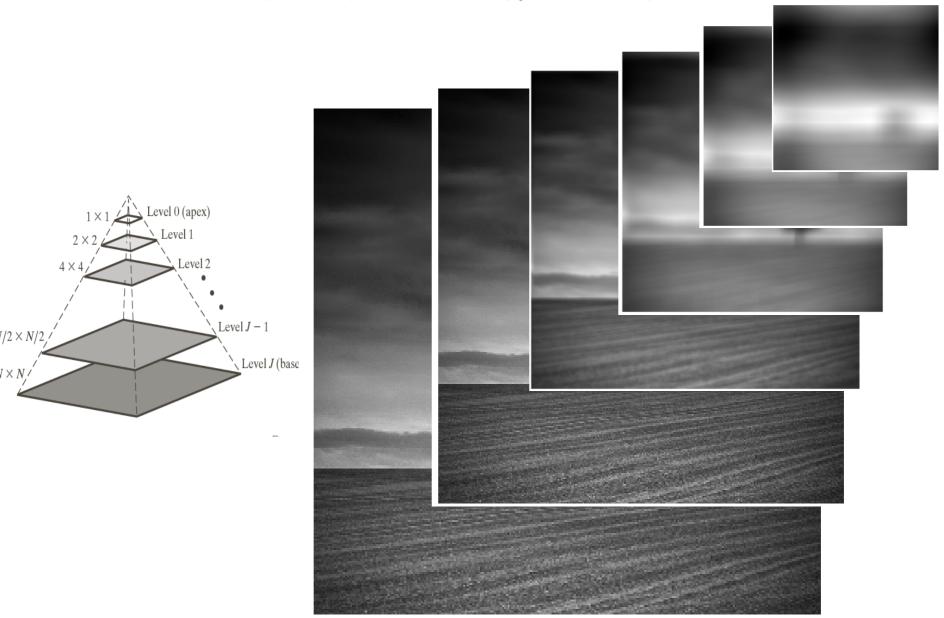
Multiresolution analysis

Multiple filtering with Gaussian filters, sigma determines resolution



Pyramid representation

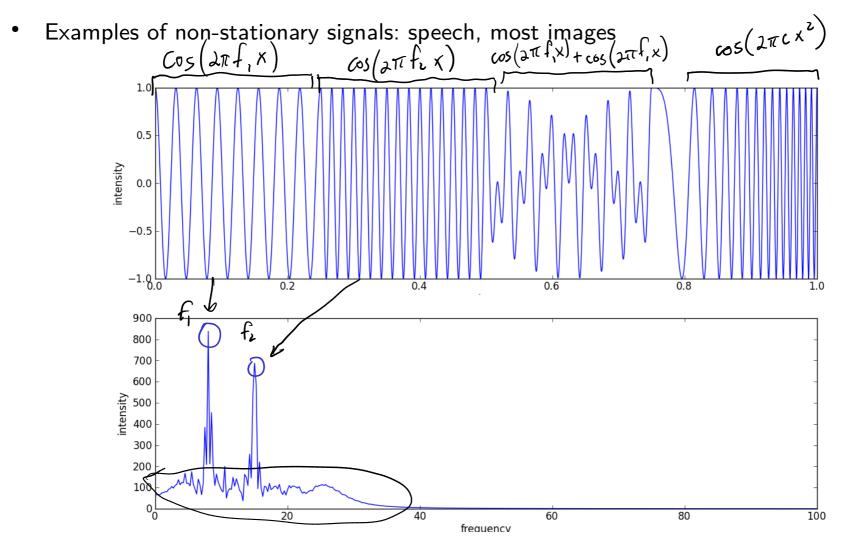
Scale-space representation, pyramidal representation



Stationary vs. non-stationary signals

- Stationary signals: frequency doesn't change over time (spatially over the image)
- Non-stationary signals: frequency changes over time (spatially over the image)

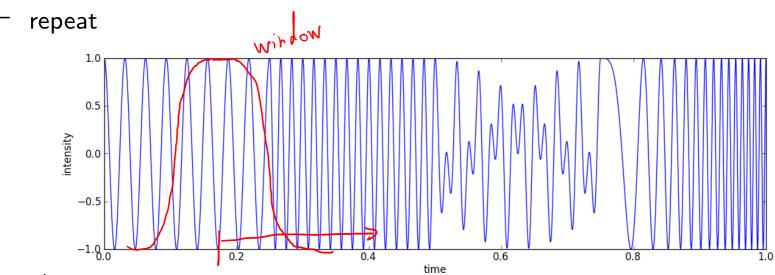
"chirp"



FT insufficient to localize the frequencies in our signal (image)

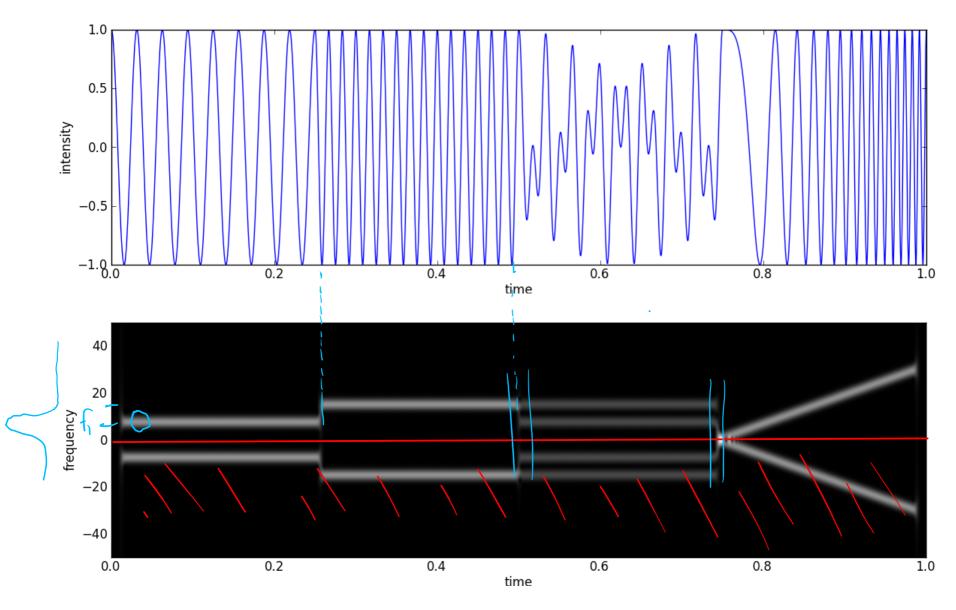
Windowed Fourier transform

- Windowed Fourier transform is part of the field of "time-frequency analysis"
- Also known as Short-time Fourier Transform (STFT)
- Time-frequency representations are used in many different contexts (Audio, image processing/optics, quantum mechanics)
- Idea: slice up signal into small parts, analyze each separately
 - $^-$ Multiply with window function w (of width d) at position $\times 0$
 - Take Fourier transform of result
 - Slide window to new position

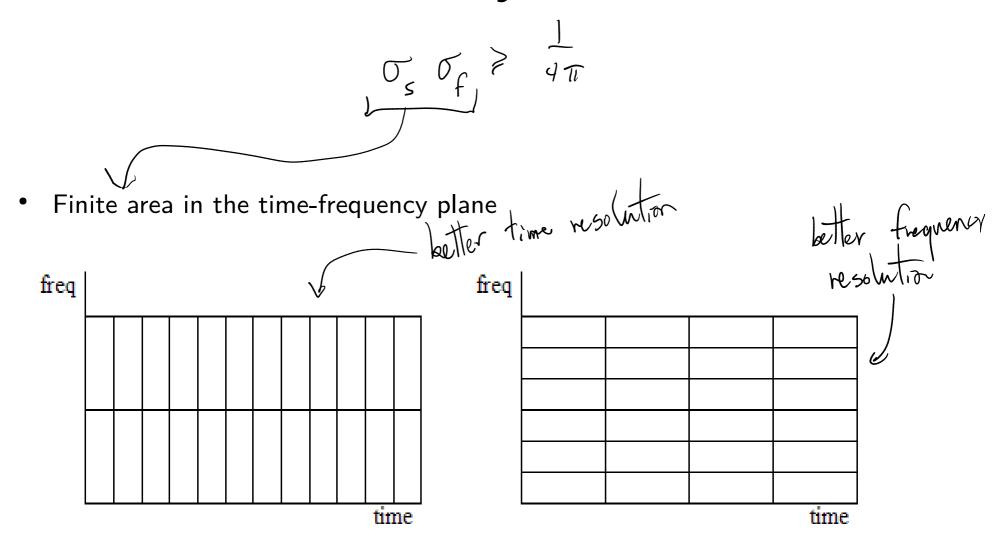


Analogy to audio signals

Spectrogram



Uncertainty relation

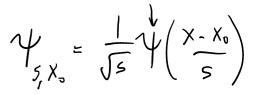


This is limitation of WFT and hence development of wavelets

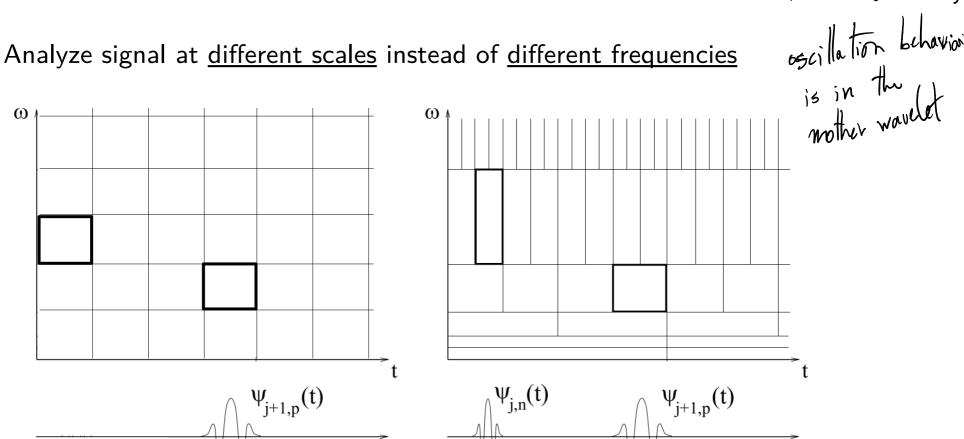
Continuous wavelet transform (WT)

Parameters: translation and scaling

WT
$$\{f\}$$
 = $\int_{-\infty}^{\infty} f(x) \, \forall (x) \, dx$
 $\int_{3,x}^{5,x} \int_{3}^{5} (x) \, dx$
 $\int_{-\infty}^{5,x} \int_{3,x}^{5} \int_{3}^{5} (x) \, dx$



Analyze signal at different scales instead of different frequencies



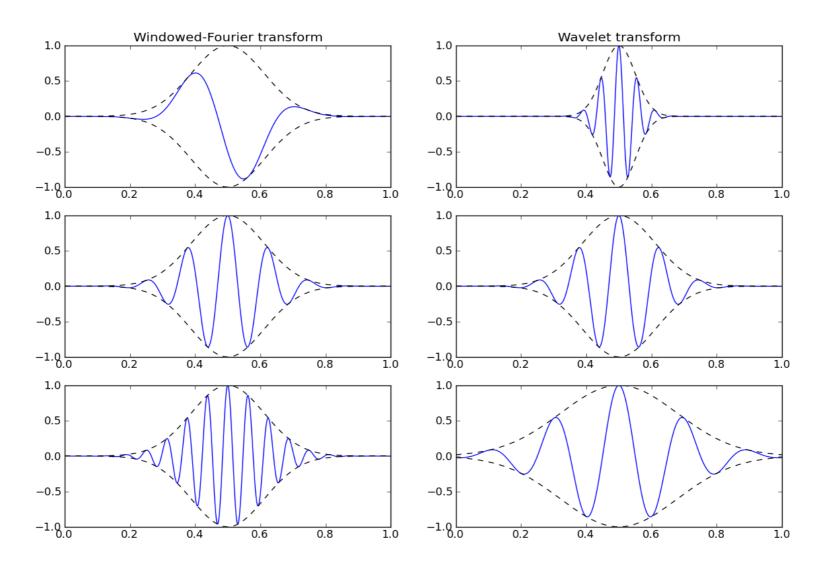
Source: Mallat, "A wavelet tour of signal processing"

WFT vs WT

WFT - keep window width constant Wavelet - keep shape constant

- change modulation

- change scale



Discrete Wavelet decomposition of image

Perform each DWT, collect and tile all coefficients

Here: 3 level decomposition

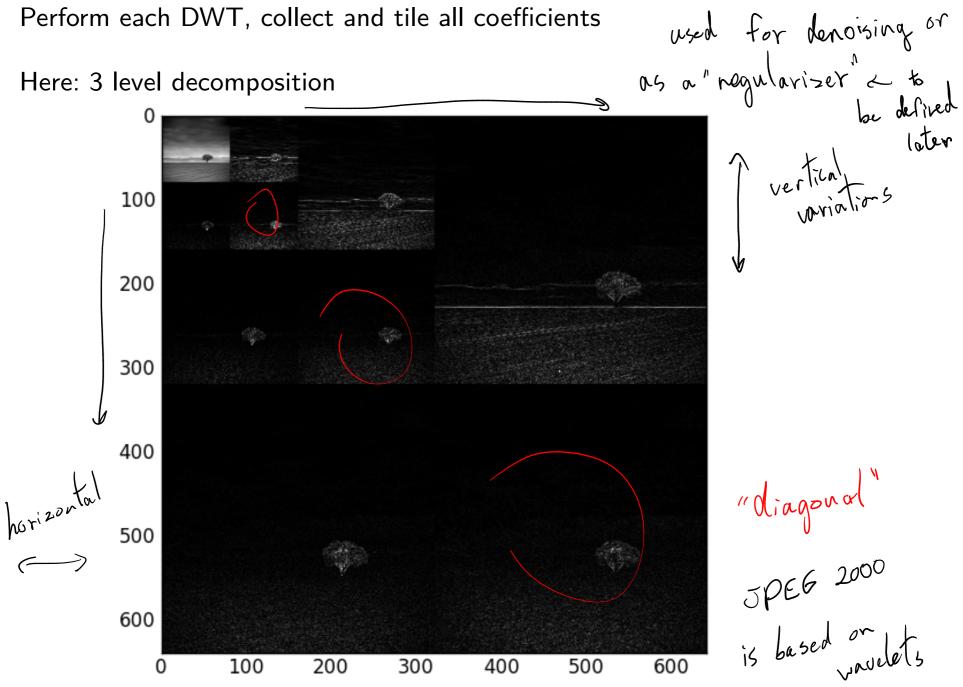
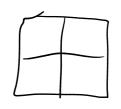


Image representations

$$H_4 = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & 1 & -1 & -1 \ 1 & -1 & 0 & 0 \ 0 & 0 & 1 & -1 \end{bmatrix}, egin{bmatrix} \chi \ \end{pmatrix}$$

$$= \begin{cases} x_{0} + x_{1} + k_{2} + x_{y} \\ x_{0} + x_{1} - (x_{2} + x_{3}) \\ x_{1} - x_{1} \\ x_{2} - x_{3} \end{cases}$$

$$H_4 = rac{1}{2}egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & 1 & -1 & -1 \ \sqrt{2} & -\sqrt{2} & 0 & 0 \ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{bmatrix}$$



Summary

- Images can be represented by different basis functions.
- Fourier basis: localized in frequency, delocalized in real space.
- Windowed Fourier Transform: localized to some extent in both spaces
- Wavelet analysis decomposes a signal in position and scale (instead of position and frequency as for WFT).
- Sparse representations are representations in which the image content is represented by a few relevant coefficients, while the other pixels are close to zero
- Sparse representations have advantages for compression, denoising, ...