Image Processing for Physicists

Prof. Pierre Thibault pthibault@units.it

DFT and sampling

 $S = \frac{1}{2}$

Overview

- Sampling
	- Nyquist theorem
- Discrete Fourier transform
	- Undersampling and Aliasing
- Interpolation (resampling)

Sampling

The Nyquist-Shannon sampling theorem

"The largest frequency that can be represented in a signal sampled at intervals s is $1/2s$ "

Periodic signals
 $f(x): print_{per}(x) = \int_{k=-\infty}^{\infty} c_k e^{2\pi ix k_p}$ $\langle h_{\rho} | u \rangle = \delta(u - k_{\rho})$ What is $FT. of f?$ $F(h) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x u} dx = \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} c_k e^{-2\pi i x k \varphi} e^{-2\pi i x u} dx$

$$
F(u) = \sum_{k=-\infty}^{\infty} C_k \int_{-\infty}^{\infty} e^{2\pi ix (k_p - u)} dx = \sum_{k=-\infty}^{\infty} C_k \delta(u - k_p)
$$

The Fourier transform of a periodic signal has a
discrete spectrum located at multiples of
$$
\%
$$

Periodic signals

X-ray diffraction by a crystal

Sampling with the Dirac comb
\nA periodic function made of Dinc
\nfunctions
\n
$$
\Rightarrow_{p}(x) = \sum_{n=-\infty}^{\infty} \delta(x-np)
$$

\n $\Rightarrow_{p}(x) = \text{rank } f(x-p)$
\n $\Rightarrow_{p}(x) = \text{rank } f(x) = \text$

Discrete Fourier Transform

- A **periodic** function has a **discrete** spectrum in the Fourier domain;
- A function with **discrete** values in the spatial domain is **periodic** in the Fourier domain;
	- \Rightarrow A periodic and discrete function has a periodic and discrete Fourier transform.

Sampling with a pixel-array detector

• A 2D light field is sampled with a 2D pixelarray detector.

Sampling with a pixel-array detector

DFT example

• Example: relation between space, sampling and frequency

zero frequency component is in the top left corner output array.

Aliasing

Moiré: after resampling, high spatial frequencies appear as low spatial

frequencies

source: http://wikipedia.org

source: http://wikipedia.org

Undersampling

"Fresnel zone" test pattern: radial linear increase in spatial frequency

Undersampling & aliasing

Recall:
$$
Oisecte
$$
 Forner fromform:
\n
$$
F_{k} = \sum_{n=0}^{N-1} f_{n} e^{-2\pi i k n} \qquad f_{n} = \frac{1}{N} \sum_{k=0}^{N-1} F_{k} e^{-2\pi i k n} \qquad
$$
\n
$$
O_{n}
$$
\n
$$
F_{k} = \sum_{n=0}^{N-1} f_{n} e^{-2\pi i k n} \qquad I_{n} = \frac{1}{N} \sum_{k=0}^{N-1} F_{k} e^{-2\pi i k n} \qquad
$$
\n
$$
O_{n}
$$
\n
$$
= \frac{1}{N} \int_{N}^{N} \log_{10} OFT \text{ on } \mathcal{H}.
$$
\n
$$
= \int_{N} \log_{10} OFT \text{ on } \mathcal{H}.
$$
\n
$$
= \int_{N} \log_{10} \
$$

Conversion is done looking at the exp argument

\nOrtinuous:
$$
e^{a\pi i n k}
$$

\ndivserve that $e^{2\pi i n k}$

\ndivserve that $e^{2\pi i n k}$

\n $f(x) \longrightarrow f_n$ sample step is $s \cdot f_n = f(x = n^s)$

\n $x = n s$

\nu $q(s) = p(k)$

\nU = $\frac{h}{N}s$

\nObservation: $F_{k+N} = \sum_{n=0}^{N-1} f_n e^{2\pi i n (k+N)}$

\n $\sum_{n=0}^{N-1} f_n e^{2\pi i n k}$

Fourier space translation

original amplitude of Fourier spectrum

Image shifting using shifting property of FT

 $T\left\{f(x-x_{0})\right\}$ $T\left\{f(x)\right\}$ $e^{2\pi i x^{2}}$

Image gets wrapped around

Zero-padding

1440

 1920

960

1. Add zeros around original image (zeropadding)

- 2. Shift using FT
- 3. Crop result

Sampling and DFT

 $0₀$

480

Zero-padding in Fourier space

300

200

100

 $\mathbf 0$

 -100

 -200

 -300

 -300

 -200

 -100

1440

 1920

 $\overline{0}$

100

200

 300

Result: increased sampling!

supscaling"

Sampling and DFT

480

 $0₀$

480

960

Interpolation

• Discrete sampling of a continuous function

• Reconstruct original function from sampled data?

Interpolation

Finding unknown points between known ones

- wide field, many different approaches
- closely related to approximation theory and curve fitting

difference: interpolated curve hos to

Interpolation

Various "classical" interpolation methods available

Linear interpolation

• Interpolation as an operator

$$
f(x) = \frac{1}{x} \left\{ f_n \right\}
$$

• Linear interpolation

$$
2\{f_{n}+g_{n}\} = 2\{f_{n}\} + 2\{g_{n}\}
$$

• Shift invariance

Linear interpolation

• Linear interpolation can be written as a convolution with a kernel (e.g.

Linear interpolation

source: http://bigwww.epfl.ch/tutorials/unser_isbi_06_part1

Interpolation via convolution

2D interpolation

• Make 2D interpolation linear in each variable

Python plotting

Python plotting

plt.imshow(im) plt.imshow(im, interpolation='none') plt.imshow(im, interpolation='nearest')

plt.imshow(im, interpolation='bilinear') plt.imshow(im, interpolation='bicubic') plt.imshow(im, interpolation='gaussian')

Sampling and DFT

 $\pmb{0}$

 $\mathbf{1}$

 $\overline{2}$

 Λ

 $\overline{0}$

Sinc interpolation and zero-padding

Also known as "Whittaker–Shannon interpolation"

Sinc interpolation and zero-padding

Also known as "Whittaker–Shannon interpolation"

Reconstruction from samples

- Sinc interpolation can perfectly reconstruct a function from its samples if
	- sampled at a rate higher than Nyquist rate
	- bandlimited up to Nyquist frequency
	- no aliasing
- Sinc interpolation introduces ringing otherwise, due to leakage of aliased frequencies

Linear interpolation of a step edge: a balance between staircase artifacts and ripples.

Other Interpolation

- Change from polar to cartesian grid
- Linear, but not translation invariant

polar vs. cartesian sampling

irregular sampling

Summary

- Images can be represented as a sampling grid and pixel basis functions
- Need for interpolation arises when changing the grid
- Linear and translation invariant interpolation can be written as a convolution with an interpolation kernel function
- Typical interpolation kernels include nearest neighbor, linear, cubic and higher B-spline interpolation
- Zero-padding in one domain equals sinc interpolation in the other
- "ideal" sinc interpolation may lead to ringing artifacts