
1 Fourier transform

Definition 1.1 (Fourier transform). For f ∈ L1(Rd,C) we call its Fourier transform the
function defined by the following formula

f̂(ξ) := (2π)−
d
2

∫
Rd

e−iξ·xf(x)dx. (1.1)

We use also the notation Ff(ξ) = f̂(ξ).

Example 1.2. We have for any ε > 0

e−ε
|ξ|2
2 = (2πε)−

d
2

∫
Rd

e−iξ·xe−
|x|2
2ε dx. (1.2)

We set also

F∗f(ξ) := (2π)−
d
2

∫
Rd

eiξ·xf(x)dx. (1.3)

We have what follows.

Theorem 1.3. The following facts hold.

(1) We have |f̂(ξ)| ≤ (2π)−
d
2 ∥f∥L1(Rd,C). So in particular we have

∥Ff∥L∞(Rd,C) ≤ (2π)−
d
2 ∥f∥L1(Rd,C). (1.4)

(2) (Riemann– Lebesgue Lemma) We have lim
ξ→∞

f̂(ξ) = 0.

(3) The bounded linear operator F : L1(Rd,C) → L∞(Rd,C) has values in the following
space C0(Rd,C) ⊂ L∞(Rd,C)

C0(Rd,C) := {g ∈ C0(Rd,C) : lim
x→∞

g(x) = 0}. (1.5)

(4) F defines an isomorphism of the space of Schwartz functions S(Rd,C) into itself.

(5) F defines an isomorphism of the space of tempered distributions S ′(Rd,C) into itself.
We have F [∂xjf ] = −iξjFf .

(6) For f, g ∈ L1(Rd,C) we have

f̂ ∗ g(ξ) = (2π)
d
2 f̂(ξ)ĝ(ξ).

Theorem 1.4 (Fourier transform in L2). The following facts hold.
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(1) For a function f ∈ L1(Rd,C) ∩ L2(Rd,C) we have that f̂ ∈ L2(Rd,C) and ∥f̂∥L2 =
∥f∥L2. An operator

F : L2(Rd,C) → L2(Rd,C) (1.6)

remains defined. For f ∈ L2(Rd,C) for any function φ ∈ Cc(Rd,C) with φ = 1 near
0 set

Ff(ξ) := lim
λ↗∞

(2π)−
d
2

∫
Rd

e−iξ·xf(x)φ(x/λ)dx

= lim
λ↗∞

(2π)−
d
2

∫
|x|≤λ

e−iξ·xf(x)dx.
(1.7)

Then (1.7) defines an isometric isomorphism inside L2(Rd,C), so in particular we
have

∥Ff∥L2(Rd,C) = ∥f∥L2(Rd,C). (1.8)

(2) The inverse map is defined by

F∗f(x) = lim
λ↗∞

(2π)−
d
2

∫
Rd

eiξ·xf(ξ)φ(ξ/λ)dξ

= lim
λ↗∞

(2π)
d
2

∫
|ξ|≤λ

eiξ·xf(ξ)dξ.
(1.9)

(3) For f ∈ L1(Rd,C) ∩ L2(Rd,C) the two definitions (1.1) and (1.7) of F coincide (by
dominated convergence). Similarly, for f ∈ L1(Rd,C) ∩ L2(Rd,C) the two definitions
(1.3) and (1.9) of F∗ coincide.

The above notions extend naturally to vector fields. So we have a Fourier transform f →
f̂ from (L1(Rd))d → (C0(Rd))d, from (L2(Rd))d → (L2(Rd))d , from (S(Rd))d → (S(Rd))d

and more generally from (S ′(Rd))d → (S ′(Rd))d. Notice that all these maps except the 1st
are isomorphisms, and all are one to one maps.

We have the following lemma.
We consider now for △ :=

∑
j

∂2

∂x2
j
and for f ∈ S ′(Rd,C) the heat equation

ut −△u = 0 , u(0, x) = f(x). (1.10)

By applying F we transform the above problem into

ût + |ξ|2û = 0 , û(0, ξ) = f̂(ξ).

This yields û(t, ξ) = e−t|ξ|2 f̂(ξ). Notice that since f̂ ∈ S ′(Rd,C) and e−t|·|2 ∈ S(Rd,C) for
any t > 0, the last product is well defined. Furthermore, we have û(t, ·) ∈ C0([0,+∞),S ′(Rd,C))
and, as a consequence, since F is an isomorphism of S ′(Rd,C) also u(t, ·) ∈ C0([0,+∞),S ′(Rn,C)).

We have e−t|ξ|2 = Ĝ(t, ξ) with G(t, x) = (2t)−
d
2 e−

|x|2
4t . Then, from û(t, ξ) = Ĝ(t, ξ)f̂(ξ) it

follows u(t, x) = (2π)−
d
2G(t, ·) ∗ f(x). In particular, for f ∈ Lp(Rd,C), we have

u(t, x) = (4πt)−
d
2

∫
Rd

e−
|x−y|2

4t f(y)dy.
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Notice that by (1.2) we have

(4πt)−
d
2

∫
Rd

e−
|x|2
4t dx = 1.

We will write

et△f(x) := (4πt)−
d
2

∫
Rd

e−
|x−y|2

4t f(y)dy. (1.11)

Notice that for p ≥ 1 we have ∥et△f∥Lp(Rd) ≤ ∥f∥Lp(Rd) and for f ∈ L1(Rd) and any x ∈ Rd

|et△f(x)| ≤ (4πt)−
d
2

∫
Rd

e−
|x−y|2

4t |f(y)|dy ≤ (4πt)−
d
2

∫
Rd

|f(y)|dy = (4πt)−
d
2 ∥f∥L1(Rd).

(1.12)

We set also Kt(x) := (4πt)−
d
2 e−

|x|2
4t . Then et△f = Kt ∗ f . Kt(x− y) is the Heath Kernel.

Lemma 1.5. For any q ≥ p ≥ 1 and j ≥ 1 there exists Cjpq s.t.

∥∇jet△f∥Lq(Rd) ≤ Cjpqt
− j

2
− d

2

(
1
p
− 1

q

)
∥f∥Lp(Rd) for any f ∈ Lp(Rd). (1.13)

Proof. For brevity we consider only j = 0. Using Young’s convolution inequality

∥Kt ∗ f∥Lq(Rd) ≤ ∥Kt∥La(Rd)∥f∥Lp(Rd) where
1

q
+ 1 =

1

a
+

1

p
,

where

∥Kt∥La(Rd) = (4πt)−
d
2 ∥e−

|x|2
4t ∥La(Rd) = Cpqt

− d
2
+ d

2a whereCpq := (4π)−
d
2 ∥e−

|x|2
4 ∥La(Rd).

Now

t−
d
2
+ d

2a = t−
d
2 (1−

1
a) = t

− d
2

(
1
p
− 1

q

)
,

and so this yields (1.13) for j = 0. The case j ∈ N is obtained in an elementary fashion by
differentiating.

Theorem 1.6. ρ ∈ L1(Rd) be s.t.
∫
ρ(x)dx = 1. Set ρϵ(x) := ϵ−dρ(x/ϵ). Consider

Cc(Rd,C) and for each p ∈ [1,∞] let Cc(Rd,C)p be the closure of Cc(Rd,C) in Lp(Rd,C),
so that Cc(Rd,C)p = Lp(Rd,C) for p < ∞ and Cc(Rd,C)∞ = C0(Rd,C) ⫋ L∞(Rd,C).
Then for any f ∈ Cc(Rd,C)p we have

lim
ϵ↘0

ρϵ ∗ f = f in Lp(Rd,C). (1.14)

In particular we have
lim
t↘0

et△f = f in Lp(Rd,C). (1.15)
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Proof. Clearly, (1.15) is a special case of (1.14) setting ϵ =
√
t and ρ(x) = (4π)−

d
2 e−

|x|2
4 .

To prove (1.14) we start with f ∈ Cc(Rd,C). In this case

ρϵ ∗ f(x)− f(x) =

∫
Rd

(f(x− ϵy)− f(x))ρ(y)dy

so that, by Minkowski inequality and for ∆(y) := ∥f(· − y)− f(·)∥Lp , we have

∥ρϵ ∗ f(x)− f(x)∥Lp ≤
∫

|ρ(y)|∆(ϵ y)dy.

Now we have limy→0∆(y) = 0 and ∆(y) ≤ 2∥f∥Lp . So, by dominated convergence we get

lim
ϵ↘0

∥ρϵ ∗ f(x)− f(x)∥Lp = lim
ϵ↘0

∫
|ρ(y)|∆(ϵ y)dy = 0.

So this proves (1.14) for f ∈ Cc(Rd,C). The general case is proved by a density argument.

2 Some spaces of functions on L2 based Sobolev Spaces

We will introduce the homogeneous Sobolev spaces Ḣk(Rd) and we will generalize the
standard Sobolev spaces Hk(Rd). For ξ ∈ Rd let ⟨ξ⟩ =

√
1 + |ξ|2 be the Japanese bracket.

For a tempered distribution u we denote by û its Fourier transform. We consider for s ∈ R
the space formed by the tempered distributions u

Hs(Rd) with norm ∥u∥Hs(Rd) := ∥⟨ξ⟩sû∥L2(Rd) <∞ . (2.1)

We consider for s ∈ R the space formed by the tempered distributions u s.t. û ∈ L1
loc(Rd)

Ḣs(Rd) with norm ∥u∥Ḣs(Rd) := ∥|ξ|sû∥L2(Rd) <∞ . (2.2)

The following lemma is elementary.

Lemma 2.1. The following statements are true.

• L2(Rd) → Hs(Rd) defined by f → F∗
(

f̂
⟨ξ⟩s

)
is an isometric isomorphism and all the

Hs(Rd) are Hilbert spaces with inner product ⟨f, g⟩Hs = ⟨⟨ξ⟩sf̂ , ⟨ξ⟩sĝ⟩L2 .

• We have S(Rd) ⊆ Ḣs(Rd) if and only if s > −d/2. Furthermore, this embedding is
dense.

• The Ḣs(Rd) have an inner product defined by ⟨f, g⟩Ḣs = ⟨|ξ|sf̂ , |ξ|sĝ⟩L2.

We will use also the following.

Lemma 2.2. Let σ > −d/2. Then C∞
c (Rd) is dense in Ḣσ(Rd).
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Proof. It is immediate that S(Rd) is dense in Ḣσ(Rd) (because C∞
c (Rd\{0}) is dense in

L2(Rd, |ξ|2σdξ)). So it is enough to show that for any ψ ∈ S(Rd) and for χ ∈ C∞
c (Rd, [0, 1])

a cutoff function with χ = 1 near the origin, then χ
(x
n

)
ψ

n→+∞−−−−−→ ψ in Ḣσ(Rd) for any

σ > −d/2. Indeed recall

f̂ ∗ g(ξ) = (2π)
d
2 f̂(ξ)ĝ(ξ) so that

∥χ
(x
n

)
ψ − ψ∥2

Ḣσ =

∫
Rd

dξ|ξ|2σ
∣∣∣∣∫

Rd

(2π)−
d
2ndχ̂(nη)ψ̂(ξ − η)dη − ψ̂(ξ)

∣∣∣∣2
=

∫
Rd

dξ|ξ|2σ
∣∣∣∣∫

Rd

(2π)−
d
2 χ̂(η)

(
ψ̂
(
ξ − η

n

)
− ψ̂(ξ)

)
dη

∣∣∣∣2 .
So, by Minkovsky Inequality,

∥χ
(x
n

)
ψ − ψ∥Ḣσ ≤ (2π)−

d
2

∫
Rd

dη|χ̂(η)|

(∫
Rd

|ξ|2σ
∣∣∣∣∫

Rd

(
ψ̂
(
ξ − η

n

)
− ψ̂(ξ)

)
dξ

∣∣∣∣2
) 1

2

.

We split in the right integrating in |η| ≤ C and in |η| ≥ C, where C is arbitrary. In the
integral in |η| ≤ C we get a sequence that, essentially by dominated convergence, converges
to 0. Next, we consider the integral in |η| ≥ C. We can bound it from above by

(2π)−
d
2

∫
|η|≥C

dη|χ̂(η)|

(∫
Rd

|ξ|2σ
∣∣∣∣∫

Rd

ψ̂
(
ξ − η

n

)∣∣∣∣2 dξ
) 1

2

+ ∥ψ∥Ḣσ

 . (2.3)

Now we claim that for c independent of η we have∫
Rd

|ξ|2σ
∣∣∣∣∫

Rd

ψ̂ (ξ − η)

∣∣∣∣2 dξ ≤ c+ c|η|2σ. (2.4)

Indeed, we spit the integral into regions |η| ≪ |ξ|, |η| ∼ |ξ| and |η| ≫ |ξ|. We have∫
|η|≫|ξ|

|ξ|2σ
∣∣∣ψ̂ (ξ − η)

∣∣∣2 dξ ≲ ⟨η⟩−N
∫
|η|≫|ξ|

|ξ|2σdξ ≲ 1.

We have ∫
|η|≪|ξ|

|ξ|2σ
∣∣∣ψ̂ (ξ − η)

∣∣∣2 dξ ≲ ∫
Rd

|ξ − η|2σ
∣∣∣ψ̂ (ξ − η)

∣∣∣2 dξ = ∥ψ∥2
Ḣσ .

Finally, for |η| ∼ |ξ|∫
|η|∼|ξ|

|ξ|2σ
∣∣∣ψ̂ (ξ − η)

∣∣∣2 dξ ≤ ∫
Rd

|ξ − η|2σ
∣∣∣ψ̂ (ξ)

∣∣∣2 dξ ≲ |η|2σ
∫
Rd

∣∣∣ψ̂ (ξ)
∣∣∣2 dξ + ∥ψ∥2

Ḣσ .

So we proved (2.4). Inserting this in (2.3) and taking C sufficiently large we obtain that
(2.3) is arbitrarily small.
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Remark 2.3. We will also consider the space Ḣσ(Rd) ∩ Ḣ1+σ(Rd) for σ > −d/2. Then, by
a similar argument, C∞

c (Rd) is dense in Ḣσ(Rd) ∩ Ḣ1+σ(Rd).

While the Ḣs(Rd) have an inner product, in general they are not complete topological
vector spaces and the following will be important to us.

Proposition 2.4. For s < d/2 the space Ḣs(Rd) is complete and the Fourier transform
establishes an isometric isomorphism F : Ḣs(Rd) → L2(Rd\{0}, |ξ|2sdξ).

The above proposition is a consequence of the following lemma.

Lemma 2.5. Let s < d
2 . Then we have the following facts.

• L2(Rd\{0}, |ξ|2sdξ) ⊂ L1
loc(Rd, dξ)

• L2(Rd\{0}, |ξ|2sdξ) ⊂ S ′(Rd)

• The Fourier transform F : S ′(Rd) → S ′(Rd) is s.t. F
(
Ḣs(Rd)

)
= L2(Rd, |ξ|2sdξ)

and establishes an isometry between these two spaces.

Proof. Let g ∈ L2(Rd\{0}, |ξ|2sdξ). Obviously g ∈ L1
loc(Rd\{0}, dξ). Let now B = {ξ ∈

Rd : |ξ| ≤ 1}. Then∫
B
|g(ξ)|dξ ≤

(∫
B
|ξ|2s|g(ξ)|2dξ

) 1
2
(∫

B
|ξ|−2sdξ

) 1
2

≤
√

vol(Sd−1)(

∫ 1

0
rd−1−2sdr)

1
2 ∥g∥L2(Rd,|ξ|2sdξ) =

√
vol(Sd−1)

d− 2s
∥g∥L2(Rd,|ξ|2sdξ).

Next, we check that L2(Rd\{0}, |ξ|2sdξ) ⊂ S ′(Rd). We split g = χBg + χBcg. Then
χBg ∈ L1(Rd, dξ) implies χBg ∈ S ′(Rd). On the other hand we have χBcg ∈ L2(Rd, ⟨ξ⟩2sdξ).
This in turn implies χBcg ∈ S ′(Rd), where the embedding L2(Rd, ⟨ξ⟩2σdξ) ⊂ S ′(Rd) for any
σ ∈ R follows from∫

Rd

f(ξ)φ(ξ)dξ =

∫
Rd

⟨ξ⟩σf(ξ)⟨ξ⟩−σφ(ξ)dξ ≤ ∥f∥L2(Rd,⟨ξ⟩2σdξ)(

∫
Rd

⟨ξ⟩−2σφ(ξ)dξ)
1
2

≤ ∥f∥L2(Rd,⟨ξ⟩2σdξ)(

∫
Rd

⟨ξ⟩−2σ−2mdξ)
1
2 ∥⟨ξ⟩mφ∥L∞(Rd)

for m chosen s.t. 2σ + 2m > d.

Remark 2.6. For s ≥ d
2 the space Ḣs(Rd) is not a complete space for the norm indi-

cated. In particular, the Fourier trasform defines an isometric embedding Ḣs(Rd)
F
↪→

L2(Rd\{0}, |ξ|2sdξ) with image which is strictly contained and dense in L2(Rd\{0}, |ξ|2sdξ).
The fact that the image is dense can be seen observing that C∞

c (Rd\{0}) is dense in
L2(Rd\{0}, |ξ|2sdξ) and we have FḢs(Rd) ⊇ C∞

c (Rd\{0}).
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For s = d
2 + ε0 with ε0 > 0, if we pick f ∈ C∞

c (Rd) with f(0) ̸= 0, then
f(ξ)

|ξ|d+
ε0
2

is a

Borel function not contained in L1
loc(Rd, dξ). But |ξ|2s

∣∣∣∣∣ f(ξ)

|ξ|d+
ε0
2

∣∣∣∣∣
2

=
|f(ξ)|2

|ξ|d−ε0
∈ L1(Rd, dξ)

implies that
f(ξ)

|ξ|d+
ε0
2

∈ L2(Rd, |ξ|2sdξ). Yet there exists a sequence {un} in Ḣs(Rd) such

that ûn
n→+∞−−−−−→ f(ξ)

|ξ|d+
ε0
2

in L2(Rd\{0}, |ξ|2sdξ). Then {un} is a Cauchy sequence in Ḣs(Rd)

which is not convergent in Ḣs(Rd).

For s = d
2 consider f(ξ) =

∞∑
k=1

2kd

k
χ[3/4,5/4](2

k|ξ|). Notice that for each ξ, at most one term

of the sum is non zero, because [2−k3/4, 2−k5/4] ∩ [2−j3/4, 2−j5/4] = ∅ for j ̸= k. Indeed,
if j < k then

2−k5/4 ≤ 2−(j−1)5/4 < 2−j3/4 where the latter follows from 5 < 6.

Then |ξ|
d
2 |f(ξ)| ∈ L2(Rd, dξ) since∫

Rd

|ξ|d|f(ξ)|2dξ =
∞∑
k=1

1

k2
22kd

∫
Rd

|ξ|dχ[3/4,5/4](2
k|ξ|)dξ =

∞∑
k=1

1

k2

∫
Rd

|ξ|dχ[3/4,5/4](|ξ|)dξ <∞

but f , which is supported in the ball B(0, 5/4), is not in L1(Rd, dξ) since otherwise we
would have

∞ >

∫
Rd

|f(ξ)|dξ ≥
n∑

k=1

1

k
2kd
∫
Rd

χ[3/4,5/4](2
k|ξ|)dξ =

n∑
k=1

1

k

∫
Rd

χ[3/4,5/4](|ξ|)dξ
n→+∞−−−−−→ ∞.

Remark 2.7. For s ∈ (0, 1) an equivalent definition of Ḣs(Rd) and of its norm is that

u ∈ Lloc(Rd) and

∫
Rd×Rd

|u(x+ y)− u(x)|2

|y|d+2s
dxdy <∞.

See [1, Proposition 1.37].

Later on we, when discussing the Navier Stokes Equation, we will deal with vector
fields. Given a vector field u = (uj)dj=1 ∈ (S ′(Rd))d its divergence is

divu = ∇ · u :=

d∑
j=1

∂

∂xj
uj .

Notice that d̂ivu = −i
∑d

j=1 ξ
j ûj so that a u is divergence free, that is divu = 0, if and only

if
∑d

j=1 ξ
j ûj = 0.

We have the following elementary representation in d = 3.
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Lemma 2.8. For any u ∈ D′(R3,R3) we have

△u = ∇(∇ · u)−∇× (∇× u). (2.5)

Proof. Obviously, summing on repeated indexes and for {−→e j}3j=1 the standard basis in R3,
we have

△u = ∂i∂juj
−→e i − (∂i∂juj

−→e i − ∂j∂jui
−→e i) (2.6)

Recalling the tensor εijk, defined by ε123 = 1, εijk = 1 if ijk is an even permutation of 123,
εijk = −1 if ijk is an odd permutation of 123, εijk = 0 if two indexes are equal, we have

∇× (∇× u) = εijk∂j(∇× u)k
−→e i = εijkεki′j′∂j∂i′uj′

−→e i

=
(
δii′δjj′ − δij′δji′

)
∂j∂i′uj′

−→e i = ∂j∂iuj
−→e i − ∂j∂jui

−→e i,

where we used the identity εijkεki′j′ = εijkεi′j′k = δii′δjj′ − δij′δji′ with Kronecker’s deltas.
The last two displayed formulas prove that (2.5) is true.

A similar representation is true for d = 2.

Lemma 2.9. For any u ∈ D′(R2,R2) we have

△u = ∇(∇ · u)−∇⊥(curl u), (2.7)

where curl u := ∂1u2 − ∂2u1 and ∇⊥V := (∂2V,−∂1V ).

Proof. From (2.5) we have

△u = ∇(∇ · u)−

 i j k
∂1 ∂2 ∂3
0 0 ∂1u2 − ∂2u1


= ∇(∇ · u)− (i∂2(∂1u2 − ∂2u1)− j∂1(∂1u2 − ∂2u1)) .

This gives (2.7).

Definition 2.10. We call Leray’s projector, the operator P defined by

(F(Pu))j = ûj − 1

|ξ|2
d∑

k=1

ξjξkû
k. (2.8)

We denote by H(Rd) the subspace of L2(Rd,Rd) formed by divergence free vector fields. We
will also consider V (Rd) := H(Rd) ∩H1(Rd,Rd) and C∞

cσ(Rd,Rd) := C∞
c (Rd,Rd) ∩H(Rd).

A direct and elementary computation yields the following.
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Lemma 2.11. We have

Pu = −△−1∇× (∇× u) for d = 3 and (2.9)

Pu = −△−1∇⊥(curl u) for d = 2. (2.10)

Proof (sketch). For example in the case d = 3, formally we have

P = 1− 1

△
∇div (2.11)

and from (2.5) we have

1− 1

△
∇div = − 1

△
∇× (∇× ⊔),

which yields (2.9). This was formal, but becomes rigorous taking Fourier Transform.

Lemma 2.12. C∞
cσ(Rd,Rd) is dense in H(Rd) for any d = 2, 3.

Proof. Let us consider dimension d = 3. If u ∈ H then u = ∇× A, for A = −△−1∇× u ∈
Ḣ1(R3,R3). Notice that from Lemma 2.2 we have that C∞

c (R3,R3) is dense in Ḣ1(R3,R3).
Since Ḣ1 ∋ A → ∇× A ∈ L2 is a bounded operator, the statement follows. For d = 2 the
argument is similar and can be generalized to all d.

Lemma 2.13. C∞
cσ(Rd,Rd) is dense in V (Rd) for any d.

Proof. The argument is similar to the previous one. Let us consider dimension d = 3. For
u ∈ V (Rd) we have u = ∇×A, for A = −△−1∇×u ∈ Ḣ1∩Ḣ2. But from Remark 2.3 we have
that C∞

c (Rd,Rd) is dense in Ḣ1(Rd,Rd) ∩ Ḣ2(Rd,Rd). Since Ḣ1 ∩ Ḣ2 ∋ A→ ∇×A ∈ H1

is a bounded operator, the statement follows. We will use this lemma only for d = 3.

For u ∈ Ḣk(Rd) and λ > 0 let us set Pλu := F∗(χ|ξ|≤λFu). Notice that this map sends

L2(Rd) into itself since

∥Pλu∥Ḣk(Rd) = ∥|ξ|kχ|ξ|≤λFu∥L2(Rd) ≤ ∥|ξ|kFu∥L2(Rd) = ∥u∥Ḣk(Rd).

Notice that Pλ is a projection, that is P2
λ = Pλ, by

P2
λu = Pλ ◦Pλu = F∗(χ|ξ|≤λFPλu) = F∗(χ2

|ξ|≤λFu) = F∗(χ|ξ|≤λFu) = Pλu.

If divu = 0 then also divPλu = 0. Indeed

(divu = 0 ⇔
d∑

j=1

ξj ûj = 0) ⇒ F(divPλu) =

d∑
j=1

ξjχ|ξ|≤λû
j = χ|ξ|≤λ

d∑
j=1

ξj ûj = 0,

which in turn implies divPλu = 0.
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2.1 Lp based Sobolev Spaces

The following spaces, for p ∈ (1,∞) are formed by tempered distributions u s.t. for s ∈ R:

Ẇs,p(Rd) requiring û in L1
loc(Rd) and with ∥u∥Ẇs,p(Rd) := ∥(|ξ|sû)∨∥Lp(Rd) ; (2.12)

Ws,p(Rd) defined with ∥u∥Ws,p(Rd) := ∥(⟨ξ⟩sû)∨∥Lp(Rd) . (2.13)

We will not use the above spaces except for p = 2. The following is true.

Theorem 2.14. We have

W k,p(Rd) = Wk,p(Rd) for all p ∈ (1,∞) and all k ∈ N. (2.14)

Proof. For this we need the theory of Calderon and Zygmund operators, see later in Sect.
3.

For p = 1 and p = ∞ (2.14) is not true, see [18].

2.2 A generalization of Young’s convolution inequality

We will use Young’s convolution inequality

∥f ∗ g∥Lr(Rd) ≤ ∥f∥Lp(Rd)∥g∥Lq(Rd) for
1

r
+ 1 =

1

p
+

1

q
(2.15)

but also a generalization.

Definition 2.15 (Distribution functions). The distribution function of a measurable func-
tion g : Rd → R is

dg(α) := vol({x ∈ Rd : |g(x)| > α}).

Notice that dg : [0,∞) → [0,∞] is decreasing. This implies that dg is measurable.
Notice that for a function g ∈ Lp(Rd) with 1 ≤ p <∞ we have∫

Rd

|g(x)|pdx =

∫
Rd

dx

∫ |g(x)|

0
pαp−1dα =

∫ ∞

0
dαpαp−1

∫
{x∈Rd:|g(x)|>α}

dx

=

∫ ∞

0
pαp−1dg(α)dα

(2.16)

where the 1st equality is elementary, the last follows immediately by the definition of dg(α),
and the 2nd follows from Tonelli’s Theorem applied to the positive measurable function
F (x, α) := |α|p−1χR+(|g(x)| − α)χR+(α).

Definition 2.16. The Lorentz space Lp,∞(Rd) are defined by

Lp,∞(Rd) = {f ∈ L1(Rd) + L∞(Rd) : ∥f∥Lp,∞(Rd) := sup
α>0

αd
1
p

f (α). (2.17)
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Example 2.17. Let f ∈ Lp(Rd). Then f ∈ Lp,∞(Rd) with

∥f∥Lp,∞(Rd) ≤ ∥f∥Lp(Rd). (2.18)

Indeed by Chebyshev’s inequality we have the following, which proves (2.18),

df (α) = vol({x : |f(x)| > α}) ≤
|f |p

Lp(Rd)

αp
for any α > 0 (2.19)

Inequality (2.19) follows immediately from

|f |p
Lp(Rd)

=

∫
Rd

|f(y)|pdy ≥
∫
{x:|f(x)|>α}

|f(y)|pdy ≥
∫
{x:|f(x)|>α}

αpdy

= αpvol({x : |f(x)| > α}) = αpdf (α).

So from (2.19) we have αd
1
p

f (α) ≤ |f |Lp(Rd).

Example 2.18. We have the following.

1. For a ∈ (0, 1) we have t−aχR+ ∈ Lp,∞(R) if and only if ap = 1.

2. For T ∈ R+ and a ∈ (0, 1) we have t−aχ[0,T ] ∈ Lp,∞(R) if and only if ap ≤ 1.

Notice that for t > 0 and α > we have t−a > α⇐⇒ t < α−1/a, so

α
∣∣{t ∈ R+ : t−a > α}

∣∣ 1p = α
(
α−1/a

) 1
p
= α

1− 1
ap

which is bounded in α ∈ R+ exactly when the last exponent is 0, that is if and only if
αp = 1. We have

α
∣∣{t ∈ R+ : t−aχ[0,T ] > α}

∣∣ 1p = α
∣∣{t ∈ (0, T ] : t−aχ[0,T ] > α}

∣∣ 1p
= α

(
min

(
T, α−1/a

)) 1
p
=

{
αT

1
p ≤ T

1
p
−a

if α ≤ T−a

α
1− 1

ap if α ≥ T−a

where α
1− 1

ap is unbounded if ap > 1 and is ≤ T
−a
(
1− 1

ap

)
if ap ≤ 1.

Example 2.19. For a ∈ (0, d) we have |x|−a ∈ Lp,∞(Rd) if and only if ap = d.
Indeed

α
∣∣∣{x ∈ Rd : |x|−a > α}

∣∣∣ 1p = α
(
cdα

−d/a
) 1

p
= c

1
p

d α
1− d

ap

which is bounded in α ∈ R+ exactly when the last exponent is 0, that is if and only if
ap = d.
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Theorem 2.20 (Refined Young’s convolution inequality). For 1 + 1
r = 1

p + 1
q with 1 <

p, q, r <∞ and some constant C,

∥g ∗ f∥Lr ≤ C∥g∥Lq,∞∥f∥Lp . (2.20)

Before discussing the proof of Theorem 2.20, we derive as a consequence the follow-
ing classical fractional integration theorem, which as we will see, is related to Sobolev’s
Embedding Theorem.

Theorem 2.21 (Hardy-Littlewood-Sobolev inequality). For any

γ ∈ (0, d) and 1 < p < q <∞ with
1

p
=

1

q
+
d− γ

d
(2.21)

there exists a constant C s.t.

∥
∫
Rd

f(x− y)|y|−γdy∥Lq(Rd) ≤ C∥f∥Lp(Rd). (2.22)

Proof. By Example 2.19 we have |x|−γ ∈ L
d
γ
,∞ (Rd

)
. Moreover 1+ 1

q = γ
d +

1
p is exactly the

condition in (2.21). So (2.22) follows from (2.20) and

∥
∫
Rd

f(x− y)|y|−γdy∥Lq(Rd) = ∥f ∗ |x|−γ∥Lq(Rd) ≤ C∥|x|−γ∥
L

d
γ ,∞(Rd)

∥f∥Lp(Rd).

Before giving the proof of Theorem 2.20 it is interesting to recall the proof of the
standard Young’s convolution inequality (2.15). It is enough to prove that for there exists
a constant Cq,p such that, if h ∈ Lr′(Rd), f ≥ 0, g ≥ 0, h ≥ 0, ∥g∥Lq = ∥f∥Lp = ∥h∥Lr′ = 1
and

I(f, g, h) =

∫
f(y)g(x− y)h(x)dxdy, we have I(f, g, h) ≤ Cq,p.

The condition 1
r + 1 = 1

p + 1
q is the same as 2 = 1

r′ +
1
p + 1

q . So we have(
2− 1

p
− 1

q

)
r′ = 1 ,

(
2− 1

p
− 1

r′

)
q = 1,(

2− 1

r′
− 1

q

)
p = 1,

which obviously is the same of as(
1− 1

p

)
r′ +

(
1− 1

q

)
r′ = 1(

1− 1

p

)
q +

(
1− 1

r′

)
q = 1(

1− 1

r′

)
p+

(
1− 1

q

)
p = 1.
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Hence

I(f, g, h) =

∫
(fp(y)gq(x− y))1−

1
r′
(
fp(y)hr

′
(x)
)1− 1

q
(
gq(x− y)hr

′
(x)
)1− 1

p
dxdy.

Using 1
r +

1
p′ +

1
q′ = 1, by Hölder inequality we obtain

I(f, g, h) ≤
(∫

fp(y)gq(x− y)dxdy

) 1
r
(∫

fp(y)hr
′
(x)dxdy

) 1
q′
(∫

gq(x− y)hr
′
(x)dxdy

) 1
p′

.

From this we obtain the standard Young’s convolution inequality (2.15).
The proof of Theorem 2.20 is more subtle. A rather direct proof of Theorem 2.20 is in

[1]. It seems to be directly inspired by the classical proof of Strichartz estimates by Keel
and Tao [7]. It is based on the following atomic decomposition of elements in Lp(Rd).

Lemma 2.22 (Atomic decomposition). Let p ∈ (0,∞). Then any f ∈ Lp
x can be written as

f =
∑
k∈Z

ckχk

where meas(suppχk) ≤ 2 2k, |χk| ≤ 2
− k

p and 2
− 1

p ∥f∥Lp ≥ ∥ck∥ℓp ≤ 2
1
p ∥f∥Lp .

Proof. Consider the distribution function df (α) = meas({|f(x)| > α}). Then for each k
consider

αk := inf
df (α)<2k

α , ck := 2
k
pαk , χk :=

1

ck
χ(αk+1,αk](|f |)f.

Notice that {αk}k∈Z is decreasing in k (since, the larger k, the larger is the set {α : df (α) <
2k}).
We show the desired properties. We have

suppχk ⊆ {x : αk+1 < |f(x)| ≤ αk} ⊆ {x : |f(x)| > αk+1}.

Then we get the 1st inequality:

meas(suppχk) ≤ meas({x : |f(x)| > αk+1}) = lim
α→α+

k+1

df (α) = sup{df (α) : α > αk+1}) ≤ 2k+1.

Next, by |f(x)| ≤ αk in suppχk, we have

|χk(x)| ≤ 2
− k

p
|f(x)|
αk

≤ 2
− k

p .

Let now lim
k→+∞

αk = inf
k∈Z

αk = α and lim
k→−∞

αk = sup
k∈Z

αk = α. Then we claim that α = 0

and that |f(x)| ≤ α a.e. Indeed, suppose that |f(x)| > α on a set of positive measure.
There there is α > α with df (α) > 2k for some k ∈ Z. Then αk ≥ α > α, which is a
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contradiction. On the other hand, suppose we have 0 < α < α. Then df (α) = ∞, since
otherwise df (α) < 2k for a k, and then α ≥ αk ≥ α > α, getting a contradiction. But by
Chebyshev’s inequality,

∞ > ∥f∥pLp ≥ αpdf (α),

hence getting a contradiction. The above claim and the obvious fact that for any x we

have |f(x)| ∈ (αk+1, αk] for at most one k, prove f =
∑
k∈Z

ckχk (the claim guarantees the

existence of one such k).

We have ∥f∥Lp ≤ 2
1
p ∥ck∥ℓp by

∥f∥pLp =

∫
|f |pdx =

∫ ∑
k∈Z

|ck|p|χk|pdx =
∑
k∈Z

|ck|p
∫

|χk|pdx ≤
∑
k∈Z

|ck|p2−kmeas(suppχk)

≤ 2
∑
k∈Z

|ck|p

Next we have∑
k∈Z

|ck|p =
∑
k∈Z

2kαp
k =

∫
R+

αp
(∑

2kδ(α− αk)
)
dα =

∫
R+

αp(−F ′(α))dα

where

F (α) :=
∑
k∈Z

2kH(αk − α) =
∑
αk>α

2k ≤
∑

2k≤dg(α)

2k ≤ 2df (α).

Then, integrating by parts and using (2.16),∑
k∈Z

|ck|p = p

∫
R+

αp−1F (α)dα ≤ 2p

∫
R+

αp−1df (α)dα = 2∥f∥pLp ,

so that ∥ck∥ℓp ≤ 2
1
p ∥f∥Lp .

Proof of Theorem 2.20. It is enough to show that there exists a constant Cq,p such that, if
h ∈ Lr′(Rd), f ≥ 0, g ≥ 0, h ≥ 0, ∥g∥Lq,∞ = ∥f∥Lp = ∥h∥Lr′ = 1 and

I(f, g, h) =

∫
f(y)g(x− y)h(x)dxdy,

then

I(f, g, h) ≤ Cq,p. (2.23)

Now, for

Cj := {x : 2j < g(x) ≤ 2j+1}
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we have

I(f, g, h) ≤ 2j+1Ij(f, h) where Ij(f, h) =

∫
f(y)χCj (x− y)h(x)dxdy.

Using the atomic decomposition and Hölder inequality and (the standard) Young’s inequal-
ity for convolutions, we have

Ij(f, h) =
∑
k,ℓ

ckdℓIj(fk, hℓ) ≤
∑
k,ℓ

ckdℓ∥fk ∗ χCj∥Lb′∥hℓ∥Lb

≤
∑
k,ℓ

ckdℓ∥χCj∥Lc′∥fk∥La∥hℓ∥Lb where
1

b′
+ 1 =

1

c′
+

1

a
,

where the latter is the same as 1
c = 1

a + 1
b − 1 and requires b′ > a and hence b < a′. Now

we have

∥χCj∥Lc′ = ∥χCj∥
1/c′

L1 ≤
(
dg(2

j)
)1/c′ ≤ 2−

qj
c′ = 2qj(

1
a
+ 1

b
−2),

∥fk∥La ≤ ∥fk∥L∞ |supp fk|
1
a ≤ 2

− k
p 2

k+1
a and

∥hℓ∥Lb ≤ ∥hℓ∥L∞ |supp hℓ|
1
b ≤ 2−

ℓ
r′ 2

ℓ+1
b .

Hence

2jIj(f, h) ≤ 4
∑
k,ℓ

ckdℓ2
jq 1

q 2qj(
1
a
+ 1

b
−2)2

k
(

1
a
− 1

p

)
2ℓ(

1
b
− 1

r′ ) and, by
1

q
= 2− 1

r′
− 1

p
,

= 4
∑
k,ℓ

ckdℓ2
qj
(

1
a
+ 1

b
− 1

r′−
1
p

)
2
k
(

1
a
− 1

p

)
2ℓ(

1
b
− 1

r′ )

= 4
∑
k,ℓ

ckdℓ2
(qj+k)

(
1
a
− 1

p

)
2(qj+ℓ)( 1

b
− 1

r′ ).

Now let ε > 0 small enough and set

1

a
:=

1

p
− εsign (qj + k)

1

b
:=

1

r′
− εsign (qj + ℓ) .

Notice that 1 < p, q, r < ∞ imply 1 < a, b < ∞. Furthermore 1 < p, q, r < ∞ and
1
r + 1 = 1

p + 1
q imply p < r ⇔ p′ > r′ and for ε > 0 small enough this yields b < a′.

Then we have ∑
j

2jIj(f, h) ≤ 4
∑
k,k̃

ckdk̃

∑
j

2−ε|qj+k|2−ε|qj+k̃|.
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We claim that for a fixed C = C(q, ε)∑
j

2−ε|k+jq|−ε|k̃+jq| =
∑
j

2−ε|k−jq|−ε|k̃−jq| ≤ C2−ε|k−k̃|(1 + |k − k̃|), (2.24)

where the equality is obvious. To prove the inequality, it is not restrictive to assume k ≤ k̃.
Then the summation on the left can be rewritten as∑

jq≤k

22εjq−ε(k+k̃) +
∑

k<jq≤k̃

2−ε(k̃−k) +
∑
k̃<jq

2ε(k+k̃)−2εjq.

Then (here [t] ∈ Z is the integer part of t ∈ R, defined by [t] ≤ t < [t] + 1)

∑
jq≤k

22εjq−ε(k+k̃) = 2−ε(k+k̃)
∑
j≤[ kσ ]

22εjq = 2−ε(k+k̃)
∞∑
j=0

22εσ([
k
σ ]−j) = Cεq 2

−ε(k+k̃)+2εq
[
k
q

]

≤ Cεq2
−ε(k+k̃)+2εq k

σ = Cεq2
−ε(k̃−k) = Cεq2

−ε|k−k̃| where Cεq =
1

1− 2−2εq
.

We have∑
k̃<jq

2ε(k+k̃)−2εjq ≤ 2ε(k+k̃)
∑

j≥
[
k̃
q

]
+1

2−2εjq = 2ε(k+k̃)
∞∑
j=0

2
−2εq

([
k̃
q

]
+1+j

)
= Cεq2

ε(k+k̃)−2εq
([

k̃
q

]
+1
)

≤ Cεq2
ε(k+k̃)−2εq k̃

q = Cεq2
−ε(k̃−k) = Cεq2

−ε|k−k̃|.

Finally

∑
k<jq≤k̃

2−ε(k̃−k) = 2−ε(k̃−k)
∑

[
k
q

]
+1≤jσ≤

[
k̃
q

] 1 = 2−ε(k̃−k)

([
k̃

q

]
−
[
k

q

]
− 1

)
≤ q−12−ε(k̃−k)(k̃ − k)

Hence (2.24) is proved.
Then we have∑

j

2jIj(f, h) ≤ 4C
∑
k

ck
∑
k̃

d
k̃
2−ε|k−k̃|(1 + |k − k̃|)

≤ 4C∥ck∥ℓp(Z)∥
∑
k̃

d
k̃
2−ε|k−k̃|(1 + |k − k̃|)∥ℓp′ (Z)

≤ 4C∥2−ε|j|(1 + |j|)∥ℓ1(Z)∥ck∥ℓp(Z)∥dk̃∥ℓp′ (Z) ≤ C ′∥ck∥ℓp(Z)∥dk̃∥ℓp′ (Z)
≤ C ′′∥ck∥ℓp(Z)∥dk̃∥ℓr′ (Z) ≤ 4C ′′∥f∥Lp(Rd)∥h∥Lr′(Rd) = 4C ′′.

So we have found (2.23) with Cq,p = 4C(q, ε)∥2−ε|j|(1 + |j|)∥ℓ1(Z) with C(q, ε) the constant
in (2.24).
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2.3 Back to Sobolev Embedding

We go back to the Hardy, Littlewood and Sobolev inequality. The following, which will be
used soon but also later on, is proved like in [18] p.73..

Lemma 2.23. For any γ ∈ (0, d) there exists cγ > 0 s.t.

F(| · |−γ)(ξ) = cγ |ξ|γ−d. (2.25)

Proof. It is enough to show that for any ϕ ∈ S(Rd) we have∫
Rd

|x|−γϕ(x)dx = cγ

∫
Rd

|ξ|γ−dϕ̂(ξ)dξ. (2.26)

Starting from (1.2) and Plancherel we have∫
Rd

ε−
d
2 e−

|x|2
2ε ϕ(x)dx =

∫
Rd

e−ε
|ξ|2
2 ϕ̂(ξ)dξ.

Now we apply to both sides
∫∞
0

dε
ε ε

d−γ
2 and commuting order of integration we obtain∫

Rd

dxϕ(x)

∫ ∞

0
ε−

γ
2 e−

|x|2
2ε
dε

ε︸ ︷︷ ︸
aγ |x|−γ

=

∫
Rd

dξϕ̂(ξ)

∫ ∞

0
ε

d−γ
2 e−ε

|ξ|2
2
dε

ε︸ ︷︷ ︸
bγ |ξ|γ−d

for appropriate constants aγ and bγ . In fact aγ = 2
γ
2Γ
(γ
2 + 1

)
, bγ = 2

d−γ
2 Γ

(
d−γ
2

)
and

cγ =
2
d−γ
2 Γ( d−γ

2 )
2
γ
2 Γ( γ

2
+1)

.

We have the following version of Sobolev’s Embedding Theorem.

Theorem 2.24 (Sobolev Embedding Theorem with fractional derivatives). Let p ∈ (1,∞),
0 < s < d

p and 1
q = 1

p − s
d . Then there exists a C s.t. we have

∥f∥Lq(Rd) ≤ C∥f∥Ẇs,p(Rd) for any f ∈ S(Rd). (2.27)

Proof. For f ∈ S(Rd) we have for some fixed c

f(x) := (2π)−
d
2

∫
Rd

eiξ·x|ξ|−s
(
|ξ|sf̂(ξ)

)
dξ = c

∫
Rd

|x− y|s−dg(y)dy where ĝ(ξ) = |ξ|sf̂(ξ)

where we used φ̂ ∗ T = (2π)
d
2 φ̂ T̂ which holds for φ ∈ S(Rd) and T ∈ S ′(Rd).

Since g ∈ Lp(Rd), by the Hardy-Littlewood-Sobolev Theorem we have that f ∈ Lq(Rd) for

1

q
=

1

p
− d− (d− s)

d
=

1

p
− s

d

Notice that for 0 < s < d
2 we know that Ḣs(Rd) contains S(Rd) as a dense subspace,

so (2.27) with p = 2 extends to all f ∈ Ḣs(Rd).

17



2.4 Assorted inequalities

Lemma 2.25 (Interpolation of Sobolev norms). For any s ∈ [0, 1] and any k = sk1 + (1−
s)k2 we have

∥f∥Ḣk(Rd) ≤ ∥f∥s
Ḣk1 (Rd)

∥f∥1−s
Ḣk2 (Rd)

for any f ∈ Ḣk1(Rd) ∩ Ḣk2(Rd). (2.28)

In particular, for s ∈ [0, 1] and any f ∈ H1(Rd)

∥f∥Ḣs(Rd) ≤ ∥f∥1−s
L2(Rd)

∥f∥s
Ḣ1(Rd)

(2.29)

Proof. (2.29) follows from (2.28) for k1 = 1 and k2 = 0. So let us turn to (2.28).
Obviously there is nothing to prove for s = 0, 1, so we can assume s ∈ (0, 1). Notice that
for p = 1

s we have p′ := p
p−1 = 1

1−s . Now, we have

∥f∥2
Ḣk(Rd)

=

∫ (
|ξ|2sk1 |f̂(ξ)|2s

)(
|ξ|2(1−s)k2 |f̂(ξ)|2(1−s)

)
dξ

≤ ∥|ξ|2sk1 |f̂(ξ)|2s∥
L

1
s (Rd)

∥|ξ|2(1−s)k2 |f̂(ξ)|2(1−s)∥
L

1
1−s (Rd)

= ∥|ξ|k1 |f̂(ξ)|∥2sL2(Rd)∥|ξ|
k1 f̂(ξ)∥2(1−s)

L2(Rd)
= ∥f∥2s

Ḣk1 (Rd)
∥f∥2(1−s)

Ḣk2 (Rd)
.

Lemma 2.26 (Agmon’s inequality). Given a pair 0 < r < d/2 < s we have

∥u∥L∞(Rd) ≤ ∥u∥
s− d

2
s−r

Ḣr(Rd)
∥u∥

d
2−r

s−r

Ḣs(Rd)
. (2.30)

Example 2.27. For instance,

∥u∥L∞(R3) ≤ ∥∇u∥
1
2

L2(R3)
∥∇2u∥

1
2

L2(R3)
, (2.31)

where notice that here we are assuming û ∈ L1
loc(R3,R3), which excludes additive constants.

It is well known that H
d
2 (Rd) ̸⊂ L∞(Rd). Indeed, for û(ξ) :=

⟨ξ⟩−d

1 + log ⟨ξ⟩
we have u ∈

H
d
2 (Rd). On the other hand we have û ̸∈ L1(Rd) . We show that u ̸∈ L∞(Rd). Suppose

by contradiction that u ∈ L∞(Rd). Then for χ ∈ C∞
c (Rd, [0, 1]) with χ(0) = 1, radial and

decreasing as |ξ| grows,∫
Rd

χ(ξ/k)û(ξ)dξ =

∫
Rd

kdχ̂(kx)u(x)dx ≤ ∥χ̂∥L1(Rd)∥u∥L∞(Rd)

where the first equality follows from Plancherel.

But then, since χ(ξ/k)û(ξ) is an increasing sequence of functions, we have χ(·/k)û k→∞−−−→ û
in L1(Rd) with ∥û∥L1(Rd) ≤ ∥χ̂∥L1(Rd)∥u∥L∞(Rd). This is a contradiction.
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Proof of Lemma 2.26. For R > 0 we have

|u(x)| ≤ (2π)−
d
2

∫
|ξ|<R

|û(ξ)| |ξ|r |ξ|−rdξ + (2π)−
d
2

∫
|ξ|>R

|û(ξ)| |ξ|s |ξ|−sdξ

≤ (2π)−
d
2 ∥u∥Ḣr(Rd)

(∫
|ξ|<R

|ξ|−2rdξ

) 1
2

+ (2π)−
d
2 ∥u∥Ḣs(Rd)

(∫
|ξ|>R

|ξ|−2sdξ

) 1
2

≲ ∥u∥Ḣr(Rd)R
d
2
−r + ∥u∥Ḣs(Rd)R

d
2
−s.

We choose R so that the two terms are equal, which yields

R =
∥u∥

1
s−r

Ḣs(Rd)

∥u∥
1

s−r

Ḣr(Rd)

,

so that |u(x)| ≤ Cd∥u∥
1−( d

2
−r) 1

s−r

Ḣr(Rd)
∥u∥(

d
2
−r) 1

s−r

Ḣs(Rd)
.

Later in Sect. 12 we will use the following modification of Lemma 2.26.

Lemma 2.28. Let U ⊂ R3 be a bounded open subspace with ∂U a smooth submanifold of
R3 and suppose f ∈ Hk(U) with k ≥ 2. Then for any r ∈ [1, 2] we have

∥f∥L∞(U) ≤ Ck,r∥f∥θLr(U)∥f∥
1−θ
Hk(U)

with θ =
r
(
k − 3

2

)
kr + 3

2(2− r)
. (2.32)

Proof. We know that there is an appropriate extension operator Hk(U) ∋ f → Ef ∈
Hk(Rd) with Ef |U = f . Then we use

∥Ef∥H1(R3) ≤ ∥Ef∥1−
1
k

L2(R3)
∥Ef∥

1
k

Hk(R3)
and ∥Ef∥H2(R3) ≤ ∥Ef∥1−

2
k

L2(R3)
∥Ef∥

2
k

Hk(R3)

and Agmon’s

∥Ef∥L∞(R3) ≤ ∥Ef∥
1
2

H1(R3)
∥Ef∥

1
2

H2(R3)
≤ ∥Ef∥1−

3
2k

L2(R3)
∥Ef∥

3
2k

Hk(R3)

which yields

∥f∥L∞(U) ≤ c∥f∥1−
3
2k

L2(U)
∥f∥

3
2k

Hk(U)
.

Substitute by Hölder ∥f∥L2(U) ≤ ∥f∥
r
2

Lr(U)∥f∥
1− r

2

L∞(U) and then we get

∥f∥L∞(U) ≤ c∥f∥
r
2(1−

3
2k )

Lr(U) ∥f∥(1−
r
2)(1−

3
2k )

L∞(U) ∥f∥
3
2k

Hk(U)
.
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Solving with respect to ∥f∥L∞(U) we obtain

∥f∥1−(1−
r
2)(1−

3
2k )

L∞(U) = ∥f∥
r
2
+ 3

2k
− 3r

4k

L∞(U) ≤ c∥f∥
r
2(1−

3
2k )

Lr(U) ∥f∥
3
2k

Hk(U)
.

So we get the following, which is the desired result:

∥f∥
r
2
+ 3

2k
− 3r

4k

L∞(U) ≤ c1∥f∥

r
2(1− 3

2k )
r
2+ 3

2k
− 3r

4k

Lr(U) ∥f∥

3
2k

r
2+ 3

2k
− 3r

4k

Hk(U)
= c1∥f∥

r(k− 3
2)

kr+3− 3r
2

Lr(U) ∥f∥
3

kr+3− 3r
2

Hk(U)
.

Theorem 2.29 (Gagliardo–Nirenberg). If p ∈ [2,∞) is s.t. 1
p >

1
2 − 1

d then there exists C
s.t.

∥f∥Lp(Rd) ≤ C∥f∥1−s
L2(Rd)

∥f∥s
Ḣ1(Rd)

where s = d

(
1

2
− 1

p

)
. (2.33)

Proof. By Sobolev, for 1
p = 1

2 − s
d we have

∥f∥Lp(Rd) ≤ C∥f∥Ḣs(Rd).

Here s is like in the statement. Also s = d
(
1
2 − 1

p

)
< 1 ⇔ 1

2 − 1
p < 1

d . Finally, apply

(2.29).

Remark 2.30. For p = 4 and d = 2, 3 we have s = d/4 and ∥f∥L4(Rd) ≤ C∥f∥1−d/4

L2(Rd)
∥f∥d/4

Ḣ1(Rd)
.

Lemma 2.31 (Gronwall’s inequality). Let T > 0, λ and φ two functions in L1(0, T ), both
≥ 0 a.e., and C1, C2 two non negative constants. Let λφ ∈ L1(0, T ) and let

φ(t) ≤ C1 + C2

∫ t

0
λ(s) φ(s)ds for a.e. t ∈ (0, T ).

Then we have
φ(t) ≤ C1e

C2

∫ t
0 λ(s)ds for a.e. t ∈ (0, T ).

Proof. Set

ψ(t) := C1 + C2

∫ t

0
λ(s) φ(s)ds.

Then ψ(t) is absolutely continuous and so it is differentiable almost everywhere and we have

ψ′(t) = C2λ(t) φ(t) ≤ C2λ(t) ψ(t) for a.e. t ∈ (0, T ).

Also, the function ψ(t)e−C2

∫ t
0 λ(s)ds is absolutely continuous with

d

dt

(
ψ(t)e−C2

∫ t
0 λ(s)ds

)
≤ 0 for a.e. t ∈ (0, T ).

Then we have

ψ(t) ≤ eC2

∫ t
0 λ(s)dsψ(0) = C1e

C2

∫ t
0 λ(s)ds for all t ∈ (0, T ).

Since φ(t) ≤ ψ(t) a.e., the result follows.
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3 The Calderon–Zygmund theory

3.1 Hardy Littlewood maximal function

Let f ∈ L1
loc(Rd) and consider (for B(x, r) the ball of center x and radius r in Rd) averages

Arf(x) =
1

vol(B(x, r))

∫
B(x,r)

f(y)dy.

Notice that for any r > 0 the function x → Arf(x) is continuous. Indeed, fix δ0 > 0 and
consider δx ∈ B(0, δ0). Then by the triangular inequality B(x+ δx, r) ⊂ B(x, r + δ0). So,
for δx ∈ B(0, δ0)

Arf(x)−Arf(x+δx) =
1

vol(B(0, 1))rd

∫
B(x,r+δ0)

(
χB(x,r)\B(x+δx,r)(y)− χB(x+δx,r)\B(x,r)(y)

)
f(y)dy

with for any y(
χB(x,r)\B(x+δx,r)(y)− χB(x+δx,r)\B(x,r)(y)

)
χB(x,r+δ0)(y)f(y)

|δx|→0→ 0.

By dominated convergence Arf(x)−Arf(x+ δx) → 0. We define

Mf(x) = sup
r>0

Ar|f |(x). (3.1)

From the definition we conclude that Mf is lower semi continuous that is {x :Mf(x) > a}
is open for any a. It also obvious that M is sub additive:

M(f + g)(x) ≤Mf(x) +Mg(x).

We have the following obvious estimate

|Mf(x)| ≤ |f |L∞(Rd). (3.2)

One important fact is that it is not true that M maps L1(Rd) into itself. Indeed if say
K ⊂ Rd is any compact set and if B(0, c0) ⊃ K, then since for |x| > c0 we have B(x, 2|x|) ⊃
B(0, |x|) ⊃ K, we have computing at r = 2|x|

MχK(x) = sup
r>0

vol(B(x, r) ∩K)

vol(B(0, 1))rd
≥ vol(K)

vol(B(0, 1))2d|x|d

which shows that MχK ̸∈ L1(Rd).
Notice that each g ∈ L1(Rd) satisfies Chebyshev’s inequality:

vol({x : |g(x)| > α}) ≤
|g|L1(Rd)

α
for any α > 0 (3.3)
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Indeed (3.3) follows immediately from.

|g|L1(Rd) =

∫
Rd

|g(y)|dy ≥
∫
{x:|g(x)|>α}

|g(y)|dy ≥
∫
{x:|g(x)|>α}

αdy = αvol({x : |g(x)| > α})

If T : L1(Rd) → L1(Rd) satisfies ∥Tf∥L1(Rd) ≤ A∥f∥L1(Rd) for all f ∈ L1(Rd) and for a fixed
constant A, from (3.3) it is easy to conclude that

vol({x : |Tf(x)| > α}) ≤ A

α
|f |L1(Rd) for any α > 0 and any f ∈ L1(Rd).

Unfortunately we have seen that M does not map L1(Rd) into itself. However we will show
that it satisfies the last property. Indeed we will prove now that M is weak (1, 1) bounded,
that is there exists a constant A > 0 (in fact we will prove A = 3d) s.t.

vol({x :Mf(x) > α}) ≤ A

α
|f |L1(Rd) for any α > 0 . (3.4)

To prove this we consider the set {x : Mf(x) > α}. Then, for any x in this set, there is a
ball with center in x, which we denote by Bx, with

∫
Bx

|f | > αvol(Bx). Pick any compact
subset K of the above set, and cover it with such balls Bx. Extract now a finite cover,
corresponding to finitely many points x1, ...xN . We have the following covering result,
which we state without proof.

Theorem 3.1 (Vitali’s lemma). Let Bx1,...,BxN be a finite number of balls in Rd. There
exists a subset of balls

{B1, ..., Bm} ⊆ {Bx1 , ..., BxN } (3.5)

with the B1...Bm pairwise disjoint, s.t.

vol(Bx1 ∪ · · · ∪BxN ) ≤ 3d
m∑
j=1

vol(Bj). (3.6)

We consider balls B1...Bm as in (3.5) and from

K ⊂ Bx1 ∪ · · · ∪BxN ⇒ vol(K) < vol(Bx1 ∪ · · · ∪BxN ),

from (3.6) and from the definition of the Bxj we get

3−dvol(K) ≤
m∑
j=1

vol(Bj) <

m∑
j=1

1

α

∫
Bj

|f | ≤ |f |1
α
. (3.7)

(3.7) implies vol(K) ≤ 3dα−1|f |1. By vol({x : |Mf(x)| > α}) = supK⊂{x:|Mf(x)|>α} vol(K)
for compact sets K, then (3.7) implies (3.4).

(3.2) and (3.4) imply by the Marcinkiewicz Interpolation Theorem 3.2, proved below,

∥Mf∥Lp(Rd) < Ap∥f∥Lp(Rd) for all p ∈ (1,∞] . (3.8)

We will use this result in the proof of the Hardy-Littlewood-Sobolev Theorem, and of
Sobolev’s estimates.
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Theorem 3.2 (Marcinkiewicz Interpolation). Let T : L1(Rd) + L∞(Rd) → L1
loc(Rd) be a

sublinear operator s.t. for two constants A1 and A∞ and for all f

∥Tf∥L∞(Rd) ≤ A∞∥f∥L∞(Rd) (3.9)

|{x : |Tf(x)| > α}| ≤ A1

α
|f |L1(Rd) for any α > 0 . (3.10)

Then for any p ∈ (1,∞) there is a constant Ap such that for any f ∈ Lp(Rd) we have

∥Tf∥Lp(Rd) ≤ Ap∥f∥Lp(Rd). (3.11)

Proof. Dividing T by a constant, we can assume A∞ = 1. Fix p ∈ (1,∞) and f ∈ Lp(Rd).
For α > 0 arbitrary set

f1(x) =

{
f(x) if |f(x)| ≥ α

2
0 otherwise.

Notice that f1 ∈ L1(Rd) by∫
Rd

|f1(x)|dx =

∫
{x:|f(x)|≥α

2
}
|f(x)|dx ≤ 2p−1

αp−1

∫
Rd

|f(x)|pdx.

Using (3.9), we get |Tf(x)| ≤ |Tf1(x)|+ α
2 , since ∥f − f1∥L∞(Rd) ≤ α

2 . Then

{x : |Tf(x)| > α} ⊆ {x : |Tf1(x)| >
α

2
}.

We have, using (3.10),

vol({x : |Tf1(x)| >
α

2
}) ≤ A1

2

α

∫
Rd

|f1(x)|dx = A1
2

α

∫
{x:|f(x)|≥α

2
}
|f(x)|dx.

Substituting g = Tf in (2.16)∫
Rd

|Tf(x)|pdx =

∫ ∞

0
pαp−1vol({x : |Tf(x)| > α})dα

≤
∫ ∞

0
pαp−1vol({x : |Tf1(x)| >

α

2
})dα ≤ 2A1

∫ ∞

0
pαp−2

∫
{x:|f(x)|≥α

2
}
|f(x)|dx

= 2pA1

∫
Rd

dx|f(x)|
∫ 2|f(x)|

0
αp−2dα︸ ︷︷ ︸

2p−1|f(x)|p−1

p−1

=
2pp

p− 1
A1

∫
Rd

|f(x)|pdx.
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3.2 Calderon–Zygmund kernels

We consider now Calderon–Zygmund (CZ) kernels. We will use the following definition.

Definition 3.3. In these notes, we will say that a function K : Rd × Rd\∆ → C with ∆
the diagonal {(x, x) : x ∈ Rd}, is CZ if there exists a fixed constant C s.t. the following
conditions hold:

(C–Z1) we have

|K(x, y)| ≤ C

|x− y|d
for any x ̸= y and

|∇x,yK(x, y)| ≤ C

|x− y|d+1
for any x ̸= y.

(3.12)

(C–Z2) there is an operator T , which satisfies

Tf(x) =

∫
Rd

K(x, y)f(y)dy for x ̸∈ supp f (3.13)

and which defines a bounded operator T : L2(Rd) → L2(Rd) with norm bounded by
C.

There are many examples.

Example 3.4. 1. Let us consider the operator Rj =
∂j√
−△ which is a well defined bounded

operator in L2(Rd) since

R̂jf(ξ) = −i
ξj
|ξ|
f̂(ξ).

Notice that for K = F∗
(
−i

ξj
|ξ|

)
, we have Rjf(x) = (2π)−

d
2K ∗ f(x) where for φ ∈

C∞
c (Rd, [0, 1]) any function with φ = 1 in B(0, a) and φ = 0 outside B(0, b), for some

0 < a < b, we have

K(x) = −i lim
R→+∞

(2π)−
d
2

∫
Rd

eiξ·x
ξj
|ξ|
φ(ξ/R)dξ.

It is easy to see that for any x ̸= 0 the above limit converges and that K(x − y)
satisfies the inequalities (3.12) for a fixed C. For example, the 1st inequality follows
splitting ∫

Rd

eiξ·x
ξj
|ξ|
φ(ξ|x|)φ(ξ/R)dξ +

∫
Rd

eiξ·x
ξj
|ξ|
φ(ξ/R)(1− φ(ξ|x|))dξ

where we bound the absolute value of the 1st integral by∫
|ξ|≤ b

|x|

dξ =
bdvol(Sd−1)

d

1

|x|d
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and the absolute value of the 2nd integral by means of an integration by parts using

Leiξ·x = eiξ·x with L :=
x · ∇ξ

i|x|2
, and writing it as∫

Rd

eiξ·x(L∗)N
[
ξj
|ξ|
φ(ξ/R)(1− φ(ξ|x|))

]
dξ.

It is now easy to see that∣∣∣∣(L∗)N
[
ξj
|ξ|
φ(ξ/R)(1− φ(ξ|x|))

]∣∣∣∣ ≤ CN
1

|x|N |ξ|N
.

Hence the absolute of the 2nd integral is bounded by

CN
1

|x|N

∫
|ξ|≥ a

|x|

1

|ξ|N
dξ ≤ C ′

N

|x|N−d

aN−d|x|N
=

C ′
N

aN−d

1

|x|d
.

The 2nd inequality in (3.12) can be obtained noticing that

∂kK(x) = −i lim
R→+∞

(2π)−
d
2

∫
Rd

eiξ·xξk
ξj
|ξ|
φ(ξ/R)dξ.

When one considers the above inequalities with an additional factor ξk inside the
integral, one gets the upper bound of the 2nd inequality in (3.12).

The operators Rj are called Riesz transforms.

2. The above discussion works out similarly with operators
∂j√
1−△ and ∂α

(1−△)
k
2

with α

any multi–index with |α| ≤ k. In particular,
∂j√
1−△ has symbol

−iξj
⟨ξ⟩ .

3. Notice that (Pu)j = uj −RjRkuk, and so in particular it is a CZ operator.

4. Let us consider in R the Hilbert transform

Hf(x) := − 1

π
lim
ε→0+

∫
|x−y|>ε

f(y)

x− y
dy = − 1

π
(P.V

1

x
) ∗ f (3.14)

with P.V 1
x the tempered distribution that acts on a ϕ ∈ S(R) as lim

ε→0+

∫
|x|>ε

ϕ(x)

x
dx.

Notice that using the Residue theorem we have

lim
ε→0+

∫
|x|>ε

e−iξxdx

x
= −iπsign(ξ)

so that
1

π
F(P.V.

1

x
) = −i(2π)−

1
2 sign(ξ).

Then
F(Hf)(ξ) = −isign(ξ)f̂(ξ).

which implies that (C–Z2) is true. Since (C–Z1) is obvious, we conclude that the
Hilbert transform meets the conditions of Definition 3.3.
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Remark 3.5. Consider the operator TR+f := F∗
[
χR+ f̂

]
. Then χR+ = 2−1i(−isign − i)

implies TR+ = 2−1(I + iH). Analogously TR− = 2−1(I − iH). Next,

T(a,+∞) = 2−1(I + ieiaxHe−iax) and T(−∞,b) = 2−1(I − ieibxHe−ibx).

Finally
T(a,b) = 2−1(T(a,+∞) − T(b,+∞)) = 4−1i(eiaxHe−iax − eibxHe−ibx).

Next, if in Rd we consider the half–plane x1 > 0, then

F∗
[
χ{x1>0}f̂

]
= 2−1(I + iH1)f where

(H1f)(x1, x2, ...., xd) := H(f(·, x2, ...., xd))(x1).

In general, any operator of the form F∗
[
χP f̂

]
with P a polygon in Rd can be expressed in

terms of the Hilbert transform.

Remark 3.6. Let p ∈ (1,∞) and let Lp(R,C) ∋ f = lim
y→0+

F (·+ iy) where

F : {x+ iy : x ∈ R, y > 0} → C is a holomorphic function with sup
y>0

∫
R
|F (x+ iy)|pdx <∞.

Then, if u = Re f and v = Im f , we have v = Hu (and, by H2 = −1, u = −Hv). We give
a brief impressionistic and non–rigorous discussion of how this comes about. Notice that if
f is the boundary value in R of F by Cauchy integral formula we have

F (x+ iy) =
1

2πi

∫
R

1

t− x− iy
f(t)dt =

1

2πi
(

1

· − iy
∗ f)(x)

where here we assume f ∈ S(R,C). Then for y → 0+ by the Sokhotski–Plemelj theorem
we get

lim
y→0+

1

t− iy
= P.V.

1

t
+ iπδ(t) in S ′(R,C). (3.15)

This implies, assuming here F ∈ C0(R× [0,∞)), that by f(x) = lim
y→0+

F (x+ iy) we have

f(x) =
1

2πi

(
lim
ε→0+

∫
|x|>ε

f(x)

x
dx+ iπf(x)

)
,

that is f = iHf , which is the desired result.
As for (3.15), for f ∈ S(R) we have∫

R

f(t)

t− iy
dt =

∫
R

t

t2 + y2
f(t)dt+ i

∫
R

y

t2 + y2
f(t)dt.

By a change of variables, by dominated convergence and by the continuity of f in 0 we have∫
R

y

t2 + y2
f(t)dt =

∫
R

1

t2 + 1
f(ty)dt

y→0→ πf(0).
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Next we write∫
R

t

t2 + y2
f(t)dt =

∫
|t|≤y

t

t2 + y2
f(t)dt+

∫
|t|≥y

t

t2 + y2
f(t)dt.

We have ∣∣∣∣∣
∫
|t|≤y

t

t2 + y2
f(t)dt

∣∣∣∣∣ =
∣∣∣∣∣
∫
|t|≤y

t

t2 + y2
(f(t)− f(0))dt

∣∣∣∣∣ y→0→ 0.

Next we write∫
|t|≥y

t

t2 + y2
f(t)dt =

∫
|t|≥y

(
t

t2 + y2
− 1

t

)
f(t)dt+

∫
|t|≥y

f(t)

t
dt

and observe that, changing variable,∫
|t|≥y

(
t

t2 + y2
− 1

t

)
f(t)dt =

∫
|t|≥y

−y2

t(t2 + y2)
f(t)dt =

∫
|s|≥1

−1

s(s2 + 1)
f(sy)dt

y→0→ −f(0)
∫
|s|≥1

1

s(s2 + 1)
dt

by dominated convergence. But the last integral is null. This proves (3.15).

Theorem 3.7. Consider an operator T as in Definition 3.3. Then for any p ∈ (1,∞)
the operator T , initially defined in Lp(Rd) ∩ L2(Rd), extends into a bounded operator T :
Lp(Rd) → Lp(Rd) with operator norm that depends only on p and C.

Before proving Theorem 3.7 we need the Calderon–Zygmund decomposition lemma.

Theorem 3.8 (C–Z Decomposition). For any f ∈ L1(Rd) and any α > 0 there exist
families of balls Bj, disjoint sets Qj with Bj ⊆ Qj ⊆ 3Bj with ∪jQj = ∪j3Bj (here 3Bj

has same center and trice the radius of Bj) functions g and bj s.t.

1. f = g +
∑
j

bj.

2. |g(x)| ≤ 3dα for a.a. x, ∥g∥L1(Rd) ≤
(
1 + 32d

)
∥f∥L1(Rd).

3. supp bj ⊆ Qj,

∫
Rd

bj(x)dx = 0 and
∑
j

∥bj∥L1(Rd) ≤
(
1 + 32d

)
∥f∥L1(Rd).

4.
∑
j

vol(Bj) ≤
3d

α
∥f∥L1(Rd).

Remark 3.9. Notice that in the Calderon–Zygmund decomposition g is the good part of f
and bj form the bad part of f .
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Proof. Define Ω = {x ∈ Rd :Mf(x) > α}. Here notice that if Ω = ∅ then just set g = f .
For any x ∈ Ω there exists a maximal rx s.t.

Arx |f |(x) :=
1

vol(B(x, rx))

∫
B(x,rx)

|f(y)|dy = α.

Let us consider the family of balls {B(x, rx)}x∈Ω. It contains, by a generalization of Vitali’s
Lemma, see Theorem 3.1, a maximal family of pairwise disjoint balls {Bj} s.t.

Ω ⊆ ∪x∈ΩB(x, rx) ⊆ ∪j(3Bj).

Notice that this implies

vol(∪x∈ΩB(x, rx)) ≤
∑
j

vol(3Bj) ≤ 3d
∑
j

vol(Bj) ≤
3d

α
∥f∥L1(Rd).

It is possible to choose disjoint sets Qj s.t. Bj ⊆ Qj ⊆ 3Bj and ∪jQj = ∪j(3Bj). One way
is to choose

Qk = 3Bk ∩ C (∪j<kQj) ∩ C (∪j>kBj) (3.16)

with CX the complement of X. Notice indeed that obviously for k > ℓ we have

Qk ∩Qℓ ⊆ C (∪j<kQj) ∩Qℓ = (∩j<kCQj) ∩Qℓ ⊆ CQℓ ∩Qℓ = ∅.

Obviously Qk ⊆ 3Bk.
We have Bk ∩ (∪j>kBj) = ∅ and so Bk ⊆ C (∪j>kBj). We have Bk ∩ (∪j<kQj) = ∅ because,
by (3.16), we have Bk ∩Qj = ∅ for any j < k. Hence we conclude Bk ⊆ Qk.
Finally we show ∪kQk = ∪k3Bk. Obviously we have ∪kQk ⊆ ∪k3Bk. Suppose there exists
x ∈ ∪k3Bk with x ̸∈ ∪kQk. The latter implies x ̸∈ ∪kBk, and so x ∈ C (∪j>kBj) for all
k, as well as x ∈ C (∪j<kQj) for all k. But then, since x ∈ 3Bℓ for some ℓ, it follows that
x ∈ Qℓ. And so we get a contradiction. Hence ∪kQk = ∪k3Bk.
Now define

bj(x) :=
(
f(x)− averageQj

f
)
χQj (x)

g(x) :=

{
averageQj

f for x ∈ Qj ,

f(x) for x ̸∈ ∪jQj

Then we claim that the statement of the theorem is satisfied. First of all for any x ∈ Rd

either x ̸∈ Qj for all j, and so f(x) = g(x) with bj(x) = 0 for all j, or x ∈ Qj0 for exactly
one j0, and so f(x) = g(x) + bj0(x) with bj(x) = 0 for all j ̸= j0. This proves the 1st claim.

For x ̸∈ ∪jQj ⊇ Ω we have Mf(x) ≤ α. Then, since for a.e. x we have

|f(x)| = lim
r→0+

|Arf(x)| ≤Mf(x)

we get |g(x)| = |f(x)| ≤ α a.e. in the complement of ∪jQj . For x ∈ Qj we have

|g(x)| = |averageQj
f | ≤ 1

vol(Qj)

∫
Qj

|f(y)|dy ≤ 1

vol(Bj)

∫
3Bj

|f(y)|dy =
3d

vol(3Bj)

∫
3Bj

|f(y)|dy < 3dα.
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Furthermore we have

∥g∥L1(Rd) =

∫
Rd\∪jQj

|f(x)|dx+
∑
j

∫
Qj

|g(x)|dx ≤ ∥f∥L1(Rd) + 3dα
∑
j

vol(3Bj)

≤
(
1 + 32d

)
∥f∥L1(Rd).

The fact that supp bj ⊆ Qj ,

∫
Rd

bj(x)dx = 0 follows immediately by the definition of bj .

We have∑
j

∥bj∥L1(Rd) ≤ ∥f∥L1(Rd) +
∑
j

vol(Qj)|averageQj
f | ≤ ∥f∥L1(Rd) + 3dα

∑
j

vol(Qj)

≤
(
1 + 32d

)
∥f∥L1(Rd).

Proof of Theorem 3.7. By duality it is enough to consider only p ∈ (1, 2]. Further-
more, since by hypothesis (C–Z2) we know that the case p = 2 is true, by Marcinkiewicz
Interpolation the statement of Theorem 3.7 results from proving that T is weak–type (1, 1).
We need to prove that there exists an A > 0 s.t.

vol({x : |Tf(x)| > α}) ≤ A

α
∥f∥L1(Rd) for any α > 0 and any f ∈ L1(Rd). (3.17)

For fixed α > 0 and any f ∈ L1(Rd) consider the C–Z decomposition f = g+
∑
j

bj . Notice

that |g(x)| ≤ 3dα a.e. and ∥g∥L1(Rd) ≤
(
1 + 32d

)
∥f∥L1(Rd) imply g ∈ L2(Rd) with∫

Rd

|g|2dx ≤ Cdα

∫
Rd

|f |dx for Cd = 3d
(
1 + 32d

)
and so by Hypothesis (C–Z2) we have ∥Tg∥2

L2(Rd)
≤ Cα∥f∥L1(Rd).

Then by Chebyshev’s inequality (3.3) we have

vol({x : |(Tg)(x)| > α/2}) ≤
4∥Tg∥2

L2(Rd)

α2
≤ 4C

∥f∥L1(Rd)

α
.

We next consider bj and consider for x ̸∈ 3Bj and for yj the center of Bj ,

Tbj(x) =

∫
Qj

K(x, y)bj(y)dy =

∫
Qj

(K(x, y)−K(x, yj)) bj(y)dy

were we used averageQj
bj = 0. Then by (3.12) we have

|Tbj(x)| ≤
C

|x− yj |d+1

∫
Qj

|y − yj | |bj(y)|dy.
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Then for r = radius(Bj)∫
Rd\3Bj

|Tbj(x)|dx ≤
∫
|x−yj |≥3r

dx
C

|x− yj |d+1

∫
|y−yj |≤3r

|y − yj | |bj(y)|dy

≤ cd
C

3r

∫
|y−yj |≤3r

|y − yj | |bj(y)|dy ≤ cdC∥bj∥L1(Rd).

Let now E = ∪j(3Bj). Then for b =
∑
j

bj we have

∫
Rd\E

|Tb| ≤
∑
j

∫
Rd\3Bj

|Tbj | ≤ cdC
∑
j

∥bj∥L1(Rd) ≤ cdC(1 + 32d)∥f∥L1(Rd).

Hence

vol({x ̸∈ E : |(Tb)(x)| > α/2}) ≤
2∥Tb∥L1(Rd)

α
≤ cdC(1 + 32d)

∥f∥L1(Rd)

α
.

So since

vol({x ̸∈ E : |Tf(x)| > α}) ≤ vol({x ̸∈ E : |Tg(x)| > α/2}+ vol({x ̸∈ E : |(Tb)(x)| > α/2})

≤
[
4C + cdC(1 + 32d)

] ∥f∥L1(Rd)

α

and

vol(E) ≤
∑
j

vol(3Bj) ≤ 3d
∑
j

vol(Bj) ≤
3d

α
∥f∥L1(Rd)

we conclude that (3.17) as been proved with A = 3d + 4C + cdC(1 + 32d).

Now we consider the Proof of Theorem 2.14. We follow [18] from p. 136. Preliminarily,
we state the following lemma.

Lemma 3.10. Suppose 1 < p < ∞ and s ≥ 1. Then f ∈ Ws,p(Rd) if and only if f ∈
Ws−1,p(Rd) and ∂xjf ∈ Ws−1,p(Rd) for all j = 1, ..., d and furthermore the norms ∥f∥Ws,p

and ∥f∥Ws−1,p +
∑d

j=1 ∥∂xjf∥Ws−1,p are equivalent.

Proof of Theorem 2.14 assuming Lemma 3.10. Obviously for k = 0 we have W0,p =
W 0,p = Lp.
It is obvious that f ∈ W k,p(Rd) if and only if f ∈ W k−1,p(Rd) and ∂xjf ∈ W k−1,p(Rd) and
that the the norms ∥f∥Wk,p and ∥f∥Wk−1,p +

∑d
j=1 ∥∂xjf∥Wk−1,p are equivalent. But then

Lemma 3.10 guarantees that W1,p =W 1,p with equivalent norms, and so on for all k ∈ N.

Proof of Lemma 3.10. Let us start assuming that f ∈ Ws,p(Rd). Then setting ĝ(ξ) :=
⟨ξ⟩s f̂(ξ) we have g ∈ Lp(Rd) by definition of Ws,p(Rd). Then notice that

(⟨ξ⟩s−1 f̂)∨ = (⟨ξ⟩−1 ĝ)∨ = (2π)−
d
2J−1 ∗ g
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where J−s = (⟨ξ⟩−1)∨ is easily seen to be an L1(Rd) function: this can be seen by an
integration by parts argument like in the discussion of the Riesz transforms above. Hence
we have

∥f∥Ws−1,p ≤ (2π)−
d
2 ∥J−1∥L1∥g∥Lp = (2π)−

d
2 ∥J−1∥L1∥f∥Ws,p .

Next we consider

⟨ξ⟩s−1 ∂̂jf(ξ) = −i ⟨ξ⟩s−1 ξj f̂(ξ) = −i
ξj
⟨ξ⟩

ĝ(ξ) =
̂̃
Rjg(ξ),

where R̃j is a variant of the Riesz transform considered considered in the list in Example
3.4. But then, since the Riesz transforms are CZ operators, it follows that

∥∂jf∥Wk−1,p ≤ ∥R̃j∥Lp→Lp∥g∥Lp = ∥R̃j∥Lp→Lp∥g∥Lp∥f∥Ws,p .

Summing up, we obtained

∥f∥Ws−1,p +

d∑
j=1

∥∂xjf∥Ws−1,p ≤
(
(2π)−

d
2 ∥J−1∥L1 + d∥R̃1∥Lp→Lp

)
∥f∥Ws,p ,

where we used the fact, easy to show, that ∥R̃j∥Lp→Lp is constant in j, so that one impli-
cation is proved.

Now we consider the opposite implication, assuming f ∈ Ws−1,p(Rd) and ∂xjf ∈
Ws−1,p(Rd) for all j = 1, ..., d. Then ĝ(ξ) := ⟨ξ⟩s−1 f̂(ξ) is g ∈ Lp(Rd) and, from ∂̂xjg(ξ) =

⟨ξ⟩s−1 ∂̂xjf(ξ), ∂xjg ∈ Lp(Rd) for any j. Now we have

⟨ξ⟩s f̂ = ⟨ξ⟩ ĝ = ⟨ξ⟩2 1

⟨ξ⟩
ĝ =

1

⟨ξ⟩
ĝ −

d∑
j=1

−iξj
⟨ξ⟩

(−iξj)ĝ.

This means that

(⟨ξ⟩s f̂)∨ = (2π)−
d
2J−1 ∗ g −

d∑
j=1

R̃j∂xjg

and so

∥f∥Ws,p ≤ (2π)−
d
2 ∥J−1∥L1∥g∥Lp +

d∑
j=1

∥R̃j∥Lp→Lp∥∂xjg∥Lp

= (2π)−
d
2 ∥J−1∥L1∥f∥Ws−1,p +

d∑
j=1

∥R̃j∥Lp→Lp∥∂xjf∥Ws−1,p ,

which obviously proves the opposite implication and completes the proof of Lemma 3.10.
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4 Linear heat equation, take 1

For Section 4 see [4].
Let T ∈ R+ and f : [0, T ] → Ḣs−1(Rd,Rd), for d = 2, 3, be an external force s.t.

f = Pf and consider the following heat equation:
ut −△u = f
∇ · u = 0

u(0) = u0 ∈ PḢs(Rd,Rd)

(t, x) ∈ [0, T ]× Rd (4.1)

Definition 4.1. For a fixed s < d/2 let f ∈ L2([0, T ], Ḣs−1(Rd,Rd)) with f = Pf . Then u
is a solution of (4.1) if

u ∈ L∞([0, T ], Ḣs(Rd,Rd)) , ∇u ∈ L2([0, T ], Ḣs(Rd,Rd × Rd)), (4.2)

if
u is weakly continuous from [0, T ] into Ḣs(Rd,Rd) (4.3)

(that is, if for any ψ ∈ Ḣ−s(Rd,Rd) the function t → ⟨u(t), ψ⟩, which is a well defined
function in L∞([0, T ],R), is in fact in C0([0, T ],R) )
and if for any Ψ ∈ C∞

c ([0, T ]× Rd,Rd) we have

⟨u(t),Ψ(t)⟩L2 =

∫ t

0

(
⟨u(t′),△Ψ(t′)⟩L2 + ⟨u(t′), ∂tΨ(t′)⟩L2 + ⟨f(t′),Ψ(t′)⟩L2

)
dt′ + ⟨u0,Ψ(0)⟩L2 .

(4.4)

The following theorem yields existence, uniqueness and energy estimate for (4.1).

Theorem 4.2. Problem (4.1) admits exactly one solution in the sense of the above defini-
tion. For any t the following energy estimate is satisfied:

∥u(t)∥2
Ḣs + 2

∫ t

0
∥∇u(t′)∥2

Ḣsdt
′ = ∥u0∥2Ḣs + 2

∫ t

0
⟨f(t′), u(t′)⟩Ḣsdt

′. (4.5)

Furthermore we have
u ∈ C0([0, T ], Ḣs(Rd,Rd)) (4.6)

and the formula

û(t, ξ) = e−t|ξ|2 û0(ξ) +

∫ t

0
e−(t−t′)|ξ|2 f̂(t′, ξ)dt′. (4.7)

Proof. (Uniqueness). It is enough to show that the only solution of the case u0 = 0 and
f = 0 is u = 0. Let u be such a solution. Then

⟨u(t),Ψ(t)⟩L2 =

∫ t

0

(
⟨u(t′),△Ψ(t′)⟩L2 + ⟨u(t′), ∂tΨ(t′)⟩L2

)
dt′.
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Let Ψ(t, x) = ψ(x) with ψ ∈ C∞
c (Rd,Rd). Then the above equality reduces to

⟨u(t), ψ⟩L2 =

∫ t

0
⟨u(t′),△ψ⟩L2 . (4.8)

We claim that this identity holds for all ψ ∈ Ḣ−s(Rd,Rd) ∩ Ḣ−s+1(Rd,Rd). From Lemma
2.2 we know that C∞

c (Rd,Rd) is dense in Ḣ−s(Rd,Rd) (here we use s < d/2) and in
Ḣ−s+1(Rd,Rd) and so the claim follows by density and the fact that

⟨ , ⟩L2 : Ḣs(Rd,Rd)× Ḣ−s(Rd,Rd) −→ R

L2([0, T ], Ḣs+1(Rd,Rd))× Ḣ−s+1(Rd,Rd) ∋ (u(t), ψ) −→
∫ T

0
⟨u(t′),△ψ⟩L2dt′ ∈ R

are both continuous bilinear forms.
Hence we can conclude that (4.8) is true for all ψ ∈ Ḣ−s(Rd,Rd) ∩ Ḣ−s+1(Rd,Rd). In
particular we can replace ψ by Pnψ and get

⟨Pnu(t),Pnψ⟩L2 =

∫ t

0
⟨Pnu(t

′),△Pnψ⟩L2 ≤ ∥△Pnψ∥Ḣ−s

∫ t

0
∥Pnu(t

′)∥Ḣsdt
′

≤ n2∥ψ∥Ḣ−s

∫ t

0
∥Pnu(t

′)∥Ḣsdt
′

where the integral
∫ t
0 ∥Pnu(t

′)∥Ḣsdt′ is well defined by Pnu ∈ L∞([0, T ], Ḣs(Rd,Rd)).
So, we obtained

|⟨Pnu(t), ψ⟩L2 | ≤ n2∥ψ∥Ḣ−s

∫ t

0
∥Pnu(t

′)∥Ḣsdt
′ for all ψ ∈ Ḣ−s(Rd,Rd).

This implies

∥Pnu(t)∥Ḣs ≤ n2
∫ t

0
∥Pnu(t

′)∥Ḣsdt
′

and hence ∥Pnu(t)∥Ḣs = 0 by the Gronwall inequality. This implies u(t) = 0 for t ∈ [0, T ].

(Existence). First of all, there exists a sequence (fn) in C0([0, T ], Ḣs−1(Rd,Rd)) s.t.

fn
n→+∞−−−−−→ f in L2([0, T ], Ḣs−1(Rd,Rd)). This follows from the density of C∞

c (I,X) in
Lp(I,X) for p <∞ for I an interval and X a Banach space, see Appendix A.
Applying Pn to (4.1) and replacing f by fn we obtain the equation{

(un)t −Pn△un = Pnfn
un(0) = Pnu0

(4.9)

Notice that Pnfn ∈ C0([0, T ], Ḣs(Rd,Rd)). Since (4.9) is a standard linear equation it
admits a solution un ∈ C1([0, T ], Ḣs(Rd,Rd)). Notice furthermore that un = Pnun and so
in particular un ∈ C0([0, T ], Ḣr(Rd,Rd)) for all r ≥ s.
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Furthermore, applying ⟨·, un⟩Ḣs to (4.9) and using

⟨Pn△un, un⟩Ḣs = −
d∑

k=1

∫
B(0,n)

|ξ|2sξ2k|ûn(t, ξ)|2dξ = −
d∑

k=1

⟨ξkûn, ξkûn⟩L2(B(0,n),|ξ|2sdξ)

=

d∑
k=1

⟨ξkûn, ξkûn⟩L2(Rd,|ξ|2sdξ) = ∥∇un∥2Ḣs ,

we obtain
1

2

d

dt
∥un∥2Ḣs + ∥∇un∥2Ḣs = ⟨Pnfn, un⟩Ḣs

s.t., after integration, we obtain

1

2
∥un(t)∥2Ḣs +

∫ t

0
∥∇un(t′)∥2Ḣsdt

′ =
1

2
∥Pnu0∥2Ḣs +

∫ t

0
⟨Pnfn(t

′), un(t
′)⟩Ḣsdt

′. (4.10)

The difference un − un+ℓ solves{
(un − un+ℓ)t −Pn+ℓ△(un − un+ℓ) = Pnfn −Pn+ℓfn+ℓ

un(0)− un+ℓ(0) = (Pn −Pn+ℓ)u0

Then, like for (4.10) we get

1

2
∥un(t)− un+ℓ(t)∥2Ḣs + �2

1

2

∫ t

0
∥∇(un − un+ℓ)(t

′)∥2
Ḣsdt

′ =

=
1

2
∥(Pn −Pn+ℓ)u0∥2Ḣs +

∫ t

0
⟨Pnfn(t

′)−Pn+ℓfn+ℓ(t
′), (un − un+ℓ)(t

′)⟩Ḣsdt
′

≤ 1

2
∥(Pn −Pn+ℓ)u0∥2Ḣs +

∫ t

0
∥Pnfn(t

′)−Pn+ℓfn+ℓ(t
′)∥Ḣs−1∥∇(un − un+ℓ)(t

′)∥Ḣsdt
′

≤ 1

2
∥(Pn −Pn+ℓ)u0∥2Ḣs +

1

2

∫ t

0
∥Pnfn(t

′)−Pn+ℓfn+ℓ(t
′)∥2

Ḣs−1dt
′ +

(((((((((((((((
1

2

∫ t

0
∥∇(un − un+ℓ)(t

′)∥2
Ḣsdt

′.

Hence

∥un(t)− un+ℓ(t)∥2Ḣs +

∫ t

0
∥∇(un − un+ℓ)(s)∥2Ḣsds

≤ ∥(Pn −Pn+ℓ)u0∥2Ḣs +

∫ t

0
∥Pnfn(s)−Pn+ℓfn+ℓ(s)∥2Ḣs−1ds.

Since fn
n→+∞−−−−−→ f in L2([0, T ], Ḣs−1(Rd,Rd)) implies also Pnfn

n→+∞−−−−−→ f therein, the
last inequality implies that (un) is Cauchy in C([0, T ], Ḣs(Rd,Rd)) and (∇un) is Cauchy in
L2([0, T ], Ḣs(Rd,Rd)). Let u be the limit. Notice that u satisfies (4.2) and (4.6), and so
obviously also (4.3).
Taking the limit in (4.10) we see that u satisfies the energy equality (4.5).
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Next, we check that u is a weak solution of (4.1) in the sense of Def. 4.1. We apply
⟨.,Ψ(t)⟩L2 to (4.9) with Ψ ∈ C∞

c ([0,∞)× Rd,Rd). Then we have

d

dt
⟨un,Ψ⟩L2 = ⟨△un,Ψ⟩L2 + ⟨Pnfn,Ψ⟩L2 + ⟨un, ∂tΨ⟩L2 .

Integrating we have

⟨un(t),Ψ(t)⟩L2 = ⟨Pnu0,Ψ(0)⟩L2 −
∫ t

0
⟨un(t′),△Ψ(t′)⟩L2dt′

+

∫ t

0
⟨Pnfn(t

′),Ψ(t′)⟩L2dt′ +

∫ t

0
⟨un(t′), ∂tΨ(t′)⟩L2dt′.

Taking the limit for n→ ∞ we get

⟨u(t),Ψ(t)⟩L2 = ⟨u0,Ψ(0)⟩L2 −
∫ t

0
⟨u(t′),△Ψ(t′)⟩L2dt′ +

∫ t

0
⟨f(t′),Ψ(t′)⟩L2dt′ +

∫ t

0
⟨u(t′), ∂tΨ(t′)⟩L2dt′.

which yields (4.4). Hence u is a weak solution of (4.1) in the sense of Def. 4.1.
Next, we prove the Duhamel formula (4.7). Applying the Fourier transform to (4.9){

∂tûn(t, ξ) + χ|ξ|≤n|ξ|2ûn(t, ξ) = χ|ξ|≤nf̂n(t, ξ)

ûn(0, ξ) = χ|ξ|≤nû0(ξ)
(4.11)

Notice that suppûn(t, ·) ⊆ {|ξ| ≤ n} so that χ|ξ|≤n|ξ|2ûn(t, ξ) = |ξ|2ûn(t, ξ). Then, by the
variation of parameters formula

ûn(t, ξ) = e−t|ξ|2χ|ξ|≤nû0(ξ) +

∫ t

0
e−(t−t′)|ξ|2χ|ξ|≤nf̂n(t

′, ξ)dt′. (4.12)

Now we know

ûn(t, ξ)
n→∞→ û(t, ξ) in C([0, T ], L2(Rd, |ξ|2sdξ))

χ|ξ|≤nû0(ξ)
n→∞→ û0(ξ) in L

2(Rd, |ξ|2sdξ),

χ|ξ|≤nf̂n(t
′, ξ)

n→∞→ f̂(t′, ξ) in L2([0, T ]× Rd, |ξ|2(s−1)dtdξ)

Notice that

Tg(t, ξ) :=

∫ t

0
e−(t−t′)ν|ξ|2g(t′, ξ)dt′

is a bounded operator from L2([0, T ]×Rd, |ξ|2(s−1)dtdξ) into L∞([0, T ], L2(Rd, |ξ|2sdξ). In-
deed for t ∈ [0, T ] and fixed ξ ∈ Rd and for g ∈ Cc([0, T ]× (Rd\{0}))

|Tg(t, ξ)| ≤ (

∫ t

0
e−2(t−t′)|ξ|2dt′)

1
2 (

∫ t

0
|g(t′, ξ)|2dt′)

1
2 ≤ 1√

2|ξ|
(

∫ t

0
|g(t′, ξ)|2dt′)

1
2
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and so ∫
Rd

|ξ|2s|Tg(t, ξ)|2dξ ≤ 1

2

∫
[0,T ]×Rd

|ξ|2(s−1)|g(t′, ξ)|2dt′dξ.

This implies

∥Tg∥L∞([0,T ],L2(Rd,|ξ|2sdξ) ≤
√
1/2∥g∥L2([0,T ]×Rd,|ξ|2(s−1)dtdξ).

Since Cc([0, T ]× (Rd\{0})) is dense in L2([0, T ]×Rd, |ξ|2(s−1)dtdξ) a well defined bounded
operator remains defined. Taking the limit for n → ∞ in (4.12) all terms converge in
L∞([0, T ], L2(Rd, |ξ|2sdξ)) to the corresponding terms of

û(t, ξ) = e−t|ξ|2 û0(ξ) +

∫ t

0
e−(t−t′)|ξ|2 f̂(t′, ξ)dt′.

Remark 4.3. Notice that applying the Fourier transform to (4.7) we get

u(t) = et△u0 +

∫ t

0
e(t−t′)△f(t′)dt′. (4.13)

The following theorem yields additional estimates.

Theorem 4.4. Let f be like in Theorem 4.2 and consider the corresponding solution

u ∈ C([0, T ], Ḣs) , ∇u ∈ L2([0, T ], Ḣs).

Then, additionally, we have

∥u(t)∥
Ḣ

s+2
p
∈ Lp([0, T ],R) for any p ≥ 2. (4.14)

Moreover we have

V (t) :=

∫
Rd

|ξ|2s
(

sup
0≤t′≤t

|û(t′, ξ)|

)2

dξ

 1
2

≤ ∥u0∥Ḣs +
1

2
1
2

∥f∥L2([0,t],Ḣs−1) ;

∥∥u∥
Ḣ

s+2
p
∥Lp(0,T ) ≤

(
∥u0∥Ḣs + ∥f∥L2([0,T ],Ḣs−1)

)
.

(4.15)

Proof. From the Duhamel formula (4.7) and the previous computation

|û(t, ξ)| ≤ e−t|ξ|2 |û0(ξ)|+
1√
2|ξ|

∥f̂(·, ξ)∥L2(0,t).

so that

|ξ|s sup
0≤t′≤t

|û(t′, ξ)| ≤ |ξ|s|û0(ξ)|+ |ξ|s 1√
2|ξ|

∥f̂(·, ξ)∥L2(0,t).
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Taking the L2(Rd, dξ) norm we get

V (t) ≤ ∥u0(ξ)∥L2(Rd,|ξ|2sdξ) +
1√
2
∥f̂∥L2((0,t),L2(Rd,|ξ|2(s−1)dξ)).

and this yields the 1st line in (4.15).
To get the 2nd line in (4.15), from the energy estimate (4.5) we obtain

∥u(t)∥2
Ḣs + �2

∫ t

0
∥∇u(t′)∥2

Ḣsdt
′ ≤ ∥u0∥2Ḣs + 2

∫ t

0

1√
ν
∥f(t′)∥Ḣs−1

√
ν∥∇u(t′)∥Ḣsdt

′

≤ ∥u0∥2Ḣs +���������∫ t

0
∥∇u(t′)∥2

Ḣsdt
′ +

∫ t

0
∥f(t′)∥2

Ḣs−1dt
′,

that is

∥u(t)∥2
Ḣs +

∫ t

0
∥∇u(t′)∥2

Ḣsdt
′ ≤ ∥u0∥2Ḣs +

∫ t

0
∥f(t′)∥2

Ḣs−1dt
′.

This obviously implies

sup
0≤t≤T

∥u(t)∥2
Ḣs ≤ ∥u0∥2Ḣs +

∫ T

0
∥f(t′)∥2

Ḣs−1dt
′ and∫ T

0
∥∇u(t′)∥2

Ḣsdt
′ ≤ ∥u0∥2Ḣs +

∫ T

0
∥f(t′)∥2

Ḣs−1dt
′

and hence, from
√
a+ b ≤

√
a+

√
b fi,̀ıor a, b ≥ 0

∥u∥L∞([0,T ],Ḣs) ≤ ∥u0∥Ḣs + ∥f∥L2([0,T ],Ḣs)

∥∥u∥Ḣs+1∥L2(0,T ) ≤ ∥u0∥Ḣs + ∥f∥L2([0,T ],Ḣs).

So by the interpolation of Sobolev norms Lemma 2.25 for 2 < p <∞

∥∥u∥
Ḣ

s+2
p
∥Lp(0,T ) ≤ ∥∥u∥

1− 2
p

Ḣs
∥∇u∥

2
p

Ḣs
∥Lp(0,T ) ≤ ∥u∥

1− 2
p

L∞([0,T ],Ḣs)
∥∥∇u∥

2
p

Ḣs
∥Lp(0,T )

= ∥u∥
1− 2

p

L∞([0,T ],Ḣs)
∥∇u∥

2
p

L2([0,T ],Ḣs)
≤ ∥u0∥Ḣs + ∥f∥L2([0,T ],Ḣs).

5 The heat equation, take 2

For this section see [14]. In this section pairs like (q′, q) of indexes will not be dual to each
other.

Proposition 5.1. Assume that{
1 ≤ l ≤ r ≤ ∞, 1 ≤ l′ ≤ r′ <∞

d
l +

2
l′ ≤

d
r + 2

r′ + 2
(5.1)
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for r′ ̸= l′, or {
1 ≤ l ≤ r ≤ ∞, 1 ≤ l′ ≤ r′ <∞

d
l <

d
r + 2

(5.2)

for l′ = r′ or, finally and if r′ = ∞,{
1 ≤ l ≤ r ≤ ∞, 1 ≤ l′ ≤ r′ = ∞

d
l +

2
l′ <

d
r + 2.

(5.3)

Then there exists a fixed constant c(a, b, d, l, l′, r, r′) s.t.

∥
∫ t

a
e△(t−t′)fdt′∥Lr′Lr((a,b)×Rd) < c(a, b, d, l, l′, r, r′)∥f∥Ll′Ll((a,b)×Rd). (5.4)

Proof. First of, by translation invariance we can always assume [a, b] = [0, T ].
For r′ <∞ and l′ < r′ we have

∥
∫ t

0
e△(t−t′)fdt′∥

Lr′
t Lr

x
≤ ∥

∫ t

0
∥e△(t−t′)f∥Lr

x
dt′∥

Lr′
t

∥ ≲
∫ t

0
(t− t′)−

d
2 (

1
l
− 1

r )∥f∥Ll
x
dt′∥

Lr′
t

≲ ∥χ[0,T ]t
− d

2 (
1
l
− 1

r )∥Lα,∞∥f∥Ll′Ll where 1 +
1

r′
=

1

α
+

1

l′

where we need d
2

(
1
l −

1
r

)
α ≤ 1 for the above to hold. This is equivalent to

d

2

(
1

l
− 1

r

)
≤ 1

α
= 1 +

1

r′
− 1

l′

which in turn is equivalent to

d

2l
+

1

l′
≤ 1 +

1

r′
+

d

2r
,

equivalent to the condition in (5.1).
For r′ <∞ and l′ = r′ we have by Young’s convolution inequalities

∥
∫ t

0
e△(t−t′)fdt′∥

Lr′
t Lr

x
≲ ∥

∫ t

0

∫
(t− t′)−

d
2 e

− |x−y|2
4(t−t′) f(t′, y)dydt′∥

Lr′
t Lr

x

≤ ∥t−
d
2 e−

|x|2
4t ∥L1

tL
α
x
∥f∥Ll′Ll

where 1 + 1
r = 1

α + 1
l . Now proceeding

∥t−
d
2 e−

|x|2
4t ∥L1

tL
α
x
∥f∥Ll′Ll ≲ ∥t−

d
2
+ d

2α ∥L1
t [0,T ]∥f∥Ll′Ll ≲ ∥f∥Ll′Ll
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where the latter makes sense exactly if d
2 − d

2α < 1 which is equivalent

1− 1

α
= 1−

(
1 +

1

r
− 1

l

)
<

2

d
,

which gives (5.2). Finally, for r′ = ∞, and for t ∈ [0, T ],

∥
∫ t

0
e△(t−t′)fdt′∥Lr

x
≲
∫ t

0
∥e△(t−t′)f∥Lr

x
dt′ ≲

∫ t

0
(t− t′)−

d
2 (

1
l
− 1

r )∥f∥Ll
x
dt′

≲ ∥t−
d
2 (

1
l
− 1

r )∥
L

l′
l′−1 [0,T ]

∥f∥Ll′Ll

by the Hölder inequality, where the latter makes sense exactly if d
2

(
1
l −

1
r

)
l′

l′−1 < 1, that is

d

l
− d

r
< 2

(
1− 1

l′

)
,

which coincides with (5.3).
We will use an analogous version involving the gradient of f .

Proposition 5.2. Assume that{
1 ≤ l ≤ r ≤ ∞, 1 ≤ l′ ≤ r′ <∞

d
l +

2
l′ ≤

d
r + 2

r′ + 1
(5.5)

for r′ ̸= l′, or {
1 ≤ l ≤ r ≤ ∞, 1 ≤ l′ ≤ r′ <∞

d
l <

d
r + 1

(5.6)

for l′ = r′ or, finally and if r′ = ∞,{
1 ≤ l ≤ r ≤ ∞, 1 ≤ l′ ≤ r′ = ∞

d
l +

2
l′ <

d
r + 1.

(5.7)

Then there exists a fixed constant c(a, b, d, l, l′, r, r′) s.t.

∥
∫ t

a
e△(t−t′)∇fdt′∥Lr′Lr((a,b)×Rd) < c(a, b, d, l, l′, r, r′)∥f∥Ll′Ll((a,b)×Rd) for any f ∈ Ll((a, b)× Rd).

(5.8)

Proof. Again, by translation invariance we can always assume [a, b] = [0, T ]. For r′ < ∞
and l′ < r′ we have by Corollary 1.5

∥
∫ t

0
e△(t−t′)∇fdt′∥

Lr′
t Lr

x
≤ ∥

∫ t

0
∥e△(t−t′)∇f∥Lr

x
dt′∥

Lr′
t

∥ ≲
∫ t

0
(t− t′)−

1
2
− d

2 (
1
l
− 1

r )∥f∥Ll
x
dt′∥

Lr′
t

≲ ∥χ[0,T ]t
− 1

2
− d

2 (
1
l
− 1

r )∥Lα,∞∥f∥Ll′Ll where 1 +
1

r′
=

1

α
+

1

l′

39



where we need α
2 + d

2

(
1
l −

1
r

)
α ≤ 1 for the above to hold. This is equivalent to

1

2
+
d

2

(
1

l
− 1

r

)
≤ 1

α
= 1 +

1

r′
− 1

l′

which in turn is equivalent to

d

l
+

2

l′
≤ 1 +

2

r′
+
d

r
,

that is the condition in (5.5).
For r′ <∞ and l′ = r′ we have by Young’s convolution inequalities

∥
∫ t

0
e△(t−t′)∇fdt′∥

Lr′
t Lr

x
≲ ∥

∫ t

0

∫
(t− t′)−

d
2
− 1

2
x− y√
t− t′

e
− |x−y|2

4(t−t′) f(t′, y)dydt′∥
Lr′
t Lr

x

≤ ∥t−
d
2
− 1

2
x√
t
e−

|x|2
4t ∥L1

tL
α
x
∥f∥Ll′Ll

where 1 + 1
r = 1

α + 1
l . Now

∥t−
d
2
− 1

2
x√
t
e−

|x|2
4t ∥L1

tL
α
x
∥f∥Ll′Ll ≲ ∥t−

d
2
− 1

2
+ d

2α ∥L1
t [0,T ]∥f∥Ll′Ll ≲ ∥f∥Ll′Ll

where the latter makes sense exactly if d
2 + 1

2 − d
2α < 1 which is equivalent

d− d

(
1 +

1

r
− 1

l

)
< 1,

which gives (5.6). Finally, for r′ = ∞, and for t ∈ [0, T ],

∥
∫ t

0
e△(t−t′)∇fdt′∥Lr

x
≲
∫ t

0
∥e△(t−t′)∇f∥Lr

x
dt′ ≲

∫ t

0
(t− t′)−

1
2
− d

2 (
1
l
− 1

r )∥f∥Ll
x
dt′

≲ ∥t−
1
2
− d

2 (
1
l
− 1

r )∥
L

l′
l′−1 [0,T ]

∥f∥Ll′Ll

by the Hölder inequality, where the latter makes sense exactly if
[
d
2

(
1
l −

1
r

)
+ 1

2

]
l′

l′−1 < 1,
that is

d

l
− d

r
+ 1 < 2

(
1− 1

l′

)
,

which coincides with (5.7).
Later we will consider parabolic cylinders for d = 3.

Definition 5.3 (Parabolic cylinders). Given (t0, x0) ∈ R×R3 for any R > 0 we will denote
by Q∗

R(t0, x0) the set

Q∗
R(t0, x0) =

(
t0 −

R2

2
, t0 +

R2

2

)
×BR(x0)

and with QR(t0, x0) the set

QR(t0, x0) =
(
t0 −R2, t0

)
×BR(x0).
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Notice the relation

Q∗
R(t0, x0) = QR

(
t0 +

R2

2
, x0

)
. (5.9)

We will focus especially on the cylinders QR(t0, x0). We will write QR = QR(0, 0).

Proposition 5.4. Let f ∈ L2(QR(t0, x0)) such that such f vanishes outside QρsR(t0, x0)ρs
for an ρs ∈ (0, 1) Consider the equation Wt − △W = ∂jf in (t0 − R2, 0) × R3 and its
restriction in QR(t0, x0). Assume that W (−1, x) ≡ 0. Then, for any ρi ∈ (0, ρs):

1. f ∈ L∞
t L

∞
x (QR(t0, x0)) ⇒W ∈ L∞

t C
0,α
x (QρiR(t0, x0)) for any α ∈ (0, 1);

2. f ∈ L∞
t W

k,∞
x (QR(t0, x0))) ⇒W ∈ L∞

t C
k,α
x (QρiR(t0, x0)) for any α ∈ (0, 1);

3. f ∈ L∞
t C

0,α
x (QR(t0, x0)) for an α ∈ (0, 1) ⇒ ∇W ∈ L∞(QρiR(t0, x0));

4. f ∈ L∞
t C

k,α
x (QR(t0, x0))) for an α ∈ (0, 1) ⇒ ∇k+1W ∈ L∞(QρiR(t0, x0)).

Proof. By scaling and translation we reduce to the case QR(t0, x0) = Q1.
Notice that Theorem 4.2 guarantees that the existence and uniqueness of a solution W ∈
L∞((−1, 0), L2(R3)) ∩ L2((−1, 0), Ḣ1(R3)).
Next, it is enough to prove the 1st and 3rd claim. Let us start with the 1st claim. First of
all

W (t, x) =

∫ t

−1
∇e(t−s)△fds

= (4π)−
3
2

∫ t

−1
ds

∫
R3

(t− s)−
3
2 e

− |x−y|2
4(t−s) ∂jf(s, y)dy

= (4π)−
3
2

∫ t

−1
ds

∫
R3

e
− |x−y|2

4(t−s)
xj − yj

2(t− s)1+
3
2

f(s, y)dy.

Now, by Corollary 1.5 we have

∥W∥L∞(Q1) ≤ ∥
∫ t

−1
∇e(t−s)△fds∥L∞((−1,0)×R3)

≤
∫ t

−1
∥∇e(t−s)△f∥L∞((−1,0)×R3)ds ≲

∫ t

−1
(t− s)−1/2ds∥f∥L∞(Q1) ≲ ∥f∥L∞(Q1).

Next, we write

W (t, x)−W (t, z) = (4π)−
3
2

∫ t

−1
ds

∫
R3

[
e
− |x−y|2

4(t−s)
xj − yj

2(t− s)
5
2

− e
− |z−y|2

4(t−s)
zj − yj

2(t− s)
5
2

]
f(s, y)dy.

Introducing

ξ =
x

(t− s)
1
2

, η =
y

(t− s)
1
2

, ρ =
z

(t− s)
1
2
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we have

W (t, x)−W (t, z)

= 2−1(4π)−
3
2

∫ t

−1
ds

∫
R3

(t− s)−1/2

[
e−

|ξ−η|2
4 (ξj − ηj)− e−

|ρ−η|2
4 (ρj − ηj)

]
f(s, (t− s)1/2η)dη.

Then

W (t, x)−W (t, z)

|x− z|α

= 2−1(4π)−
3
2

∫ t

−1
ds

∫
R3

(t− s)−1/2−α/2 e
− |ξ−η|2

4 (ξj − ηj)− e−
|ρ−η|2

4 (ρj − ηj)

|ξ − ρ|α
f(s, (t− s)1/2η)dη.

Now split the domain of integration in two parts. In the first part |ξ − ρ| ≥ 1. When this
holds we bound the integral by

C

∫ t

−1
ds

∫
R3

(t− s)−1/2−α/2

(
e−

|ξ−η|2
4 |ξ − η|+ e−

|ρ−η|2
4 |ρ− η|

)
dη∥f∥L∞

t,x

≤ 2C

∫ t

−1
ds(t− s)−1/2−α/2

∫
R3

e−
|η|2
4 |η|dη∥f∥L∞

t,x
.

In the region where |ξ − ρ| < 1 we bound from above the integral by

∫ t

−1
ds

∫
R3

(t− s)−1/2−α/2

∣∣∣∣e− |ξ−η|2
4 (ξj − ηj)− e−

|ρ−η|2
4 (ρj − ηj)

∣∣∣∣
|ξ − ρ|

|f(s, (t− s)1/2η)|dη

≤
∫ t

−1
ds

∫
R3

(t− s)−1/2−α/2 sup
τ∈[0,1]

∣∣∣∣∂τ (e− |ρ+τ(ξ−ρ)−η|2
4 (ρj + τ(ξj − ρj)− ηj)

)∣∣∣∣ dη∥f∥L∞
t,x

≤
∫ t

−1
ds

∫
R3

(t− s)−1/2−α/2 sup
τ∈[0,1]

(
e−

|τ(ξ−ρ)−η|2
4 + e−

|τ(ξ−ρ)−η|2
4 |τ(ξ − ρ)− η|2

)
dη∥f∥L∞

t,x

≤
∫ t

−1
ds

∫
|η|≤2

(t− s)−1/2−α/2 (1 + 9) dη∥f∥L∞
t,x

+

∫ t

−1
ds

∫
R3

(t− s)−1/2−α/2

(
e−

|η|2
8 + 2e−

|η|2
8 |η|2

)
dη∥f∥L∞

t,x
≤ C∥f∥L∞

t,x
.

We now consider the 3rd statement. For ϵ > 0 we consider

Wϵ(t, x) =

∫ t−ϵ

−1
ds

∫
R3

e
− |x−y|2

4(t−s)
xj − yj

(t− s)1+
3
2

f(s, y)dy.

Then

∂kWϵ(t, x) =

∫ t−ϵ

−1
ds

∫
R3

e
− |x−y|2

4(t−s)

[
δjk

(t− s)1+
3
2

− (xj − yj)(xk − yk)

2(t− s)2+
3
2

]
f(s, y)dy

=

∫ t−ϵ

−1
ds

∫
R3

e
− |x−y|2

4(t−s)

[
δjk

(t− s)1+
3
2

− (xj − yj)(xk − yk)

2(t− s)2+
3
2

]
|x− y|α f(s, y)− f(s, x)

|x− y|α
dy.
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So, using

ξ =
x

(t− s)
1
2

, η =
y

(t− s)
1
2

,

|∂kWϵ(t, x)| ≤ ∥f∥
L∞((−1,0),C0,α

x )

∫ t−ϵ

−1
ds

∫
R3

e−
|ξ−η|2

4

∣∣δjk − 2−1(ξj − ηj)(ξk − ηk)
∣∣ |ξ − η|α

(t− s)1−α/2
dη

≤ C∥f∥
L∞((−1,0),C0,α

x )
for C = sup

t∈(−1,0)

∫ t

−1
ds

∫
R3

e−
|η|2
4
(
1 + |η|2

) |η|α

(t− s)1−α/2
dη.

Proposition 5.5. Assume that Wt−△W = f in QR(t0, x0) and W (t0−R2) ≡ 0. Assume
f vanishes outside QρsR(t0, x0) for an ρs ∈ (0, 1). Then, for any ρi ∈ (0, ρs):

1. f ∈ L∞L∞(QR(t0, x0)) ⇒W ∈ L∞
t C

1,α
x (QρiR(t0, x0)) for any α ∈ (0, 1);

2. f ∈ L∞W k,∞(QR(t0, x0)) ⇒W ∈ L∞
t C

k+1,α
x (QρiR(t0, x0)) for any α ∈ (0, 1);

3. f ∈ L∞C0,α(QR(t0, x0)) for an α ∈ (0, 1) ⇒ ∇2W ∈ L∞
t L

∞
x (QρiR(t0, x0));

4. f ∈ L∞Ck,α(QR(t0, x0)) for an α ∈ (0, 1) ⇒ ∇k+2W ∈ L∞
t L

∞
x (QρiR(t0, x0)).

Proof. The proof is similar to the previous one. It is enough to prove the 1st and 3rd claim.
Let us start with the 1st claim. First of all, by Corollary 1.5

∥W∥L∞(Q1) ≤ ∥
∫ t

−1
e(t−s)△fds∥L∞((−1,0)×R3)

≤
∫ t

−1
∥e(t−s)△f∥L∞((−1,0)×R3)ds ≲

∫ t

−1
ds∥f∥L∞(Q1) = ∥f∥L∞(Q1).

Next

W (t, x)−W (t, z) = (4π)−
3
2

∫ t

−1
ds

∫
R3

(t− s)−
3
2

[
e
− |x−y|2

4(t−s) − e
− |z−y|2

4(t−s)

]
f(s, y)dy

and, differentiating,

∂jW (t, x)− ∂jW (t, z) = (4π)−
3
2

∫ t

−1
ds

∫
R3

[
e
− |x−y|2

4(t−s)
xj − yj

2(t− s)
5
2

− e
− |z−y|2

4(t−s)
zj − yj

2(t− s)
5
2

]
f(s, y)dy,

so that we get in the r.h.s. the exact same quantity discussed in the 1st claim of Proposition
5.4 and the same exact proof holds yielding the 1st claim.

43



Next, we consider like before

Wϵ(t, x) =

∫ t−ϵ

−1
ds

∫
R3

e
− |x−y|2

4(t−s)
xj − yj

(t− s)
3
2

f(s, y)dy.

Then

∂j∂kWϵ(t, x) =

∫ t−ϵ

−1
ds

∫
R3

e
− |x−y|2

4(t−s)

[
δjk

(t− s)1+
3
2

− (xj − yj)(xk − yk)

2(t− s)2+
3
2

]
f(s, y)dy

=

∫ t−ϵ

−1
ds

∫
R3

e
− |x−y|2

4(t−s)

[
δjk

(t− s)1+
3
2

− (xj − yj)(xk − yk)

2(t− s)2+
3
2

]
|x− y|α f(s, y)− f(s, x)

|x− y|α
dy

is exactly the formula used in the proof of the 3rd claim of Proposition 5.4.

6 The Navier Stokes equation

We will only deal with the Incompressible Navier Stokes (NS) equation:
ut + u · ∇u−△u = −∇p

∇ · u = 0
u(0, x) = u0(x)

(t, x) ∈ [0,∞)× Rd (6.1)

where u : [0,∞)× Rd → Rd with u =
∑d

j=1 u
jej with ej the standard basis of Rd,

△ :=
d∑

j=1

∂2

∂x2j
, ∇ · u =

d∑
j=1

∂

∂xj
uj , u · ∇v =

d∑
j=1

uj
∂

∂xj
v.

p is the pressure and it is simply serves the purpose to absorb the divergence part of the
l.h.s. of (6.1).

We can write

u · ∇u = div(u⊗ u) for div(u⊗ v)j :=
d∑

k=1

∂k(u
kvj) since (6.2)

div(u⊗ u)j =

d∑
k=1

∂k(u
kuj) =

d∑
k=1

uk∂ku
j + uj divu︸︷︷︸

0

= u · ∇uj

So we rewrite (6.1) and
ut + div(u⊗ u)−△u = −∇p

∇ · u = 0
u(0, x) = u0(x)

(t, x) ∈ [0,∞)× Rd (6.3)
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Definition 6.1 (Weak solutions). Let u0 be in L2(Rd). A vector field u ∈ L2
loc([0,∞) ×

Rd) which is weakly continuous as a function from [0,∞) to L2(Rd,Rd) (we will write
u ∈ C0

w([0,∞), L2(Rd,Rd)), and what we mean is that t −→ ⟨u(t), ϕ⟩L2 ∈ C0([0,∞),R)
for any ϕ ∈ L2(Rd,Rd)) and s.t. divu(t) = 0 for every t, is a weak solution of (6.3) if for
Ψ ∈ C∞

c ([0,∞)× Rd,Rd) with divΨ = 0 we have

⟨u(t),Ψ(t)⟩L2 =

∫ t

0

(
⟨u(t′),△Ψ(t′)⟩L2 + ⟨u(t′), ∂tΨ(t′)⟩L2

−⟨div(u⊗ u)(t′),Ψ(t′)⟩L2

)
dt′ + ⟨u0,Ψ(0)⟩L2 .

(6.4)

Remark 6.2. Notice that in Definition 6.1 we could replace the half–line [0,∞) with a half–
line [t0,∞) with t0 ∈ R. In this sense, observe that any solution in Definition 6.1 solves
weekly the NS equation in [t0,∞) for t0 > 0 and initial value u(t0), that is to say, for any
for Ψ ∈ C∞

c ([t0,∞)× Rd,Rd) with divΨ = 0 we have

⟨u(t),Ψ(t)⟩L2 =

∫ t

t0

(
⟨u(t′),△Ψ(t′)⟩L2 + ⟨u(t′), ∂tΨ(t′)⟩L2

−⟨div(u⊗ u)(t′),Ψ(t′)⟩L2

)
dt′ + ⟨u(t0),Ψ(t0)⟩L2 .

(6.5)

Indeed, we can extend any such test function into a Ψ ∈ C∞
c ([0,∞)×Rd,Rd) with divΨ = 0.

Then taking the difference of (6.4) and

⟨u(t0),Ψ(t0)⟩L2 =

∫ t0

0

(
⟨u(t′),△Ψ(t′)⟩L2 + ⟨u(t′), ∂tΨ(t′)⟩L2

−⟨div(u⊗ u)(t′),Ψ(t′)⟩L2

)
dt′ + ⟨u0,Ψ(0)⟩L2 ,

we obtain exactly (6.5).

Let us now formally take the inner product of the first line of (6.1) with u and integrate
in Rd

1

2

d

dt
∥u∥2L2 + ⟨u · ∇u, u⟩L2 − ⟨△u, u⟩L2 = −⟨∇p, u⟩L2

We have, summing on repeated indexes,

⟨u · ∇u, u⟩L2 =

∫
Rd

ujuk∂ju
kdx = 2−1

∫
Rd

uj∂j(u
kuk)2dx = −2−1

∫
Rd

|u|2divu dx = 0 and

⟨∇p, u⟩L2 =

∫
Rd

uj∂jpdx = −
∫
Rd

pdivu dx = 0.

So, formally (rigorously if u is regular and we can integrate by parts), we get

1

2

d

dt
∥u∥2L2 + ∥∇u∥2L2 = 0

This in particular yields the following energy equality

∥u(t)∥2L2(Rd) + 2

∫ t

0
∥∇u(t′)∥2L2(Rd)dt

′ = ∥u0∥2L2(Rd). (6.6)
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Theorem 6.3 (Leray). Let u0 ∈ L2(Rd) for d = 2, 3 be divergence free. Then (6.3) admits a
weak solution with u(t) ∈ L∞(R+, H)∩L2

loc(R+, V ) such that the following energy inequality
holds:

∥u(t)∥2L2(Rd) + 2

∫ t

0
∥∇u(t′)∥2L2(Rd)dt

′ ≤ ∥u0∥2L2(Rd). (6.7)

The proof of Theorem 6.3 is long and will be considered later.

Remark 6.4. Theorem 6.3, along with other results on more regular solutions, was published
originally by Leray [9], in 1934, before the appearance of the notions of distribution [16]
and Sobolev space [17]. A presentation in a modern framework is in Ozanski–Poonen [11],
which is freely available in https://arxiv.org/abs/1708.09787 .

Notice that if we apply formally the operator P to equation (6.3) we obtain formally{
ut −△u = QNS(u, u)

u(0, x) = u0(x)
(t, x) ∈ [0,∞)× Rd (6.8)

where we set

QNS(u, v) := −1

2
P(div(u⊗ v))− 1

2
P(div(v ⊗ u)). (6.9)

Here notice that

P(div(u⊗ v))j =
d∑

l=1

∂l

(
(ulvj)− 1

△

d∑
k=1

∂j∂k(u
lvk)

)
. (6.10)

In dimension 2 the result can be strenghtened.

Theorem 6.5 (Case d = 2). When d = 2 the solution in Theorem 6.3 is unique, it satisfies
(6.6) and u(t) ∈ C0([0,∞), L2).

Theorem 6.5 depends on Sobolev’s Embedding Ḣ
1
2 (R2) ↪→ L4(R2). Furthermore, we

will use the following lemma.

6.1 Proof of Theorem 6.5

The following is important.

Lemma 6.6. Let d = 2, 3. Then the trilinear form

(u, v, φ) ∈ (C∞
c (Rd))d × (C∞

c (Rd))d × (C∞
c (Rd))d → ⟨div(u⊗ v), φ⟩L2 ∈ R (6.11)

extends into a unique bounded trilinear form (H1(Rd))d × (H1(Rd))d × (H1(Rd))d which
satisfies for a fixed C

⟨div(u⊗ v), φ⟩L2 ≤ C∥∇u∥
d
4

L2∥∇v∥
d
4

L2∥u∥
1− d

4

L2 ∥v∥1−
d
4

L2 ∥∇φ∥L2 (6.12)

If furthermore div u = 0 then
⟨div(u⊗ v), v⟩L2 = 0. (6.13)
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Proof. Recall that from (6.2) we have div(u⊗ v)j :=
∑d

k=1 ∂k(u
kvj). Then for fields like in

(6.11) we have

⟨div(u⊗ v), φ⟩L2 =
d∑

j=1

⟨div(u⊗ v)j , φj⟩L2 =
d∑

j=1

⟨
d∑

k=1

∂k(u
kvj), φj⟩L2 = −

d∑
j=1

d∑
k=1

⟨ukvj , ∂kφj⟩L2 .

Now the r.h.s. can be bounded by

|⟨ukvj , ∂kφj⟩L2 | ≤ ∥ukvj∥L2∥∇φ∥L2 ≤ ∥uk∥L4∥vj∥L4∥∇φ∥L2 .

Finally, we apply Gagliardo-Nirenberg inequality writing

∥uk∥L4 ≤ C∥∇uk∥
d
4

L2∥uk∥
1− d

4

L2 .

The same holds for vj . Then we obtain (6.12), obviously with a different C. This implies
that the form in (6.11) is continuous and, by density of C∞

c (Rd) in H1(Rd), it extends in a
unique way.
Next, we write for φ = v

⟨div(u⊗ v), v⟩L2 = −
d∑

j=1

d∑
k=1

⟨ukvj , ∂kvj⟩L2

= −2−1
d∑

j=1

d∑
k=1

⟨uk, ∂k(vj)2⟩L2 = 2−1
d∑

j=1

⟨(divu)vj , vj⟩L2 = 0.

Notice that this formal computation (the Leibnitz rule used for the 2nd equality requires
some explaining) is certainly rigorous for v ∈ (C∞

c (Rd))d. On the other hand inequality
(6.12) yields (6.13) by a density argument also for v ∈ (H1(Rd))d.

We consider the following general lemma.

Lemma 6.7. There exists a constant C = CT such that for any u ∈ L2((0, T ), H1(Rd)) ∩
H1((0, T ), H−1(Rd)) we have u ∈ C0([0, T ], L2(Rd)) with

∥u∥L∞([0,T ],L2(Rd)) ≤ C
(
∥u∥L2((0,T ),H1(Rd)) + ∥u̇∥L2((0,T ),H−1(Rd))

)
. (6.14)

Furthermore we have ∥u(t)∥2L2 ∈ AC([0, T ]) with

d

dt
∥u(t)∥2L2 = 2 ⟨u(t), u̇(t)⟩ . (6.15)

Proof. Let us assume additionally that u ∈ C1([0, T ], L2(Rd)). Then for any fixed t0 ∈ [0, T ]
we have

∥u(t)∥2L2 = ∥u(t0)∥2L2 + 2

∫ t

t0

⟨u(s), u̇(s)⟩ ds (6.16)

≤ ∥u(t0)∥2L2 + ∥u∥2L2((0,T ),H1(Rd)) + ∥u̇∥2L2((0,T ),H−1(Rd)).
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We can choose ∥u(t0)∥2L2 = T−1
∫ T
0 ∥u(s)∥2L2ds obtaining (6.14) for C =

√
1 + T−1

The general case is obtained by considering a sequence (un) in C
1([0, T ], H1(Rd)) converging

to u in L2((0, T ), H1(Rd))∩H1((0, T ), H−1(Rd)). To get such a sequence, we can extend ap-
propriately u into a function in L2(R, H1(Rd))∩H1(R, H−1(Rd)), and then we can consider
un = ρϵn ∗ u with ϵn

n→∞−−−→ 0. Then this sequence satisfies the desired properties.
Then (6.14) implies that (un) is a Cauchy sequence in C0([0, T ], L2(Rd)). The limit is
necessarily u, which satisfies (6.14). Also by a limit, we conclude that u satisfies the
equality in (6.16), for any fixed t0 ∈ [0, T ]. This implies ∥u(t)∥2L2 ∈ AC([0, T ]) and formula
(6.15).

Proof of Theorem 6.5. We first claim that for any d = 2 solution we have

∂tu ∈ L2((0, T ), H−1(R2,R2)) for any T > 0. (6.17)

Let us assume this for the moment. Since from (6.7) we have u ∈ L2((0, T ), H1(R2,R2)),
then u ∈ L2((0, T ), H1(R2,R2)) ∩ H1((0, T ), H−1(R2,R2)) for any T > 0. By Lemma 6.7
we have u ∈ C0([0, T ], L2) for any T > 0, and so u(t) ∈ C0([0,∞), L2).
We now assume that there are two solutions u and v with u(0) = v(0) and we set w := u−v.
Both u and v satisfy (6.4). We claim that we can take as test function w, obtaining

⟨u(t), w(t)⟩ =
∫ t

0
(−⟨∇u,∇w⟩+ ⟨u, ∂tw⟩ − ⟨div(u⊗ u), w⟩L2) dt′ and

⟨v(t), w(t)⟩ =
∫ t

0
(−⟨∇v,∇w⟩+ ⟨v, ∂tw⟩ − ⟨div(v ⊗ v), w⟩L2) dt′ (6.18)

To prove the claim, notice that there exists a sequence of test functions Ψn which converges
to w in

L2((0, T ), H1) ∩H1((0, T ), H−1) ∩ C([0, T ], L2).

This implies that (6.4) with the Ψn converge to the above formulas, where we have taken
in account w(0) = 0 and where we used also estimates like, see Lemma 6.6 below,∫ t

0
⟨div(u⊗ u)(t′), w(t′)⟩L2dt′ ≤ C

∫ t

0
∥∇u(t′)∥L2∥u(t′)∥L2∥∇w(t′)∥L2dt′

≤ C∥∇u∥L2((0,t),L2)∥∇w∥L2((0,t),L2)∥u∥L∞((0,t),L2),

and an analogous one for the other nonlinear term.
Taking the difference of the two formulas in (6.18), we obtain

∥w(t)∥2L2 =

∫ t

0

(
−∥∇w(t′)∥2L2 + ⟨w(t′), ∂tw(t′)⟩ − ⟨div(u⊗ u)(t′) + div(v ⊗ v)(t′), w(t′)⟩L2

)
dt′.
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Formula (6.17) for any solution and Lemma 6.7 imply ∥w(t)∥2L2 ∈ AC([0, T ]) with d
dt∥w(t)∥

2
L2 =

2⟨w(t), ∂tw(t)⟩. Hence, using the cancellation (6.13) in the 3nd line,

1

2

d

dt
∥w∥2L2 + ∥∇w∥2L2 = ⟨div(v ⊗ v)− div(u⊗ u), w⟩

= ⟨div(v ⊗ v)− div(u⊗ v) + div(u⊗ v)− div(u⊗ u), w⟩
= −⟨div(w ⊗ v)− div(u⊗ w), w⟩ = −⟨div(w ⊗ v)

= −
〈
∂kv

j , wkwj
〉
≤ ∥∇v∥L2∥w∥2L4 ≤ c∥∇v∥L2∥w∥L2∥∇w∥L2

≤ c2∥∇v∥2L2∥w∥2L2 + ∥∇w∥2L2 ,

where in the 4th line we applied Gagliardo Nirenberg in dimension 2. From the last formula
we obtain

d

dt
∥w∥2L2 ≤ 2c2∥∇v∥2L2∥w∥2L2 which by Gronwall yields

∥w∥2L2 ≤ e2c
2
∫ t
0 ∥∇v(t′)∥2

L2dt
′
∥w(0)∥2L2 = 0.

To complete the proof we need to prove claim (6.17). We apply (6.4) for Ψ(t, x) = ϕ(x) ∈
C∞
cσ(R2,R2) and obtain

⟨u(t), ϕ⟩ − ⟨u(0), ϕ⟩ =
∫ t

0

(
⟨△u(t′), ϕ)⟩ − ⟨Pdiv(u⊗ u)(t′), ϕ⟩

)
dt.

The above formula extends to any ϕ ∈ H1(R2,R2).
We want to use Lemma A.29, which states that if u, g ∈ L1(I,X) are such that

⟨u(t2), f⟩XX∗ − ⟨u(t1), f⟩XX∗ =

∫ t2

t1

⟨g(s), f⟩XX∗ ds for any f ∈ X∗,

with X a Banach space, then ∂tu = g in D′(I,X) := L(D(I,R), X).
Here we apply Lemma A.29 taking X = H−1(R2,R2) and its dual X∗ = H1(R2,R2).
Obviously, we have

∥△u∥L1((0,T ),H−1) ≤
√
T∥u∥L2((0,T ),H1).

Notice that the above inequality does not depend on the dimension. The treatment of
the nonlinear terms, depends on the dimension and is based on Ḣ

1
2 (R2) ↪→ L4(R2), which

depends on the dimension, and is

∥Pdiv(u⊗ u)∥L1((0,T ),H−1) ≤
√
T∥u⊗ u∥L2((0,T ),L2) =

√
T∥∥u∥2L4∥L2(0,T ) ≲

√
T∥∥u∥2

Ḣ
1
2
∥L2(0,T )

≤
√
T∥u∥L∞((0,T ),L2)∥∇u∥L2((0,T ),L2),

where in the last inequality we used the interpolation ∥u∥2
Ḣ

1
2
≤ ∥u∥L2∥∇u∥L2 .

So we can apply Lemma A.29 obtaining that

∂tu = −△u+ Pdiv(u⊗ u) in D′((0, T ), H−1)

and furthermore that (6.17) is true.
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6.2 Proof of Theorem 6.3

We consider a sort of regularization of the NS equation. In the sequel we consider only case
d = 3 .

Using a smooth mollificator ρ ∈ C∞
c (Rd, [0, 1]) s.t.

∫
ρ(x)dx = 1 and with ρϵ(x) :=

ϵ−dρ(x/ϵ), we consider {
ut −△u = −P ((ρε ∗ u) · ∇u)

u(0) = ρε ∗ u0.
(6.19)

If we are in the framework of Theorem 4.2, then

u = et△ρε ∗ u0 − Φε(u)(t) where Φε(u)(t) :=

∫ t

0
e(t−t′)△P ((ρε ∗ u) · ∇u) dt′ . (6.20)

Lemma 6.8. Equation (6.20) has exactly one maximal solution. This solution u is global
in time, with

u ∈ C0([0,+∞), L2(Rd,Rd)) ∩ L∞(R+, L
2(Rd,Rd)) ∩ L2(R+, Ḣ

1(Rd,Rd × Rd) (6.21)

Furthermore, u satisfies the energy identity (6.6).

Before we prove Lemma 6.8 we state a useful abstract lemma.

Lemma 6.9. Let X be a Banach space and B : X2 → X a continuous bilinear map. Let
α < 1

4∥B∥ where ∥B∥ = sup∥x∥=∥y∥=1 ∥B(x, y)∥. Then for any x0 ∈ DX(0, α) (the open ball

of center 0 and radius α in X) there exists a unique x ∈ DX(0, 2α) s.t. x = x0 +B(x, x).

Proof. We consider the map
x→ x0 +B(x, x). (6.22)

We will frame this as a fixed point problem in DX(0, 2α).
First of all, we claim that the map (6.22) leaves DX(0, 2α) invariant. Indeed

∥x0 +B(x, x)∥ ≤ ∥x0∥+ ∥B(x, x)∥ ≤ ∥x0∥+ ∥B∥∥x∥2 ≤ α

≤2︷ ︸︸ ︷
(1 + 4∥B∥α︸ ︷︷ ︸

<1

) < 2α.

Next, we check that the map (6.22) is a contraction. Indeed

∥B(x, x)−B(y, y)∥ ≤ ∥B(x− y, x)∥+ ∥B(y, x− y)∥ ≤ 4α∥B∥∥x− y∥

where 4α∥B∥ < 1. So the map (6.22) has a unique fixed point in DX(0, 2α).

Proof of Lemma 6.8. Let, for T ∈ R+,

X := L∞
(
[0, T ], H(Rd,Rd)) ∩ L2([0, T ], Ḣ1(Rd,Rd × Rd)

)
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and

B(u, v) := −
∫ t

0
e(t−t′)△P ((ρϵ ∗ v) · ∇u) dt′ =

∫ t

0
e(t−t′)△Pdiv((ρϵ ∗ v)⊗ u) dt′.

Then by Theorem 4.2

∥B(u, v)∥L∞([0,T ],L2)∩L2([0,T ],Ḣ1) ≤ C∥Pdiv(ρϵ ∗ v ⊗ u)∥L2([0,T ],Ḣ−1) ≲ C∥(ρϵ ∗ v)⊗ u∥L2([0,T ],L2)

≤ C
√
T∥ρϵ ∗ v∥L∞([0,T ],L∞(Rd))∥u∥L∞([0,T ],L2(Rd)) ≤ Cε

√
T∥v∥L∞([0,T ],L2(Rd))∥u∥L∞([0,T ],L2(Rd)).

Then using

∥et△ρε ∗ u0∥L∞([0,T ],L2)∩L2([0,T ],Ḣ1) ≤ ∥et△u0∥L∞(R+,L2)∩L2(R+,Ḣ1) ≤ C0∥u0∥L2 ,

and 1 picking T = T (∥u0∥L2) such that 4CεC0

√
T (∥u0∥L2)∥u0∥L2 < 1 we obtain from

Lemma 6.9 the existence of a solution of (6.20) in X. Furthermore this solution is unique
and is in C0([0, T ], H(Rd,Rd)) by Theorem 4.2. Let us consider the maximal solution

u ∈ C0([0, T ∗), L2(Rd,Rd))

and let us suppose that T ∗ < +∞. Then we claim that

lim
t→T ∗

∥u(t)∥L2 = +∞. (6.23)

In fact, suppose that (6.23) false. Then there exists an M and a sequence tn → T ∗ with
∥u(tn)∥L2 ≤M . Then for n such that tn + T (M) > T ∗, let

w(t) :=

{
u(t) for 0 ≤ t ≤ tn

v(t− tn) for tn ≤ t ≤ tn + T (M)

with v the solution of

v(t) = et△u(tn)−
∫ t

0
e(t−t′)△P (ρϵ ∗ v · ∇v) dt′ .

Then in fact w solves (6.20), by uniqueness it coincides with u in [0, T ∗), and hence we can
extend u beyond T ∗ getting a contradiction. Hence, if T ∗ < +∞ we have (6.23).
Now we discuss the fact that (6.23) is impossible. To see this we consider the identity (4.5)

∥u(t)∥2L2 + 2

∫ t

0
∥∇u(t′)∥2L2dt

′ = ∥ρε ∗ u0∥2L2 − 2
��������������∫ t

0
⟨�Pdiv((ρϵ ∗ v)⊗ u), u⟩dt′,

where the last term cancels by by the cancelation (6.13). So that we get the energy identity
(6.6). This prevents the blowup (6.23) and completes the proof of Lemma 6.8.

1Notice that that the fact that T = T (∥u0∥L2) rather than T = T (u0) says that this problem is subcritical,
basically, not too difficult.
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We consider now a sequence εn → 0+ and denote by un the corresponding sequence of
solutions provided by Lemma 6.8. In particular, we have

⟨un(t),Ψ(t)⟩ =
∫ t

0
(⟨un,△Ψ⟩+ ⟨un, ∂tΨ⟩ − ⟨P (ρϵn ∗ un · ∇un) ,Ψ⟩) dt′ + ⟨ρε ∗ u0,Ψ(0)⟩

(6.24)
for any Ψ ∈ C∞

cσ([0, T ]× Rd,Rd).
Let us focus here on d = 3. Then the un belong to the spaces in (6.21) with norms uniformly
bounded by ∥u0∥L2 . Then un ∈ Lr(R+, L

q(R3)) for 3
q + 2

d = 3
2 . In particular, for instance,

for q = r = 10
3 by (4.5) we obtain

∥un∥
L

10
3 (R3×R+)

≤ ∥u0∥L2 .

This can be easily proved by the energy inequalities satisfied by all the un and by Hölder
inequality.
By the weak pre–compactness of bounded subsets of L

10
3 (R3 ×R+) this implies that, up to

a subsequence, there exists u ∈ L
10
3 (R3 × R+) s.t. un ⇀ u in L

10
3 (R3 × R+). Our aim is to

show that u satisfies (6.4) by taking the limit in (6.24). Clearly we have

lim
n→+∞

∫ t

0
(⟨un,△Ψ⟩+ ⟨un, ∂tΨ⟩) dt′ =

∫ t

0
(⟨u,△Ψ⟩+ ⟨u, ∂tΨ⟩) dt′.

We will prove the following result.

Proposition 6.10. We have u ∈ L∞(R+, L
2(Rd,Rd)) ∩ L2

loc(R+, H
1(Rd,Rd)), div u = 0

and for any T > 0 and any compact subset K ⊂ Rd we have

lim
n→∞

∫
[0,T ]×K

|un(t, x)− u(t, x)|2dtdx = 0. (6.25)

Moreover, for any ψ ∈ C0([0,∞), H1(Rd,Rd)) we have ⟨un, ψ⟩L2(Rd,Rd) → ⟨u, ψ⟩L2(Rd,Rd) in
L∞
loc([0,∞)), that is

lim
n→∞

∥⟨un(t)− u(t), ψ(t)⟩∥C0([0,T ]) = 0 for any T . (6.26)

Notice that (6.26) implies the weak continuity u ∈ C0([0,+∞), L2
w) and

lim
n→+∞

⟨un(t),Ψ(t)⟩ = ⟨u(t),Ψ(t)⟩

so that, to complete the proof that u satisfies (6.4) what will be left is

lim
n→+∞

∫ t

0
⟨un, ρϵn ∗ un · ∇Ψ⟩dt′ =

∫ t

0
⟨u, u · ∇Ψ⟩dt′, (6.27)

which will also follow from Proposition 6.10, as we will see later.
Proof of Proposition 6.10. Fix an arbitrary T > 0 and an arbitrary compact subset K

of Rd. It is enough to prove the following claim.
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Claim 6.11. The set formed by the elements of the sequence {un}n∈N is relatively compact
in L2([0, T ]×K,Rd).

Proof of Claim 6.11. We will show the following statement, which is equivalent to
Claim 6.11.

Claim 6.12. For any ε > 0 there exists a finite family of balls of the space L2([0, T ]×K,Rd)
which have radius ε and whose union covers the set {un}n∈N.

Proof of Claim 6.12. First of all, if we want to approximate {un}n∈N with {Pn0un}n∈N
for a fixed n0, we can use the fact that for any n0 and any n we have

∥un −Pn0un∥2L2([0,T ]×Rd,Rd) =

∫ T

0
∥un −Pn0un∥2L2(Rd,Rd)dt

≤ n−2
0

∫ T

0
∥∇un −∇Pn0un∥2L2(Rd)dt ≤ n−2

0

∫ T

0
∥∇un∥2L2(Rd)dt ≤ n−2

0 ∥u0∥2L2(Rd).

Hence we can choose n0 large enough s.t.

∥un −Pn0un∥L2([0,T ]×Rd,Rd) <
ε

2
for all n ∈ N. (6.28)

Now consider {Pn0un}n∈N. Then Claim 6.12 is a consequence of

Claim 6.13. {Pn0un}n∈N is relatively compact in L2([0, T ]×K,Rd).

Indeed Claim 6.13 implies that for any ε > 0 there is a finite number of ballsBL2([0,T ]×K,Rd)(fj ,
ε

2
)

which cover {Pn0un}n∈N. Hence by (6.28) we conclude that for any ε > 0 the balls
BL2([0,T ]×K,Rd)(fj , ε) cover {un}n∈N and so we get Claim 6.12.

Proof of Claim 6.13. It will be a consequence of the following stronger claim.

Claim 6.14. {Pn0un}n∈N is relatively compact in C0([0, T ], (L2(K))d) ⊂ L∞([0, T ], (L2(K))d).

Proof of Claim 6.14. To get this result we want to apply the Ascoli–Arzela Theorem
(for which a sufficient condition for a sequence of continuous functions fn : K → X, with
K compact metric space and X a complete metric space, to admit a subsequence that
converges uniformly to a continuous function f : K → X is that it is equicontinuous and
{fn(k)}n is relatively compact for any k ∈ K 2). So it is enough to show that {Pn0un}n∈N
is a sequence of equicontinuous functions in C0([0, T ], (L2(K))d) and that for any t ∈ [0, T ]
the sequence {Pn0un(t)}n∈N is relatively compact in (L2(K))d.
First of all we want to show that {Pn0un}n∈N is a sequence of equicontinuous functions in
C0([0, T ], (L2(K))d). This will follow from Hölder inequality (since 4

d > 1 if d = 2, 3) and
from the following claim.

2The proof goes as follows. One first considers a dense countable subset N of K. Then by a diagonal
argument, one considers a subsequence {fnm} s.t. {fnm(k)} converges for any k ∈ N to a limit that we
denote by f(k). Using equicontinuity and the completeness of X it is easy to see that {fnm(k)} converges for
any k ∈ K. We denote again by f(k) the limit. Finally, using equicontinuity we conclude that f : K → X
is continuous
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Claim 6.15. There exists a fixed constant C = C(n0) s.t.

∥(Pn0un)t∥L 4
d ([0,T ],L2(Rd))

≤ C for all n.

Proof of Claim 6.15. We apply Pn0 to (6.19) and we obtain

(Pn0un)t = −Pn0P (ρϵn ∗ un · ∇un) +Pn0△un.

We have
∥Pn0△un∥L2(Rd,Rd) ≤ n20∥un∥L2(Rd,Rd) ≤ n20∥u0∥L2(Rd,Rd)

and, by Gagliardo-Nirenberg inequality,

∥Pn0P (ρϵn ∗ un · ∇un) ∥L2(Rd,Rd) ≤ ∥Pn0∂j (uni ρϵn ∗ unj)−→e i∥L2(Rd,Rd)

≤ n0

d∑
j,i=1

∥uniρϵn ∗ unj∥L2(Rd,Rd) ≤ Cn0∥ρϵn ∗ un∥L4(Rd,Rd)∥un∥L4(Rd,Rd)

≤ Cn0∥un∥2L4(Rd,Rd) ≤ C ′n0

(
∥∇un∥

d
4

L2∥un∥
1− d

4

L2

)2

.

Then we have

∥(Pn0un)t∥L 4
d ([0,T ],L2(Rd,Rd))

≤ n20T
d
4 ∥u0∥(Rd,Rd)

+ C ′n0∥un∥
2(1− d

4 )
L∞([0,T ],L2(Rd,Rd))

∥∇un∥
d
2

L2([0,T ],L2(Rd))
≤ C

for some constant C independent of n by the energy equality (6.6).
Hence we have concluded the proof that {Pn0un}n∈N is a sequence of equicontinuous func-
tions in C0([0, T ], (L2(Rd))d).
To complete the proof of Claim 6.14 we need to show that for any t ∈ [0, T ] the sequence
{Pn0un(t)}n∈N is relatively compact in (L2(K))d. It is here that we will exploit the fact
that K is a compact subspace of Rd.
We know that {Pn0un(t)}n∈N is a bounded sequence in H1(Rd,Rd) for any t ∈ [0, T ]. This
follows immediately from ∥Pn0un(t)∥H1 ≤ n0∥un(t)∥L2 ≤ n0∥u0∥L2 , which follows from the
energy equality (6.6) which guarantees ∥un(t)∥L2 ≤ ∥u0∥L2 . We recall now the following.

Claim 6.16. The restriction map H1(Rd) → L2(K) is compact for any compact K .

Sketch of proof Indeed this is equivalent at showing that

T f := χKF∗
(
f

⟨ξ⟩

)
is compact as L2(Rd) → L2(Rd).

We have T f =
∫
K(x, ξ)f(ξ)dξ with integral kernel K(x, ξ) := χK(x)⟨ξ⟩−1e−ix·ξ. It is

easy to see that Tn
n→∞→ T in the operator norm where the Tn has kernel Kn(x, ξ) :=

χK(x)⟨ξ⟩−1e−ix·ξχB(0,n)(ξ). Since Kn ∈ L2(Rd
x×Rd

ξ), it follows that Tn is a Hilbert–Schmidt
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operator, with ∥Tn∥HS := ∥Kn∥L2(Rd
x×Rd

ξ)
. It is easy to show that ∥Tn∥L2→L2 ≤ ∥Tn∥HS .

Kn is the limit in L2(Rd
x×Rd

ξ) of elements in L2(Rd
x)⊗L2(Rd

ξ). The latter ones are integral
kernels of finite rank operators and their operators converge in the Hilbert–Schmidt norm,
and so also in the ∥ · ∥L2→L2 norm, to Tn. We conclude that there is a sequence of finite
rank operators which converges in the operator norm to T , which then is compact.
It follows that {Pn0un(t)}n∈N is relatively compact in L2(K,Rd) for any t ∈ [0, T ].
Hence the hypotheses of the Ascoli–Arzela Theorem have been checked and we can conclude
that Claim 6.14, that is the claim that {Pn0un}n∈N is relatively compact in C0([0, T ], L2(K,Rd)),
is true.

By the above series of Claims and by un ⇀ u in L
10
3 (R3 × R+), we conclude (6.25).

We turn now to the proof of (6.26).
Fix a function ψ ∈ C0([0,∞), H1(Rd,Rd)). For a given n0 consider

gn(t) := ⟨un(t), ψ(t)⟩L2(Rd) and g
(n0)
n (t) := ⟨Pn0un(t), ψ(t)⟩L2(Rd).

Then for any ϵ > 0 and any fixed T > 0 there exists n0 s.t.

∥(Pn0 − 1)ψ(t)∥L∞([0,T ],L2(Rd)) < ϵ.

This and ∥un(t)∥L∞([0,T ],L2(Rd)) ≤ ∥u0∥L2(Rd) imply

∥gn − g(n0)
n ∥L∞([0,T ] ≤ ∥u0∥L2(Rd)ϵ.

Furthermore, for any fixed T > 0 there exists a compact K s.t.

∥ψ(t)∥L∞([0,T ],L2(Rd\K)) < ϵ.

Then, if we set g
(n0,K)
n (t) := ⟨Pn0un(t), ψ(t)⟩L2(K,Rd) we have

∥g(n0,K)
n − g(n0)

n ∥L∞([0,T ] ≤ ∥u0∥L2(Rd)ϵ.

We claim that
Pn0un → Pn0u in C0([0, T ], L2(K,Rd)). (6.29)

Indeed, by Claim 6.14, and by a diagonal argument, we know that there exists a v s.t.
Pn0un → v in C0([0, T ], L2(K,Rd)) for any T and K. It is easy to conclude that v ∈
L2([0, T ]×Rd,Rd) and that Pn0un ⇀ v therein. On the other hand, we know that un → u
in L2([0, T ] × K,Rd). This implies that un ⇀ u in L2([0, T ] × Rd,Rd). Since Pn0 is
continuous as an operator from L2([0, T ] × Rd,Rd) into itself, is continuous for the weak
topology. This implies Pn0un ⇀ Pn0u in L2([0, T ]×Rd,Rd). But then this implies v = Pn0u
in L2([0, T ]×K,Rd), and so we get (6.29).
In turn, (6.29) implies

{g(n0,K)
n }n = ⟨Pn0un(t), ψ(t)⟩L2(K)

n→+∞−−−−−→ ⟨Pn0u(t), ψ(t)⟩L2(K) in C
0([0, T ]).
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But then also

∥⟨un(t), ψ(t)⟩L2(Rd) − ⟨u(t), ψ(t)⟩L2(Rd)∥L∞([0,T ]

≤ ∥⟨Pn0un(t), ψ(t)⟩L2(K) − ⟨Pn0u(t), ψ(t)⟩L2(K)∥L∞([0,T ] + 2∥u0∥L2(Rd)ϵ

+ ∥⟨u(t), (1−Pn0)ψ(t)⟩L2(Rd)∥L∞([0,T ] + ∥⟨u(t), (1− χK)ψ(t)⟩L2(Rd)∥L∞([0,T ] ≤
≤ ∥⟨Pn0un(t), ψ(t)⟩L2(K) − ⟨Pn0u(t), ψ(t)⟩L2(K)∥L∞([0,T ] + 4∥u0∥L2(Rd)ϵ.

Since ϵ is arbitrarily small, it follows that we obtain that gn converges to ⟨u(t), ψ(t)⟩L2(Rd,Rd)

in L∞([0, T ]), and hence in C0([0, T ]). In particular we have shown that u ∈ C0([0,∞), L2
w(Rd,Rd)).

The proof of Proposition 6.10 is completed.
We will now show that divxu(t) = 0 for all t. Notice that we knew already that

lim
n→∞

∫
[0,T ]×Rd

(un(t, x)− u(t, x)) · Φ(t, x)dtdx = 0 for all Φ ∈ L2([0, T ]× Rd,Rd).

For Φ(t, x) = χ(t)∇ψ(x) we have from the above limit∫
[0,T ]

dtχ(t)

∫
Rd

divxu(t, x)ψ(x)dx = 0 for all ψ ∈ C∞
c (Rd,R) and any χ ∈ C∞([0, T ],R),

This implies that ∫
Rd

divxu(t, x)ψ(x)dx = 0 for a.e. t.

In fact, u ∈ C0([0,∞), L2
w(Rd,Rd)) proves that the integral on the l.h.s. is continuous in t.

This integral equals 0 for all t, and not just for a.a. t. It follows that divxu(t, x) = 0 for all
t.

We now prove that u satisfies the energy inequality (6.7).

Notice also that, up to a subsequence, un(t, x)
n→+∞−−−−−→ u(t, x) for almost any (t, x), see p.

94 [2], and ∇un ⇀ ∇u as n → +∞ in L2((0, T ) × Rd,Rd × Rd). We claim that, since we

assume we have extracted a subsequence, so that un(t, x)
n→+∞−−−−−→ u(t, x) for almost any

(t, x) ∈ R+ × Rd, this implies that for almost any t we have un(t, x)
n→+∞−−−−−→ u(t, x) for a.e.

x. Indeed, if this was not the case, setting w(t, x) := lim supn |un(t, x)−u(t, x)|, there would
exist J ⊂ R+ with measure |J | > 0 and with

∫
Rd w(t, x)dx > 0 for t ∈ J , which would imply∫

R+×Rd w(t, x)dtdx > 0, and so w > 0 on a subset of R+ × Rd of positive measure. But we

know that w = 0 a.e. in R+ × Rd and this proves our claim.
Then the energy inequality (6.6) for all un implies by Fatou

∥u(t)∥2L2(Rd) + 2

∫ t

0
∥∇u(t′)∥2L2(Rd)dt

′ ≤ ∥u0∥2L2(Rd), (6.7)

where here for the 1st term in the l.h.s. we apply the classical Fatou theorem for a sequence
of integrable functions converging pointwise to a function, see [2, Lemma 4.1], while for the
2nd term in the l.h.s. we apply claim (iii) Proposition 3.5 [2].
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6.2.1 End of the proof of Leray’s Theorem 6.3

Proposition 6.10 has provided us with a divergence free function

u ∈ L∞([0,∞), L2(Rd,Rd)) ∩ L2([0,∞), Ḣ1(Rd,Rd)) ∩ C0([0,∞), L2
w(Rd,Rd))

which satisfies the energy inequality

∥u(t)∥2L2(Rd) + 2

∫ t

0
∥∇u(t′)∥2L2(Rd)dt

′ ≤ ∥u0∥2L2(Rd). (6.7)

To finish with the proof and show that u is a weak solution of the NS equation, we need to
prove

lim
n→+∞

∫ t

0
⟨un, ρϵn ∗ un · ∇Ψ⟩dt′ =

∫ t

0
⟨u, u · ∇Ψ⟩dt′. (6.27)

We observe that, since Ψ ∈ C1([0,∞), H1(Rd,Rd)), for any ε > 0 there is a compact set
K ⊂ Rd s.t.

sup
s∈[0,T ]

∥∇Ψ(s, ·)∥L2(Rd\K) < ε. (6.30)

(6.30) is elementary to prove and it is assumed in the sequel.
By Hölder, (6.30), Gagliardo–Nirenberg and the energy equality (6.6) we have

|
∫ t

0
ds

∫
Rd\K

ρϵn ∗ un(s, x)⊗ un(s, x) : ∇Ψ(s, x)dx| ≤
∫ T

0
ds∥ρϵn ∗ un ⊗ un∥L2(Rd)∥∇PΨ(s)∥L2(Rd\K)

≤ T
4−d
4 ∥ρϵn ∗ un ⊗ un∥

L
4
d ([0,T ],L2(Rd))

∥∇Ψ∥L∞([0,T ],L2(Rd\K))

≤ T
4−d
4 ∥∥un∥2L4(Rd)∥L 4

d (0,T )
ε ≲ εT

4−d
4 ∥∥un∥2(1−d/4)

L2(Rd)
∥∇un∥d/2L2(Rd)

∥
L

4
d (0,T )

≲ εT
4−d
4 ∥un∥

2(1− d
4 )

L∞([0,T ],L2(Rd))
∥∇un∥

d
2

L2([0,T ],L2(Rd))
≤ εT

4−d
4 ∥u0∥2L2(Rd).

Hence, to prove (6.27) it is enough to show for any compact set K ⊂ Rd

lim
n→∞

∫ t

0
ds

∫
K
ρϵn ∗ un(s, x)⊗ un(s, x) : ∇PΨ(s, x)dx

=

∫ t

0
ds

∫
K
u(s, x)⊗ u(s, x) : ∇PΨ(s, x)dx.

(6.31)

The limit (6.31) is a consequence of

lim
n→∞

ρϵn ∗ un ⊗ un = u⊗ u in L1([0, T ], L2(K))

which in turn is a consequence of

lim
n→∞

un = u in L2([0, T ], L4(K)). (6.32)
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To prove (6.32), we consider χ ∈ C∞
c (Rd, [0, 1]) s.t. χ = 1 in K, Ω := suppχ and with

∥∇χ∥L∞(Rd) ≤ 1. Then by Gagliardo Nirenberg we have

∥f∥L4(K) ≤ C∥f∥1−d/4
L2(Ω)

(∥χ∇f∥L2(Rd) + ∥f∇χ∥L2(Rd))
d/4 ≤ C∥f∥1−d/4

L2(Ω)
∥f∥d/4

H1(Rd)
.

Using this inequality and Hölder inequality with
1

2
=

4− d

8
+
d

8
,

∥u− un∥L2([0,T ],L4(K)) ≲ ∥∥u− un∥
1− d

4

L2(Ω)
∥u− un∥

d
4

H1(Rd)
∥L2(0,T )

≤ ∥∥u− un∥
1− d

4

L2(Ω)
∥
L

8
4−d (0,T )

∥∥u− un∥
d
4

H1(Rd)
∥
L

8
d (0,T )

= ∥u− un∥
1− d

4

L2([0,T ],L2(Ω))
∥u− un∥

d
4

L2([0,T ],H1(Rd))

≤ (2(1 +
√
T )∥u0∥L2(Rd,Rd))

d
4 ∥u− un∥

1− d
4

L2([0,T ],L2(Ω))

n→+∞−−−−−→ 0

where the limit holds because un
n→+∞−−−−−→ u in L2([0, T ], L2(Ω,Rd)), by Proposition 6.10.

This yields (6.32) and so also (6.31).
This completes the proof of Leray’s Theorem 6.3.

Remark 6.17. The solutions we have found do not satisfy only the energy inequality (6.7),
but in fact the more general inequality

∥u(t)∥2L2(Rd,Rd) + 2

∫ t

s
∥∇u(t′)∥2

L2(Rd,Rd2 )
dt′ ≤ ∥u(s)∥2L2(Rd,Rd) for any 0 ≤ s < t. (6.33)

We will check later that

for a.a. t we have ∥un(t)∥L2(Rd,Rd)
n→+∞−−−−−→ ∥u(t)∥L2(Rd,Rd) (6.34)

so that (6.33) is proved in analogy to the proof of (6.7), exploiting the fact that the sequence
un satisfies

∥un(t)∥2L2(Rd,Rd) + 2

∫ t

s
∥∇un(t′)∥2L2(Rd,Rd2 )

dt′ = ∥un(s)∥2L2(Rd,Rd). (6.35)

Notice this interesting continuity from the right.

Lemma 6.18. If u(t) is a Leray–Hopf solution for d = 3 then for any s ≥ 0 we have

u(t)
t→s+−−−→ u(s) in L2(R3,R3).

Proof. From (6.33) we have lim sup
t→s+

∥u(t)∥L2(R3) ≤ ∥u(s)∥L2(R3). On the other hand, since

by weak continuity u(t)
t→s+
⇀ u(s), by Fathou’s Lemma we have lim inf

t→s+
∥u(t)∥L2(R3) ≥

58



∥u(s)∥L2(R3). Hence we have the limit lim
t→s+

∥u(t)∥L2(R3) = ∥u(s)∥L2(R3). This and u(t)
t→s+
⇀

u(s) yield u(t)
t→s+−−−→ u(s) in L2(R3,R3).

The proof of the claim in (6.34) follows from the following lemma.

Lemma 6.19. For any T > 0 and any ϵ > 0 there exists R = R(u0, T, ϵ) such that∫
|x|≥R

|uε(t, x)|2dx < ϵ2 for all ε ∈ (0, 1) and a.a. t ∈ [0, T ] (6.36)

where uε is the solution to (6.20).

We remark here that in the above statement the small constant ϵ and the constant
ε ∈ (0, 1) parameterizing the solutions to (6.20) are distinct.

Proof of claim in (6.34) assuming Lemma 6.19. Fix a T > 0 and consider the
sequence un of the proof of Leray’s Theorem. For any ϵ > 0 fix the R of Lemma 6.19. Then
∥un∥L∞((0,T ),L2(|x|≥R) < ϵ for all n (because R = R(u0, T, ϵ) is independent from εn ∈ (0, 1)).
This implies also

∥u∥L∞((0,T ),L2(|x|≥R) ≤ lim inf ∥un∥L∞((0,T ),L2(|x|≥R) < ϵ

by Fathou’s Lemma. On the other hand, we have un
n→+∞−−−−−→ u in L2((0, T ) ×DRd(0, R)).

The latter implies that (extracting a subsequence) un(t)
n→+∞−−−−−→ u(t) in L2(DRd(0, R)) for

a.a. t ∈ [0, T ]. In fact, it is easy to show that there is a set of full measure J ⊆ R+ such

that (extracting a subsequence) un(t)
n→+∞−−−−−→ u(t) in L2(K) for any compact K ⊂⊂ Rd.

This coupled with ∥un∥L∞((0,T ),L2(|x|≥R) < ϵ and ∥u∥L∞((0,T ),L2(|x|≥R) < ϵ yields (6.34) for
all the t ∈ J .

Proof of Lemma 6.19. We start from equation (6.19). Recalling P = 1 − 1
△∇div,

(2.11), we can write, summing on repeated indexes,

−P ((ρε ∗ uε) · ∇uε) = −(ρε ∗ uε) · ∇uε +
1

△
∇div

(
(ρε ∗ ukε)∂kuε

)
= −(ρε ∗ uε) · ∇uε +

1

△
∇
(
∂j(ρε ∗ ukε)∂kujε

)
= −(ρε ∗ uε) · ∇uε −∇∂j∂k

−△

(
ρε ∗ ukε)ujε

)
= −(ρε ∗ uε) · ∇uε −∇RjRk

(
ρε ∗ ukε)ujε

)
where Rj =

∂j√
−△

are the Riesz transforms.

So we can write (6.19) as {
u̇ε −△uε + ρε ∗ uε · ∇uε +∇pε = 0

uε(0) = u0

where pε = RiRj

(
ρε ∗ uiεujε

)
.
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Let us consider now for 0 < r1 < r

ϱ(x) :=


0 for |x| ≤ r1

|x|−r1
r−r1

for r1 ≤ |x| ≤ r

1 for |x| ≥ r.

Then, applying ⟨·, ϱuε⟩ to the equation, we obtain

1

2

d

dt

∫
R3

ϱ|uε|2 +
∫
R3

ϱ|∇uε|2 = −
∫
R3

∂iϱu
j
ε∂iu

j
εu

j
ε +

∫
R3

|uε|2ρε ∗ uε · ∇ϱ+
∫
R3

pεuε · ∇ϱ.

Integrating between (0, t) we have

1

2

∫
R3

ϱ|uε(t)|2 ≤
1

2

∫
R3

ϱ|ρε ∗ u0|2 +
∫ t

0

∫
R3

(
|∇uε| |uε|+ |uε|2 |ρε ∗ uε|+ |pε| |uε|

)
|∇ϱ|

≤ 1

2

∫
|x|≥r1

|u0|2 +
1

r − r1

∫ t

0

∫
R3

(
|∇uε| |uε|+ |uε|2 |ρε ∗ uε|+ |pε| |uε|

)
and so also

1

2

∫
|x|≥r

|uε(t)|2 ≤
1

2

∫
|x|≥r1

|ρε ∗ u0|2 +
1

r − r1

∫ t

0

∫
R3

(
|∇uε| |uε|+ |uε|2 |ρε ∗ uε|+ |pε| |uε|

)
.

For the nonlinear term, we have

∥|∇uε| |uε|+ |uε|2 |ρε ∗ uε|+ |pε| |uε|∥L1((0,t),L1
x)

≤
(
∥∇uε∥L1((0,t),L2

x)
+ ∥uε∥2L2((0,t),L4

x)
+ ∥pε∥L1((0,t),L2

x)

)
∥uε∥L∞((0,t),L2

x)
.

We have ∥pε∥L1((0,t),L2
x)

≤ C3∥uε∥2L2((0,t),L4
x)
. Now we bound

∥uε∥L∞((0,t),L2
x)

≤ ∥u0∥L2
x

∥∇uε∥L1((0,t),L2
x)

≤
√
t∥∇uε∥L2((0,t),L2

x)
≤

√
t∥u0∥L2

x

and, by Gagliardo Nirenberg,

∥uε∥2L2((0,t),L4
x)

≲ ∥∥uε∥1/4L2
x
∥∇uε∥3/4L2

x
∥2L2(0,t) ≤ ∥uε∥1/2L∞((0,t),L2

x)
∥∇uε∥3/2L3/2((0,t),L2

x)

≤ ∥u0∥1/2L2
x

(
6
√
t∥∇uε∥L2((0,t),L2

x)

)3/2
≤ 4

√
t∥u0∥L2

x
.

So, for a dimensional constant C3, we have∫
|x|≥r

|uε(t)|2 ≤
∫
|x|≥r1

|ρε ∗ u0|2 +
C3(

√
t+ 4

√
t)

r − r1
∥u0∥2L2

x

(
1 + ∥u0∥L2

x

)
for all ε ∈ (0, 1).
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Now we fix ϵ > 0 and, keeping in mind that t ∈ [0, T ] and ε ∈ (0, 1), we pick r1 such that∫
|x|≥r1

|ρε ∗ u0|2 ≤
∫
|x|≥r1−1

|u0|2 <
ϵ2

2

and subsequently we pick r such that

C3(
√
T + 4

√
T )

r − r1
∥u0∥2L2

x

(
1 + ∥u0∥L2

x

)
<
ϵ2

2
.

Then we obtain R = r(u0, T, ϵ) such that (6.36) is true.

7 Initial datum in V (Rd)

Theorem 7.1 (Local existence of regular solutions 3d). There exists a constant c0 > 0
such that for u0 ∈ V (R3) := H1(R3,R3) ∩H(R3) there exists a T > c0∥∇u0∥−4

L2 s.t. one of
the Leray’s solutions satisfies u ∈ L∞([0, T ], V ) and ∇2u ∈ L2([0, T ], L2).
Furthermore, this solution u satisfies the energy equality

∥u(t)∥2L2(Rd) + 2

∫ t

s
∥∇u(t′)∥2L2(Rd)dt

′ = ∥u(s)∥2L2(Rd) for any 0 ≤ s < t ≤ T . (7.1)

Proof. We consider the solution u obtained from the limit of the sequence un defined by
(6.19), and which we can write as

u̇n + P ((ρϵn ∗ un) · ∇un)−△un = 0 , un(0) = ρϵn ∗ u0. (7.2)

Applying ⟨·,−△un⟩ we obtain

2−1 d

dt
∥∇un∥2L2 + ∥△un∥2L2 = ⟨(ρϵn ∗ un) · ∇un,△un⟩ ≤ ∥(ρϵn ∗ un) · ∇un∥L2∥△un∥L2

≤ ∥un∥L∞∥∇un∥L2∥△un∥L2 ≤ c∥∇un∥
3
2

L2∥△un∥
3
2

L2 ≤ C∥∇un∥6L2 +
1

2
∥△un∥2L2 , (7.3)

where we used Agmon’s inequality ∥un∥L∞(R3) ≤ ∥∇un∥
1
2

L2(R3)
∥∇2un∥

1
2

L2(R3)
, see (2.31), and

Young’s inequality ab ≤ a4

4λ4 + 3
4λ

4
3 b

4
3 , where we choose λ so that 3

4λ
4
3 = 1/2. We obtain

d

dt
∥∇un∥2L2 + ∥△un∥2L2 ≤ C∥∇un∥6L2 .

From this we derive

d

dt
∥∇un∥2L2 ≤ C∥∇un∥6L2 with ∥∇un(0)∥2L2 = ∥ρϵn ∗ ∇u0∥2L2 ≤ ∥∇u0∥2L2 . (7.4)
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Let us consider the ODE

d

dt
X = CX3 with Xε(0) = ∥∇u0∥2L2 .

The equation is separable, so the general solution is obtained writing dX
X3 = Cdt and inte-

grating separately, so that

− 1

2X2
+

1

2X2(0)
= Ct =⇒ X(t) =

X(0)√
1− 2CtX2(0)

=
∥∇u0∥2L2√

1− 2Ct∥∇u0∥4L2

.

We claim

∥∇un(t)∥2L2 ≤ X(t) for any n ∈ N and for any 0 ≤ t < (2C∥∇u0∥4L2)
−1. (7.5)

Now, we have

d

dt

(
∥∇un∥2L2 −X

)
≤ λ

(
∥∇un∥2L2 −X

)
with λ := C

(
X2 +X∥∇un∥2L2 + ∥∇un∥4L2

)
Integrating, and using ∥∇un(0)∥2L2 −X(0) ≤ 0, we obtain

∥∇un(t)∥2L2 −X(t) ≤
∫ t

0
λ
(
∥∇un∥2L2 −X

)
dt′

for any 0 ≤ t < (2C∥∇u0∥4L2)
−1. But then, we can apply Gronwall’s Lemma 2.31 (here the

function λ satisfies the hypotheses in Lemma 2.31) and conclude that the claim in (7.5) is
true.
So there exists a T like in the statement s.t.

∥un(t)∥2H1 +

∫ t

0
∥un(t′)∥2H2dt

′ ≤ CT,∥u0∥H1
for t ∈ [0, T ]. (7.6)

Recall that we had un convergent to u in various ways. By Banach–Alaoglu there exists
a subsequence which is ∗–weakly convergent in L∞([0, T ], H1) and is weakly convergent in
L2([0, T ], H2). This and various forms of Fathou lemma, see in [2] Proposition 3.5 for the
weak topology and Proposition 3.13 for the ∗–weak topology, implies that

∥u(t)∥2H1 +

∫ t

0
∥u(t′)∥2H2dt

′ ≤ CT,∥u0∥H1
for t ∈ [0, T ]. (7.7)

We turn to the proof of the energy identity (7.1). We first claim that

div(u⊗ u), ∂tu ∈ L2((0, T ), L2). (7.8)

Let us assume this claim. Next, we claim that∫ T

0
⟨∂tu−△u+ div(u⊗ u), w⟩ dt = 0 for all w ∈ L2((0, T ), H). (7.9)
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Let us assume also (7.9). Then apply (7.9) for w = χ[s,t]u. Then we get∫ t

s

(
⟨∂tu, u⟩+ ∥∇u∥2L2

)
dt′ = 0

where we use ⟨div(u⊗ u), u⟩ = 0, from (6.13). Next, we can apply Lemma 6.7 and conclude
that ∥u(t)∥2L2 ∈ AC([0, T ]) with d

dt∥u(t)∥
2
L2 = 2 ⟨u(t), u̇(t)⟩. This yields (7.1).

Let us now prove (7.8). We have

∥div(u⊗ u)∥L2((0,T ),L2) ≲ ∥∥∇u∥L2∥u∥L∞∥L2(0,T ) ≤ ∥u∥L∞((0,T ),H1)∥u∥L2((0,T ),L∞)

≲ ∥u∥L∞((0,T ),H1)∥u∥L2((0,T ),H2) <∞

using Sobolev’s embedding H2(R3) ↪→ L∞(R3) and (7.7). Next, we apply (6.4) for Ψ(t, x) =
ϕ(x) ∈ C∞

cσ(R3,R3) and obtain

⟨u(t), ϕ⟩ − ⟨u(0), ϕ⟩ =
∫ t

0

(
ν⟨△u(t′), ϕ)⟩ − ⟨Pdiv(u⊗ u)(t′), ϕ⟩

)
dt.

This extends to any ϕ ∈ L2(R3,R3). Then we can apply Lemma A.29 3 for X = L2(R3,R3),
concluding the following, which completes the proof of (7.8):

∂tu = △u− Pdiv(u⊗ u) in D′((0, T ), L2). (7.10)

We turn to the proof of (7.9). There exists a sequence of test functions Ψn → w in
L2((0, T ), H), which satisfy

⟨u(T ),Ψn(T )⟩ − ⟨u0,Ψn(0)⟩ =
∫ T

0

(
⟨△u(t′),Ψn(t

′)⟩+ ⟨u(t′), ∂tΨn(t
′)⟩

−⟨div(u⊗ u)(t′),Ψn(t
′)⟩
)
dt′.

Integration by parts, which can be proved like in [2, Corollary 8.10], yields

⟨u(T ),Ψn(T )⟩ − ⟨u0,Ψn(0)⟩ −
∫ T

0
⟨u(t′), ∂tΨn(t

′)⟩dt′ = −
∫ T

0
⟨∂tu,Ψn⟩ dt′,

so that we obtain ∫ T

0
⟨∂tu−△u+ div(u⊗ u),Ψn⟩ dt′ = 0

and for n→ ∞ we obtain (7.9).

3Recall that Lemma A.29 states that if u, g ∈ L1(I,X) are such that

⟨u(t2), f⟩XX∗ − ⟨u(t1), f⟩XX∗ =

∫ t2

t1

⟨g(s), f⟩XX∗ ds for any f ∈ X∗,

with X a Banach space, then ∂tu = g in D′(I,X).
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Theorem 7.2 (Uniqueness of weak solutions). Let u0 ∈ V (R3) and let u ∈ L∞([0, T ], V )
and ∇2u ∈ L2([0, T ], L2) be a solution discussed in the proof of Theorem 7.1. Consider also
a weak solution v with initial datum u0 and satisfying the energy inequality (6.7). Then
u = v in [0, T ].

Furthermore, we have ∥∇u(t)∥L2
t↗T ∗
−−−→ ∞ if the lifespan T ∗ = sup{T s.t. u ∈

L∞([0, T ], V )} is T ∗ <∞.
Finally, there exists a constant ε0 > 0 s.t. if

∥∇u0∥L2∥u0∥L2 < ε0 (7.11)

then the statements in Theorem 7.1 and here are valid for any T > 0.

Proof. From (7.9) we have∫ T

0
(⟨∂tu, v⟩+ ⟨∇u,∇v⟩+ ⟨div(u⊗ u), v⟩) dt = 0.

We claim now that we can treat u as a test function for v, so that∫ t

0
(⟨∇v,∇u⟩ − ⟨v, ∂tu⟩+ ⟨div(v ⊗ v), u⟩) dt′ = ∥u0∥2L2 − ⟨v(t), u(t)⟩, (7.12)

so that adding the two equations we have∫ t

0
(2⟨∇v,∇u⟩+ ⟨div(u⊗ u), v⟩+ ⟨div(v ⊗ v), u⟩) dt′ = ∥u0∥2L2 − ⟨v(t), u(t)⟩. (7.13)

Let us assume (7.12) and let us continue the proof.
Set w = v − u and substitute in the identities

2⟨∇v,∇u⟩ = ∥∇u∥2L2 + ∥∇v∥2L2 − ∥∇w∥2L2 ,

⟨v(t), u(t)⟩ = 2−1∥u(t)∥2L2 + 2−1∥v(t)∥2L2 − 2−1∥w(t)∥2L2 ,

which are the same as the expansion (a− b)2 = a2 + b2 − 2ab, and

⟨div(u⊗ u), v⟩+ ⟨div(v ⊗ v), u⟩ = ⟨div(w ⊗ w), u⟩,

which follows from

⟨vj∂jvk, uk⟩+ ⟨uj∂juk, vk⟩ = ⟨vj∂jvk, uk⟩ − ⟨uj∂jvk, uk⟩ = ⟨wj∂jv
k, uk⟩

= ⟨wj∂jw
k, uk⟩+ ⟨wj∂ju

k, uk⟩ = ⟨wj∂jw
k, uk⟩ = ⟨div(w ⊗ w), u⟩.

Then rearranging, we obtain the equality

2−1∥w(t)∥2L2 +

∫ t

0

(
∥∇w∥2 − ⟨div(w ⊗ w), u⟩

)
dt′

= 2−1∥u(t)∥2L2 +

∫ t

0
∥∇u∥2 − 2−1∥u0∥2L2 (7.14)

+ 2−1∥v(t)∥2L2 +

∫ t

0
∥∇v∥2 − 2−1∥v0∥2L2 ≤ 0, (7.15)
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where the inequality follows from the Energy identity (7.1) and the Energy inequality (6.7).
Then

∥w(t)∥2L2 + 2

∫ t

0
∥∇w∥2dt′ ≤ 2

∫ t

0
⟨div(w ⊗ w), u⟩dt′

≤ 2

∫ t

0
∥u∥L∞∥∇w∥L2∥w∥L2dt′ ≤

∫ t

0
∥u∥2H2∥w∥2L2dt

′ +

∫ t

0
∥∇w∥2L2dt

′.

Absorbing, as usual, the very last term in the 2nd term of the l.h.s., we obtain

∥w(t)∥2L2 ≤
∫ t

0
∥u∥2H2∥w∥2L2dt

′

which, by Gronwall inequality, yields ∥w(t)∥2L2 ≡ 0.
Next, suppose the T ∗ in the statement of the lemma is T ∗ <∞. If there is no blow up, there
exists C > 0 and a t′ < T ∗ with ∥∇u(t′)∥4L2 < C and T ∗ − t′ < c0/C (that because there

are a C, a sequence tn
n↗∞−−−→ T ∗ with ∥∇u(tn)∥4L2 < C). In particular, for v a solution

as of Theorem 7.1 with initial value v(t′) = u(t′), we have v ∈ L∞((t′, t′ + c0/C), V ).
But by the uniqueness v = u in [t′, T ∗), so u extends into a solution in u ∈ L∞([0, t′ +
c0/C), V ), u ∈ L2([0, t′ + c0/C), H

2), yielding a contradiction. Therefore, we must have

∥∇u(t)∥L2
t↗T ∗
−−−→ ∞ if T ∗ <∞.

We now need to address formula (7.12). We have u ∈ H1((0, t), L2) for t ∈ (0, T ), see
(7.8), u ∈ L∞((0, t), H1) and u ∈ L2((0, t), H2), see (7.7), and we can consider a sequence
of test functions Ψn

n→∞−−−→ u in all these spaces. Starting from∫ t

0
(⟨∇v,∇Ψn⟩ − ⟨v, ∂tΨn⟩+ ⟨div(v ⊗ v),Ψn⟩) dt′ = ⟨u0,Ψn(0)⟩ − ⟨v(t),Ψn(t)⟩,

for n↗ ∞ it is easy to see that all the terms linear in v converge to the corresponding ones
in (7.12). Also the nonlinear term converges, as a consequence of∫ t

0
⟨div(v ⊗ v),Ψn − u⟩L2dt′ ≤ C

∫ t

0
∥∇v∥L2∥v∥L2∥Ψn − u∥L∞dt′

≤ C∥∇v∥L2((0,t),L2)∥v∥L∞((0,t),L2)∥Ψn − u∥L2((0,t),H2)

by Sobolev’s embedding H2(R3) ↪→ L∞(R3).
We finally turn to the proof of the last statement of the theorem, that is the global

regularity for small initial data, that is T ∗ = ∞. From (7.9) we obtain for any T ∈ (0, T ∗)∫ T

0
⟨∂tu−△u+ div(u⊗ u),−△u⟩ dt = 0

that is ∫ T

0

(
⟨∂t∇u,∇u⟩+ ∥△u∥2L2 − ⟨div(u⊗ u),△u⟩

)
dt = 0
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Now, notice that ∇u ∈ L2([0, T ], H1) and ∂t∇u ∈ L2([0, T ], H−1). Then we can apply
Lemma 6.7 obtaining that ∥∇u∥2L2 ∈ AC([0, T ]) with d

dt∥∇u∥
2
L2 = 2 ⟨∂t∇u,∇u⟩. Proceeding

as in (7.3), adjusting Young’s inequality ab ≤ a8

8 + 7b
8
7

8 and using interpolation to get the
last line, we have

d

dt
∥∇u∥2L2 + 2∥△u∥2L2 = 2 ⟨div(u⊗ u),△u⟩ ≤ c∥∇u∥

3
2

L2∥△u∥
3
2

L2 = c∥∇u∥
1
2

L2∥∇u∥L2∥△u∥
3
2

L2

≤ c∥u∥
1
4

L2∥∇u∥L2∥△u∥
7
4

L2 ≤ C∥u∥2L2∥∇u∥8L2 + ∥△u∥2L2

≤ C1∥u∥4L2∥∇u∥4L2∥△u∥2L2 + ∥△u∥2L2 ,

so that

d

dt
∥∇u∥2L2 ≤ ∥△u∥2L2

(
C1∥u∥4L2∥∇u∥4L2 − 1

)
.

Since from (7.1) we have d
dt∥u∥

2
L2 = −2∥∇u∥2L2 , ∥u∥L2 is decreasing. We have, using Leinbitz

rule for products of AC functions, see Corollary 8.10 [2],

d

dt

(
∥u∥2L2∥∇u∥2L2

)
≤ ∥u∥2L2∥△u∥2L2

(
C1∥u∥4L2∥∇u∥4L2 − 1

)
− 2∥∇u∥4L2 .

If ∥u∥4L2∥∇u∥4L2 ≤ C−1
1 then ∥u∥2L2∥∇u∥2L2 is strictly decreasing in any interval [0, T ] with

T ∈ (0, T ∗), and so also in [0, T ∗). Then

d

dt
∥∇u∥2L2 + ∥△u∥2L2 ≤ C1∥u0∥4L2∥∇u0∥4L2∥△u∥2L2 ≤ ε40∥△u∥2L2

so that, if ε40 ≤ 1/2, we get

d

dt
∥∇u∥2L2 +

1

2
∥△u∥2L2 ≤ 0 in [0, T ∗)

and so also

∥∇u(t)∥2L2 +
1

2

∫ t

0
∥△u∥2L2dt

′ ≤ ∥∇u0∥2L2 in [0, T ∗) .

This obviously contradicts the blow up ∥∇u(t)∥L2
t↗T ∗
−−−→ ∞ if T ∗ <∞, and hence T∗ = ∞.

This completes the proof of the global existence of small solutions.

Theorem 7.3 (Global existence of regular solutions 2d). For any u0 ∈ V (R2)(= H1(R2,R2)∩
H(R2) we have u ∈ L∞([0, T ], V ) and ∇2u ∈ L2([0, T ], L2) for all T > 0.

Proof. The fact that locally for some T > 0 we have u ∈ L∞([0, T ], V ) and ∇2u ∈
L2([0, T ], L2) and that we have ∥∇u(t)∥L2

t↗T ∗
−−−→ ∞ whenever the lifespan T ∗ = sup{T
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s.t. u ∈ L∞([0, T ], V )} is T ∗ <∞, can be proved as above and is skipped here. So we need
to prove T ∗ = ∞ by showing there cannot be finite time blow up. Now we consider

d

dt
∥∇u∥2L2 + 2∥△u∥2L2 = 2 ⟨div(u⊗ u),△u⟩ ≲ ∥u∥L4∥∇u∥L4∥△u∥L2

≲ ∥u∥
Ḣ

1
2
∥∇u∥

Ḣ
1
2
∥△u∥L2 ≤ (∥u∥L2∥∇u∥L2)

1
2
(
∥∇u∥L2∥∇2u∥L2

) 1
2 ∥△u∥L2

≲ ∥u∥
1
2

L2∥∇u∥L2∥△u∥
3
2

L2 ≤ C∥u∥2L2∥∇u∥4L2 + ∥△u∥2L2 ,

where we used Young’s inequality ab ≤ a4

4λ4 +
3λ

4
3 b

4
3

4 adjusting λ. By absorbing the last term
in the 2nd term of the l.h.s. we obtain

d

dt
∥∇u∥2L2 + ∥△u∥2L2 ≤ cν∥u∥2L2∥∇u∥2L2∥∇u∥2L2 ≤ C∥u∥2L2∥∇u∥2L2

(
∥∇u∥2L2 +

∫ t

0
∥△u(s)∥2L2ds

)
.

From Gronwall’s inequality we obtain

∥∇u∥2L2 +

∫ t

0
∥△u(s)∥2L2ds ≤ e

C∥u∥2
L∞(0,∞),L2)

∫∞
0 ∥∇u∥2

L2ds∥∇u0∥2L2

which yields the desired result.

Theorem 7.4 (Higher spacial regularity). Let u ∈ L∞([0, T ], V ) with ∇2u ∈ L2([0, T ], L2)
be a solution like in Theorem 7.1 or Theorem 7.3. Suppose that u0 ∈ V ∩ Hm(Rd) with
m ≥ 2. Then u ∈ L∞([0, T ], Hm(Rd)) and u ∈ L2([0, T ], Hm+1(Rd)).

Proof. We can go back to the framework of Theorem 7.1 with the sequence of regulariza-
tions. We claim that we can generalize (7.6) into

∥un(t)∥2Hk +

∫ t

0
∥un(t′)∥Hk+1dt′ ≤ Ck,T,∥u0∥Hk

in [0, T ] for all 1 ≤ k ≤ m. (7.16)

We have already case k = 1. Suppose 2 ≤ k ≤ m and we have case k−1. We apply ⟨·, un⟩Hk

to

u̇n + P ((ρϵn ∗ un) · ∇un)−△un = 0 , un(0) = ρεn ∗ u0. (7.2)

and obtain

2−1 d

dt
∥un∥Hk + ∥∇un∥2Hk = ⟨(ρϵn ∗ un) · ∇un, un⟩Hk ≤ ∥(ρϵn ∗ un) · ∇un∥Hk∥un∥Hk

≤ ∥un∥Hk∥∇un∥Hk∥un∥Hk ≤ 1

2
∥un∥4Hk +

1

2
∥∇un∥2Hk ,

where we used the fact that, since k > d/2 for d = 2, 3, Hk is an algebra. So

d

dt
∥un∥Hk + ∥∇un∥2Hk ≤ ∥un∥2Hk∥un∥2Hk .
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From this and Gronwall we obtain

∥un(t)∥Hk +

∫ t

0
∥∇un∥2Hkds ≤ e

∫ t
0 ∥un∥2

Hkds∥u0∥2Hk ≤ Ck,T∥u0∥Hk
in [0, T ],

where, in the exponent, is uniformly bounded in n for t ∈ [0, T ] because of (7.16) with k
replaced by k − 1.
Recall, now, that we had un convergent to u in various ways. We can take a subsequence,
which by Banach–Alaoglu is ∗–weakly convergent in L∞([0, T ], Hk) and is weakly convergent
in L2([0, T ], Hk+1). This implies that

∥u(t)∥2Hk +

∫ t

0
∥u(t′)∥Hk+1dt′ ≤ Ck,T,∥u0∥Hk

in [0, T ] for all 1 ≤ k ≤ m. (7.17)

Corollary 7.5. Let u ∈ L∞([0, T ], V ) with ∇2u ∈ L2([0, T ], L2) be a solution like in Theo-
rem 7.1 or Theorem 7.3. Then, for any m we have u ∈ C∞((0, T ], Hm(Rd)).

Proof. We have seen in Theorem 7.1 that u solves distributionally the NS equation, see
(7.10) and that ∂tu ∈ L2((0, T ), L2), see (7.8), and we know u ∈ L2([0, T ], H2). Ob-
viously u ∈ H1((0, T ), L2) ∩ L2([0, T ], H2) is equivalent to

〈√
−△

〉
u ∈ L2([0, T ], H1) ∩

H1([0, T ], H−1). The latter, by Lemma 6.7, implies
〈√

−△
〉
u ∈ C0([0, T ], L2). Equivalent

conclusion is u ∈ C0([0, T ], H1). Then,

for any tn ∈ (0, T ), u is the unique solution in L∞(([tn, T ], V ) ∩ L2([tn, T ], H
2)

of NS with initial values u(tn). (7.18)

Now, for any ϵ > 0 there exists a t2 ∈ (0, ϵ) s.t. u(t2) ∈ H2 and applying (7.18) and
Theorem 7.4, we conclude u ∈ L∞([t2, T ], H

2(Rd)) and u ∈ L2([t2, T ], H
3(Rd)). So there

exists t3 ∈ (t2, ϵ) s.t. u(t3) ∈ H3, and proceeding by induction we get that for any n there
exists tn ∈ (0, ϵ) s.t. u(tn) ∈ Hn, so that u ∈ L∞([tn, T ], H

n(Rd)) ∩ L2([tn, T ], H
n+1(Rd)).

Recalling ∂tu = △u − Pdiv(u ⊗ u) in D′((0, T ), L2), from u ∈ L∞([tm+2, T ], H
m+2(Rd))

we derive ∂tu ∈ L∞([tm+2, T ], H
m) and so u ∈ C0([tm+2, T ], H

m). So we conclude u ∈
C0([ϵ, T ], Hm) for any m and, by the arbitrariness of ϵ > 0, u ∈ C0((0, T ], Hm) for any m.
Notice that this implies ∂tu = △u − Pdiv(u ⊗ u) in C0((0, T ], Hm) for any m. In other
words u ∈ C1((0, T ], Hm) for any m. It is easy to conclude, proceeding by induction, that
we have u ∈ C∞((0, T ], Hm) and that for all j

∂jt u = △∂j−1
t u− P

j−1∑
k=0

(
j − 1

k

)
div(∂kt u⊗ ∂j−1−k

t u).

Notice that the proof of Lemma 7.4 [14] is incomplete, because it is based on the last
displayed formula of p. 152 [14], where the uniformity in n is left untreated both in the text
and in the exercises, and seems non trivial.
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7.1 Structure of the singular set

We consider a digression on the singular set of Leray–Hopf solutions in d = 3.

Lemma 7.6 (Compactness of Singular Set). Given a Leray–Hopf solution u there exists a
T∗ ≥ 0 such that u ∈ C∞((T∗,+∞)× R3,R3).

Proof. Since u ∈ L∞(R+, L
2) and ∇u ∈ L2(R+, L

2), we known that there is a T ∗ > 0
s.t. ∥∇u(T ∗)∥L2∥u(T ∗)∥L2 < ε, with ε > 0 the constant in (7.11). From Remark 6.2
we know that u is a weak solution of the NS in [T ∗,∞) with initial value u(T ∗) ∈ V .
By the smalleness condition (7.11) in Theorem 7.1 we know that there exists a solution
v ∈ L∞([T ∗,∞), V ) and ∇2v ∈ L2([T ∗,∞), L2) of the NS with initial value u(T ∗) ∈ V .
Notice that, as a Leray–Hopf solution, see Remark 6.17, in particular u satisfies the energy
inequality

∥u(t)∥2L2(Rd) + 2

∫ t

s
∥∇u(t′)∥2L2(Rd)dt

′ ≤ ∥u(T ∗)∥2L2(Rd) for any T
∗ < t.

By the Uniqueness theorem of weak solutions 7.2, we know that u = v in [T ∗,∞). Finally,
from Corollary 7.5 we know u ∈ C∞((T∗,+∞)× R3,R3).

Definition 7.7. Consider a Leray–Hopf solution u. We say that a time t0 ≥ 0 is regular
if there exists a neighborhood I of t0 in [0,∞) with ∇u ∈ L∞(I, L2). If t0 is not regular,
it is called singular. We denote by R the set of regular times, and by T the set of singular
times.

It is quite obvious that R is open in [0,∞), and hence that T is closed. From Lemma
7.6 we know that T is compact.

In this section we consider two simple results about T , one about box–counting dimen-
sion and the other about Hausdorff measure.

Let us start with the box–counting dimension.

Definition 7.8. Consider a compact subspace X of Rd and for any ϵ > 0 denote by N(X, ϵ)
the smallest number of open balls of radius ϵ needed to cover X. Then the (upper) box–
counting dimension of X is

dimB(X) := lim sup
ϵ→0+

(− logϵN(X, ϵ)) = lim sup
ϵ→0+

logN(X, ϵ)

− log ϵ
. (7.19)

Lemma 7.9. For a compact subspace X of Rd we have dimB(X) = dim′
B(X), where

dim′
B(X) := lim sup

ϵ→0+

logM(X, ϵ)

− log ϵ

with M(X, ϵ) the largest number of disjoint open balls of radius ϵ with centers at points of
X.
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Proof. First of all, we have M(X, ϵ) ≤ N(X, ϵ) (so that dimB(X) ≥ dim′
B(X)). Indeed, let

us consider a family of disjoint balls {D(xj , ϵ)}M(X,ϵ)
j=1 , with xj ∈ X. If {D(yk, ϵ)}

N(X,ϵ)
j=1 is a

cover of X, it is also a cover of {x1, ..., xM(X,ϵ)}. It is not possible to have a D(yk, ϵ) which
contains two distinct xi ̸= xj , because this would imply |xi − xj | < 2ϵ , while we know that
|xi − xj | ≥ 2ϵ. So M(X, ϵ) ≤ N(X, ϵ).

Next, we have M(X, ϵ/3) ≥ N(X, ϵ). This follows by the proof of Vitali’s lemma,
Theorem 3.1. In fact, given a cover {D(xj , ϵ/3)} of X, we know that we can extract a
family of of disjoint balls, which we will label as {D(xj , ϵ/3)}Lj=1, such that {D(xj , ϵ)}Lj=1

is a cover of X. Then M(X, ϵ/3) ≥ L ≥ N(X, ϵ). So

dim′
B(X) ≤ dimB(X) ≤ lim sup

ϵ→0+

logM(X, ϵ/3)

− log ϵ
= lim sup

ϵ→0+

logM(X, ϵ/3)

− log ϵ/3

− log ϵ/3

− log ϵ/3− log 3

= dim′
B(X).

Example 7.10. 1. dimB([0, 1]
d) = d, dimB([0, 1]

j × {0}d−j) = j.

2. We have dimB Sk = 1
k+1 for Sk = {n−k : n ∈ N}, k > 0, see [14].

3. For C the usual Cantor ternary set, we have dimB(C) =
log(2)
log(3) .

Lemma 7.11. Let K(ϵ) be either M(X, ϵ) or N(X, ϵ). Then

1. if d′ ∈ (0,dimB(X)) there is a sequence ϵj → 0 s.t. K(ϵj) ≥ ϵ−d′

j while

2. if d′′ > dimB(X) there is ϵ0 > 0 s.t. K(ϵ) ≤ ϵ−d′′ for all ϵ ∈ (0, ϵ0).

Proof. By the properties of lim sup there exists a sequence ϵj → 0 s.t. − logϵj K(ϵj) →
dimB(X). So, if d′ < dimB(X),we have logϵj K(ϵj) < −d′, that is K(ϵj) > ϵ−d′

j for j ≫ 1.

Let now d′′ > dimB(X). Then we claimK(ϵ) ≤ ϵ−d′′ for all ϵ ∈ (0, ϵ0) for an appropriate

ϵ0 > 0. If this is false, there exists a sequence ϵj → 0 s.t.K(ϵj) > ϵ−d′′

j . Then
logK(ϵj)
− log ϵj

> d′′.

But then dimB(X) = lim supϵ→0+
logK(ϵ)
− log ϵ ≥ lim infj

logK(ϵj)
− log ϵj

≥ d′′ > dimB(X).

Now we have the following result.

Proposition 7.12. Given a Leray–Hopf solution u of NS in d = 3, then dimB(T ) ≤ 1/2.

Proof. Fix ϵ > 0 and let us consider a family of disjoint 1– dimensional balls {D(tj , ϵ)}M(T ,ϵ)
j=1 ,

with tj ∈ T , with t1 < ... < tM(T ,ϵ). For c0 the constant in Theorem 7.1, we claim that

tj − t ≥ c0∥∇u(t)∥−4
L2 for t ∈ (tj − ϵ, tj), (7.20)

where we set ∥∇u(t)∥L2 = ∞ in the 0 measure set of points t where u(t) ̸∈ H1. Notice that
for u(t) ̸∈ H1, (7.20) is obviously true. To prove (7.20) observe that if there exists a t for
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which (7.20) is false, then we would have tj − t < c0∥∇u(t)∥−4
L2 , which automatically implies

that ∥∇u(t)∥L2 < ∞ and u(t) ∈ H1. But then, by Theorem 7.1, there exists a solution
v ∈ L∞([t, t+ T ], H1) to the NS with v(t) = u(t) and with T > c0∥∇u(t)∥−4

L2 > tj − t. This
means that tj ∈ (t, t + T ). But since u is a Leray–Hopf solution, by Theorem 7.2 we have
u = v in [t, t+ T ). But then we get a contradiction to tj ∈ T .

From (7.20) we obtain ∥∇u(t)∥2L2 ≥
√
c0√
tj−t

in (tj − ϵ, tj). For T sufficiently large, such that

u is smooth in (T,∞), using the energy inequality

∥u0∥2L2(Rd) ≥ 20

∫ T

0
∥∇u(t)∥2L2(R3)dt ≥ 20

M(T ,ϵ)∑
j=1

∫ tj

tj−ϵ
∥∇u(t)∥2L2(R3)dt

≥ 20
√
cν

M(T ,ϵ)∑
j=1

∫ tj

tj−ϵ

1
√
tj − t

dt = 40
√
c0M(T , ϵ)

√
ϵ.

So M(T , ϵ) <
∥u0∥2

L2(Rd)
4ν

√
c0

ϵ−
1
2 which, implies

dimB(T ) = lim sup
ϵ→0+

logM(X, ϵ)

− log ϵ
≤ lim

ϵ→0+

log

(
∥u0∥2

L2(Rd)
4ν

√
c0

ϵ−
1
2

)
− log ϵ

=
1

2
.

Definition 7.13. Given a subset X ⊂ Rd set for s > 0 and δ > 0

µs,δ(X) = inf


∞∑
j=1

(diam (Uj))
s : {Uj}∞j=1 is an open cover of X with diam (Uj) ≤ δ for all j


Notice that µs,δ(X) is decreasing in δ. The we call s–dimensional Hausdorff measure of X
the number

Hs(X) = lim
δ→0+

µs,δ(X).

The Hausdorff measure of X is

dimH(X) = inf{s > 0 : Hs(X) = 0}.

Remark 7.14. Notice that µs,δ(X) = µ′s,δ(X) if we set

µ′s,δ(X) = inf


∞∑
j=1

(diam (Uj))
s : {Uj}∞j=1 is an open cover of X

with diam (Uj) ≤ δ for all j and all the Uj are convex} .

Indeed, any open set is contained in an open convex set with the same diameter.
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Lemma 7.15. We have dimH(X) ≤ dimB(X).

Proof. Let d = dimB(X) and s > d. Let s > z > d. Then, by Lemma 7.11 there is ϵ0 > 0
s.t. N(X, ϵ) ≤ ϵ−z for all ϵ ∈ (0, ϵ0). Since we can cover X with N(X, ϵ) balls of radius ϵ,
we have

N(X,ϵ)∑
j=1

(2ϵ)s = 2sN(X, ϵ)ϵs ≤ 2sϵs−z ϵ→0+−−−→ 0

=⇒ Hs(X) = 0. This implies dimH(X) := inf{s > 0 : Hs(X) = 0} ≤ dimB(X).

Lemma 7.16 (Isodiametric Inequality). The Lebesgue measure of an open convex set in
Rd of diameter D is at most the volume cdD

d of the ball of radius D/2 .

See [6, Sect. 2.2].

Theorem 7.17. In Rd, for Ld the Lebesgue measure, Ld = cdHd.

Proof. Here we will only prove Ld(K) ≤ cdHd(K) for any K ⊂⊂ Rd. Given ϵ > 0, we can

cover K ⊆ ∪∞
j=1Uj with Uj open convex sets and with

∞∑
j=1

(diam (Uj))
d ≤ Hd(K)+ ϵ. Then

|K| ≤
∞∑
j=1

|Uj | ≤ cd

∞∑
j=1

(diam (Uj))
d ≤ cd

(
Hd(K) + ϵ

)
. This implies Ld(K) ≤ cdHd(K).

Proposition 7.18. Given a Leray–Hopf solution u of NS in d = 3, then H1/2(T ) = 0.

Proof. Since H1(T ) = 0, we can cover T by a finite or a numerable family of disjoint
intervals {[tk, tk+ϵk]}k∈N with

∑
ϵk < δ for any preassigned δ > 0. Possibly picking ϵk = 0,

we can assume that tk + ϵk ∈ T . Indeed, if [tk, tk + ϵk] ∩ T = ∅ we can discard the interval,
while if ∃ t′k ∈ [tk, tk+ϵk]∩T , then we can replace [tk, tk+ϵk] with [tk, t

′
k]. By the discussion

in Proposition 7.12 we have ∥∇u(t)∥2L2 ≥
√
c0√

tk+ϵk−t
in [tk, tk + ϵk]. Then∫

∪k[tk,tk+ϵk]
∥∇u(t)∥2L2dt ≥

√
c0

∞∑
k=1

∫ tk+ϵk

tk

dt√
tk + ϵk − t

= 2
√
cν

∞∑
k=1

√
ϵk.

But, by absolute integrability, the l.h.s. can be made smaller than any given ϵ > 0. Then
H1/2(T ) = 0.
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7.2 Serrin’s condition

We have the following theorem.

Theorem 7.19. Let u be a solution in d = 3 of the type in Leray’s Theorem 6.3 and suppose
that

u ∈ Lr((0, T ), Ls(R3)) where
2

r
+

3

s
= 1, with r ≥ 2 and s > 3. (7.21)

Then u ∈ C∞((0, T ] × R3,R3) and u is in [ϵ, T ] for any ϵ ∈ (0, T ) also a solution in the
sense of Theorem 7.1. Furthermore, if v is another solution of the type in Leray’s Theorem
6.3 satisfying Serrin’s condition, for possibly different exponents (still with s > 3) in (0, T )
and with the same initial value, we have u = v in [0, T ].

Remark 7.20. The case L∞((0, T ), L3(R3)) is relatively recent, [5], is more complicated to
prove and will not be considered here.

Remark 7.21. Notice that any u like in Leray’s Theorem 6.3, we have

u ∈ Lr((0, T ), Ls(Rd)) where
2

r
+
d

s
=
d

2
, with r ≥ 2. (7.22)

Notice that of the endpoint cases (r, s) = (∞, 2) follows from the Energy Inequality and
for d = 3, similarly (r, s) = (2, 6) follows from the Energy Inequality and, additionally,
from Sobolev’s Embedding Ḣ1(R3) ↪→ L6(R3). Notice that in dimension d = 2 the case
(r, s) = (2,∞) is true, again from Sobolev’s Embedding Ḣ1(R2) ↪→ L∞(R2).

However, for d = 3 there is a difference between (7.22) and (7.21).

Proof. Let us start by assuming u0 ∈ V . Then we know that there exists T ∗ > 0 s.t.
u ∈ L∞([0, T1], V ) if T1 ∈ (0, T ∗) and that u ∈ C∞((0, T ∗)× R3,R3). So for the regularity
part of the lemma, it is enough to show that T < T ∗. Suppose the opposite, that is

∞ > T ≥ T ∗. Then, recall that there is the blow up ∥∇u(t)∥L2
t↗T ∗
−−−→ ∞.

We have in [0, T ∗), by (7.9),

d

dt
∥∇u∥2L2 + 2∥△u∥2L2 = 2 ⟨div(u⊗ u),△u⟩ ≤ c∥u∥Ls∥∇u∥

L
2s
s−2

∥△u∥L2 ,

where 1
s + s−2

2s + 1
2 = 1 and where s > 3 implies 2s

s−2 ∈ [2, 6). Then, by Hölder’s (we use

s− 2

2s
=

s−3
s

2
+

3
s

6
and ∥f∥ 2s

s−2
≤ ∥f∥

s−3
s

L2 ∥f∥
3
s

L6) and Young’s (using 1 =
s− 3

2s
+
s+ 3

2s
)

inequalities and by Sobolev’s immersion Ḣ1(R3) ↪→ L6(R3), we obtain

c∥u∥Ls∥∇u∥
L

2s
s−2

∥△u∥L2 ≤ c∥u∥Ls∥∇u∥
s−3
s

L2 ∥∇u∥
3
s

L6∥△u∥L2

≤ c′∥u∥Ls∥∇u∥
s−3
s

L2 ∥△u∥
s+3
s

L2 ≤ c′′
(
∥u∥Ls∥∇u∥

s−3
s

L2

) 2s
s−3

+

(
∥△u∥

s+3
s

L2

) 2s
s+3

.
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Then we conclude

d

dt
∥∇u∥2L2 ≤ d

dt
∥∇u∥2L2 + ∥△u∥2L2 ≤ c′′∥u∥

2s
s−3

Ls ∥∇u∥2L2

which, by Gronwall’s inequality, in [0, T ∗) yields

∥∇u(t)∥2L2 ≤ ∥∇u(0)∥2L2e
c′′
∫ t
0 ∥u(t′)∥

2s
s−3
Ls dt′ ≤ ∥∇u(0)∥2L2e

c′′∥u∥
2s
s−3
Lr([0,T ],Ls) .

But this contradicts the blow up and shows that T ∗ > T . Hence the regularity u ∈
C∞((0, T ] × R3,R3) is proved when u0 ∈ V . More generally, if u0 ̸∈ V , we can consider
a sequence tn ↘ 0 with u(tn) ∈ V , from this and the uniqueness Theorem 7.2 conclude
u ∈ C∞((tn, T ]×R3,R3) for all n, and hence also u ∈ C∞((0, T ]×R3,R3). The statement
that u in [ϵ, T ], for any ϵ ∈ (0, T ), is also a solution in the sense of Theorem 7.1, has been
assumed implicitly in this proof, but is easily proved using Theorem 7.2.

Next, we turn to the discussion of the uniqueness in the present theorem. So let us
consider a solution v like in the statement. We claim that u can be used as test function
for v and v can be used as a test function of u in the formula (6.4).
Assuming the claim, we have∫ t

0
(⟨∇v,∇u⟩ − ⟨v, ∂tu⟩+ ⟨div(v ⊗ v), u⟩) dt′ = ∥u0∥2L2 − ⟨v(t), u(t)⟩ and∫ t

0
(⟨∇v,∇u⟩ − ⟨∂tv, u⟩+ ⟨div(u⊗ u), v⟩) dt′ = ∥u0∥2L2 − ⟨v(t), u(t)⟩.

We can write the above as∫ t

0
(⟨∇v,∇u⟩ − ⟨v, ∂tu⟩+ ⟨div(v ⊗ v), u⟩) dt′ = ∥u0∥2L2 − ⟨v(t), u(t)⟩ and∫ t

0
(⟨∇v,∇u⟩+ ⟨v, ∂tu⟩+ ⟨div(u⊗ u), v⟩) dt′ = 0

where in the 2nd equality we have used the fact that u, v ∈ C∞((0, T ], L2), which follows

from the 1st part of the proof, integration by parts with the information that u(t)
t→0+−−−→ u0

and v(t)
t→0+−−−→ u0 in L2(R3,R3).Adding the two equations, we obtain the same equation∫ t

0
(2⟨∇v,∇u⟩+ ⟨div(u⊗ u), v⟩+ ⟨div(v ⊗ v), u⟩) dt′ = ∥u0∥2L2 − ⟨v(t), u(t)⟩. (7.13)

of the uniqueness Theorem 7.2. Proceeding with the same algebraic manipulations, we
arrive to

2−1∥w(t)∥2L2 +

∫ t

0

(
∥∇w∥2 − ⟨div(w ⊗ w), u⟩

)
dt′

= 2−1∥u(t)∥2L2 +

∫ t

0
∥∇u∥2 − 2−1∥u0∥2L2 (7.23)

+ 2−1∥v(t)∥2L2 +

∫ t

0
∥∇v∥2 − 2−1∥v0∥2L2 ≤ 0, (7.24)
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where the inequality follows from the fact that both u and v satisfy the Energy Inequality
(6.7), and so the last two lines are both ≤ 0.
Therefore we get for w = v − u

∥w(t)∥2L2 + 2

∫ t

0
∥∇w∥2dt′ ≤ 2

∫ t

0
⟨div(w ⊗ w), u⟩dt′

Like above in the proof of this theorem, we bound

2div(w ⊗ w), u⟩ ≤ c∥u∥Ls∥w∥
L

2s
s−2

∥∇w∥L2

≤ c∥u∥Ls∥w∥
s−3
s

L2 ∥∇w∥
s+3
s

L2 ≤ c′′∥u∥rLs∥w∥2L2 + ∥∇w∥2L2 where r =
2s

s− 3
.

Then

∥w(t)∥2L2 ≤ c′′
∫ t

0
∥u(t′)∥rLs∥w(t′)∥2L2dt

′

implies by Gronwall w(t) ≡ 0 in [0, T ], proving uniqueness.
Now we have to prove the claim that v (and u) can be used as test functions in (6.4).

Suppose that v is a weak solution like in Leray’s Theorem satisfying the Serrin condition
and let u be a weak solution like in Leray’s Theorem. We know that v ∈ C∞([ϵ, T ]) for any
ϵ ∈ (0, T ). So, for t ∈ (ϵ, T ) we get∫ t

ϵ
⟨u, ∂tv⟩dt′ = ⟨u(ϵ), v(ϵ)⟩ − ⟨u(t), v(t)⟩+

∫ t

ϵ
⟨∇u(t′),∇v(t′)⟩dt′ +

∫ t

ϵ
⟨div(u⊗ u), v⟩dt′.

Let us consider now the limit ϵ → 0+. We know by the right continuity Lemma 6.18 that

u(ϵ)
ϵ→0+−−−→ u0 and v(ϵ)

ϵ→0+−−−→ v0 in L2(R3,R3) so that

(⟨u(ϵ), v(ϵ)⟩ − ⟨u(t), v(t)⟩) ϵ→0+−−−→ (⟨u0, v0⟩ − ⟨u(t), v(t)⟩) .

Next, u, v ∈ L2((0, t), H1) implies∫ t

ϵ
⟨∇u(t′),∇v(t′)⟩dt′ ϵ→0+−−−→

∫ t

0
⟨∇u(t′),∇v(t′)⟩dt′.

Finally, we show that

lim
ϵ→0+

∫ t

ϵ
⟨div(u⊗ u), v⟩dt′ exists and is finite. (7.25)

The above limits are sufficient to prove∫ t

0
⟨u, ∂tv⟩dt′ = ⟨u0, v0⟩ − ⟨u(t), v(t)⟩+

∫ t

0
⟨∇u(t′),∇v(t′)⟩dt′ +

∫ t

0
⟨div(u⊗ u), v⟩dt′,
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and hence the claim. To prove (7.25) it is sufficient to show that

I :=

∫ t

0
|⟨div(u⊗ u), v⟩|dt′ <∞.

We bound, using r′ = 2s
s+3 ,

I ≲
∫ t

0
∥v∥Ls∥u∥

s−3
s

L2 ∥∇u∥
s+3
s

L2 dt′ ≲
∫ t

0
∥v∥rLsdt′ +

∫ t

0
∥u∥

(s−3)r′
s

L2 ∥∇u∥
(s+3)r′

s

L2 dt′

≤ ∥v∥rLr((0,t),Ls) + ∥u∥
2s−6
s+3

L∞(R+,L2)

∫ t

0
∥∇u∥2L2dt <∞.

8 Well posedness in Sobolev spaces

In Sections 8–10 we follow [1]. The theory is mostly due to T.Kato. The approach will be
different and the results will partially overlap with the ones in previous sections. To explain
the approach we go back to equation (6.8) and observe that if QNS(u, u) is a force like the
f in (4.1), we can interpret the solutions of (6.8) as solutions of a linear heat equation (4.1).
More specifically, if we denote by B(u, v) the weak solution of{

∂tB(u, v)−△B(u, v) = QNS(u, v)
B(u, v)|t=0 = 0.

(8.1)

then, when we are within the scope of the theory of Sect. 4, the solutions of (6.8) can be
rewritten as

u = et△u0 +B(u, u). (8.2)

In fact in Sections 8–10, for us the Navier Stokes equation will be equation (8.2). In Sect.
10 we will give an explicit formula to the operator B(u, v). It is an integral operator whose
integral kernel is the so called Oseen kernel. We will try to solve the problem by means
of a fixed point argument. Specifically, we will look for an appropriate Banach space XT

of functions defined in [0, T ]× Rd, for a subspace E ⊂ S ′(Rd,Rd) such that u0 ∈ E implies

eνt△u0 ∈ XT and furthermore ∥eνt△u0∥XT

T→0+−−−−→ 0, and we will use Lemma 6.9.

In this section we will discuss the case X = XT = L4([0, T ], Ḣ
d−1
2 (Rd,Rd)) and space

of initial data Ḣ
d
2
−1(Rd,Rd) and use the abstract Lemma 6.9 to prove the following well

posedness result.

Theorem 8.1. For any u0 ∈ Ḣ
d
2
−1(Rd,Rd) there exists a T and a solution of (8.2) with

u ∈ L4([0, T ], Ḣ
d−1
2 (Rd,Rd)). This solution is unique. Furthermore we have

u ∈ C([0, T ], Ḣ
d
2
−1(Rd,Rd)), ∇u ∈ L2([0, T ], Ḣ

d
2
−1(Rd,Rd × Rd)). (8.3)

Let Tu0 be the lifespan of the solution. Then:
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(1) there exists a c s.t.
∥u0∥

Ḣ
d
2−1(Rd,Rd)

≤ c⇒ Tu0 = ∞;

(2) if Tu0 <∞ then ∫ Tu0

0
∥u(t)∥4

Ḣ
d−1
2 (Rd,Rd)

dt = ∞. (8.4)

(3) if Tu0 <∞ then ∫ Tu0

0
∥∇u(t)∥2

Ḣ
d
2−1(Rd,Rd×Rd)

dt = ∞. (8.5)

Moreover, if u and v are solutions, then

∥u(t)− v(t)∥2
Ḣ

d
2−1(Rd,Rd)

+

∫ t

0
∥∇(u− v)(s)∥2

Ḣ
d
2−1(Rd,Rd×Rd)

ds

≤ ∥u0 − v0∥2
Ḣ

d
2−1(Rd,Rd)

e
C
∫ t
0

(
∥u(t′)∥4

Ḣ
d−1
2 (Rd,Rd)

+∥v(t′)∥4
Ḣ

d−1
2 (Rd,Rd)

)
dt′

(8.6)

where C is a fixed constant.

Remark 8.2. Notice that the following transformation preserves the solutions of the Navier
Stokes equation:

u (t, x) 7→ uλ (t, x) := λu
(
λ2t, λx

)
, (8.7)

Furthermore, notice that the norms of u in the spaces in (8.3) coincide with the analogous

norms of uλ in the interval [0, T/λ2]. Notice also that the norm of u0(x) in Ḣ
d
2
−1(Rd,Rd)

coincides with the norm of u0(x/λ) in the same space. So the space Ḣ
d
2
−1 is an example

of space critical for the Navier Stokes equation. One obvious consequence of this is the
following: there exists no function T (·) : [0,+∞) → (0,+∞] s.t. Tu0 ≥ T (∥u0∥

Ḣ
d
2−1) for all

u0 ∈ Ḣ
d
2
−1.

Remark 8.3. While for d = 2 the solutions provided by Theorem 8.1 are exactly Leray’s so-
lutions, for d = 3 we could have u0 ∈ Ḣ

1
2 (R3,R3) with u0 ̸∈ L2(R3,R3). The corresponding

solutions of the Navier Stokes equations provided by Theorem 8.1 are not Leray’s solutions.

Remark 8.4. We will prove in Sect. 10 that the solutions provided by Theorem 8.1 are in
C∞((0, T )× Rd,Rd).

Remark 8.5. Notice that the finite lifespan (8.4) is relevant only for d = 3. Furthermore, if
Tu0 <∞, it has been shown that

∥u∥L∞([0,Tu0 ],Ḣ
1(R3,R3) = ∞,

but the proof is a much harder.

We will assume for the moment Theorem 8.1 and prove the following.
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9 Proof of Theorem 8.1

This section is devoted to the proof of this theorem. First we have the following lemma.

Lemma 9.1. Let d = 2, 3. There exists a constant C > 0 s.t.

∥QNS(u, v)∥
Ḣ

d
2−2(Rd,Rd)

≤ C∥u∥
Ḣ

d−1
2 (Rd,Rd)

∥v∥
Ḣ

d−1
2 (Rd,Rd)

. (9.1)

Proof. If d = 2 we have

∥QNS(u, v)∥Ḣ−1 ≤
2∑

j,k=1

(
∥∂k(ukvj)∥Ḣ−1 + ∥∂k(vkuj)∥Ḣ−1

)

≤ 2
2∑
j,k

∥ukvj∥L2 ≤ C∥u∥L4∥v∥L4 ≤ C∥u∥
Ḣ

1
2
∥v∥

Ḣ
1
2

by the Sobolev embedding Ḣ
1
2 (R2) ⊂ L4(R2) , since 1

4 = 1
2 −

1
2
2 . This yields (9.1) for d = 2.

For d = 3

∥QNS(u, v)∥
Ḣ− 1

2 (R3)
≤

2∑
j,k

(
∥∂k(ukvj)∥

Ḣ− 1
2 (R3)

+ ∥∂k(vkuj)∥
Ḣ− 1

2 (R3)

)
≲ ∥(∇u)v∥

Ḣ− 1
2 (R3)

+ ∥u∇v∥
Ḣ− 1

2 (R3)
≲ ∥(∇u)v∥

L
3
2 (R3)

+ ∥u∇v∥
L

3
2 (R3)

where we are using the Sobolev embedding Ḣ
1
2 (R3) ⊂ L3(R3) (since 1

3 = 1
2 −

1
2
3 ) which in

turn by duality implies L
3
2 (R3) ⊂ Ḣ− 1

2 (R3).
Hence, by 2

3 = 1
2 + 1

6 and Hölder,

∥QNS(u, v)∥
Ḣ− 1

2 (R3)
≲ ∥∇u∥L2(R3)∥v∥L6(R3) + ∥u∥L6(R3)∥∇v∥L2(R3) ≤ 2∥u∥Ḣ1(R3)∥v∥Ḣ1(R3).

This yields (9.1) for d = 3.
A straightforward consequence of Lemma 9.1 is the following for C the constant in

Lemma 9.1.

Lemma 9.2. Let d = 2, 3. Then for u, v ∈ L4([0, T ], (Ḣ
d−1
2 (Rd,Rd)) we have

∥QNS(u, v)∥
L2([0,T ],Ḣ

d
2−2(Rd,Rd))

≤ C∥u∥
L4([0,T ],Ḣ

d−1
2 (Rd,Rd))

∥v∥
L4([0,T ],Ḣ

d−1
2 (Rd,Rd))

(9.2)

Proof of Theorem 8.1. By Theorem 4.4 we have for s = d
2 − 1 and p = 4

∥B(u, v)∥
L4([0,T ],Ḣ

d−1
2 )

= ∥∥B(u, v)∥
Ḣ

s+2
p
∥Lp(0,T ) ≲ ∥QNS(u, v)∥L2([0,T ],Ḣs−1)

= ∥QNS(u, v)∥
L2([0,T ],Ḣ

d
2−2)

≤ C∥u∥
L4([0,T ],Ḣ

d−1
2
∥v∥

L4([0,T ],Ḣ
d−1
2 )
.

(9.3)
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So in the Banach space X = L4([0, T ], Ḣ
d−1
2 ) we have ∥B∥ ≤ C. Obviously this is the same

as 1
4C ≤ 1

4∥B∥ . Our strategy is to prove

∥et△u0∥
L4([0,T ],Ḣ

d−1
2 )

<
1

4C
≤ 1

4∥B∥ (9.4)

where et△u0 plays the role of x0 in the abstract Lemma 6.9.
If (9.4) happens, that is if the l.h.s.of (9.4) is less than an α < 1

4∥B∥ , then by Lemma 6.9

we can conclude that problem (8.2) admits a unique solution in L4([0, T ], Ḣ
d−1
2 ) with norm

less than 2α < 1
2C .

We consider two distinct proofs of (9.4). The 1st, simpler, is valid only if ∥u0∥
Ḣ

d
2−1 is

sufficiently small and shows that (9.4) holds for all T . In the second proof, which is general,
we drop the assumption that ∥u0∥

Ḣ
d
2−1 is small, and we prove (9.4) for T sufficiently small.

Step 1: small initial data. By Theorem 4.4 we have for s = d
2 − 1 and p = 4

∥et△u0∥
L4([0,T ],Ḣ

d−1
2 )

= ∥∥et△u0∥
Ḣ

s+2
p
∥Lp(0,T ) ≤ ∥u0∥Ḣs = ∥u0∥

Ḣ
d
2−1 . (9.5)

So, if ∥u0∥
Ḣ

d
2−1 <

1
4C then (9.4) is true for any T > 0. In particular Tu0 = ∞ and we have

just proved (1) in Theorem 8.1.

Step 2: possibly large initial data. Now we consider the case when u0 ∈ Ḣ
d
2
−1(Rd)

is possibly large. We consider a low–high energy decomposition: u0 = Pρu0 + χ√
−△≥ρu0

where we pick ρ = ρu0 large enough so that

∥χ√
−△≥ρu0∥Ḣ d

2−1 <
1

8C
.

Then by (9.5) we get

∥et△u0∥
L4([0,T ],Ḣ

d−1
2 )

≤ ∥et△χ√
−△≥ρu0∥L4([0,T ],Ḣ

d−1
2 )

+ ∥et△Pρu0∥
L4([0,T ],Ḣ

d−1
2 )

<
1

8C
+ ∥et△Pρu0∥

L4([0,T ],Ḣ
d−1
2 )

(9.6)

where we made the high energy contribution small by the choice of ρ large.
We now exploit the fact that we have the freedom to choose T small, in order to make the
contribution to (9.6) small too. Indeed we have

∥et△Pρu0∥
L4([0,T ],Ḣ

d−1
2 )

= ∥et△χ[0,ρ](
√
−△)u0∥

L4([0,T ],Ḣ
d−1
2 )

= ∥et△χ[0,ρ](
√

−△)
√
ρ
(−△)

1
4

√
ρ

u0∥
L4([0,T ],Ḣ

d
2−1)

≤ √
ρ∥et△χ[0,ρ](

√
−△)u0∥

L4([0,T ],Ḣ
d
2−1)

=
√
ρ∥et△Pρu0∥

L4([0,T ],Ḣ
d
2−1)

≤ (ρ2T )
1
4 ∥et△Pρu0∥

L∞([0,T ],Ḣ
d
2−1)

≤ (ρ2T )
1
4 ∥Pρu0∥

Ḣ
d
2−1 ≤ (ρ2T )

1
4 ∥u0∥

Ḣ
d
2−1 ≤ 1

8C

79



if we choose T small enough so that the last inequality holds, that is if we choose T such
that

T ≤

 1

8ρ
1
2C∥u0∥

Ḣ
d
2−1

4

, (9.7)

then all terms in the r.h.s. of (9.6) have been made small enough s.t.

∥et△u0∥
L4([0,T ],Ḣ

d−1
2 )

<
1

4C
≤ 1

4∥B∥
,

that is we obtained (9.4).
We have proved the 1st sentence in the statement of Theorem 8.1.

Now we turn to the proof that a solution u ∈ L4([0, T ], Ḣ
d−1
2 ) satisfies (8.3).

By (9.1) we have QNS(u, u) ∈ L2([0, T ], Ḣ
d
2
−2). Then it must be remarked that by its

definition B(u, u) is a solution in the sense of Definition 4.1 of the Heat Equation written
above (8.2). Similarly, by Theorem 4.2 also et△u0 is a solution of the homogeneous Heat
Equation with initial value u0. Hence, since u satisfies (8.2), then u is the solution of the
Heat Equation (6.8), where the latter can be framed in terms of the theory in Sect. 4 for

s = d
2 − 1. Then by Theorem 4.2 we have u ∈ C0([0, T ], Ḣ

d
2
−1) and ∇u ∈ L2([0, T ], Ḣ

d
2
−1).

This yields (8.3).
We turn now to the proof of (8.6). We consider two solutions u and v, and set w = u− v.
Then {

wt −△w = QNS(w, u+ v)
w(0) = u0 − v0

where we used the symmetry QNS(u, v) = QNS(v, u) and

QNS(u− v, u+ v) = QNS(u, u)−QNS(v, v) +QNS(u, v)−QNS(v, u)︸ ︷︷ ︸
0

.

By the energy estimate (4.5) for s = d
2 − 1 we have

∆w := ∥w(t)∥2
Ḣ

d
2−1

+ 2

∫ t

0
∥∇w(t′)∥2

Ḣ
d
2−1

dt′ = ∥w0∥2
Ḣ

d
2−1

+ 2

∫ t

0
⟨QNS(w, u+ v), w⟩

Ḣ
d
2−1(t

′)dt′.

Claim 9.3. We have

⟨QNS(a, b), c⟩
Ḣ

d
2−1 ≤ C∥a∥

Ḣ
d−1
2
∥b∥

Ḣ
d−1
2
∥c∥

Ḣ
d
2
. (9.8)

Proof. Indeed, trading derivatives we have

⟨QNS(a, b), c⟩
Ḣ

d
2−1 ≤ ∥QNS(a, b)∥

Ḣ
d
2−2∥c∥Ḣ d

2

and by (9.1) we have

∥QNS(a, b)∥
Ḣ

d
2−2 ≤ C∥a∥

Ḣ
d−1
2
∥b∥

Ḣ
d−1
2
.
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This proves Claim 9.3.
Now for N(t) := ∥u(t)∥

Ḣ
d−1
2

+ ∥v(t)∥
Ḣ

d−1
2

by Claim 9.3 we have

∆w ≤ ∥w0∥2
Ḣ

d
2−1

+ 2

∫ t

0
∥w(t′)∥

Ḣ
d−1
2
N(t′)∥∇w(t′)∥

Ḣ
d
2−1dt

′.

By the interpolation estimate in Lemma 2.25 we have

∥w(t′)∥
Ḣ

d−1
2

≤ ∥w(t′)∥
1
2

Ḣ
d
2−1

∥∇w(t′)∥
1
2

Ḣ
d
2−1

.

This implies

∆w ≤ ∥w0∥2
Ḣ

d
2−1

+ 2

∫ t

0
∥w(t′)∥

1
2

Ḣ
d
2−1

N(t′)∥∇w(t′)∥
3
2

Ḣ
d
2−1

dt′.

Using the inequality ab ≤ 1
4a

4 + 3
4b

4
3 , which follows by concavity,

log(ab) =
1

4
log(a4) +

3

4
log(b

4
3 ) ≤ log

(
1

4
a4 +

3

4
b
4
3

)
,

we get

the integrand =

(
∥w(t′)∥

1
2

Ḣ
d
2−1

N(t′)

(
3

4

) 3
4

)(
4

3
∥∇w(t′)∥2

Ḣ
d
2−1

) 3
4

≤ 33

44
∥w(t′)∥2

Ḣ
d
2−1

N4(t′) + ∥∇w(t′)∥2
Ḣ

d
2−1

.

Then

∆w ≤ ∥w0∥2
Ḣ

d
2−1

+
33

44

∫ t

0
∥w(t′)∥2

Ḣ
d
2−1

N4(t′)dt′ +

∫ t

0
∥∇w(t′)∥2

Ḣ
d
2−1

dt′.

In other words, by the definition of ∆w

∥w(t)∥2
Ḣ

d
2−1

+ �2

∫ t

0
∥∇w(t′)∥2

Ḣ
d
2−1

dt′

≤ ∥w0∥2
Ḣ

d
2−1

+
33

44

∫ t

0
∥w(t′)∥2

Ḣ
d
2−1

N4(t′)dt′ +
����������∫ t

0
∥∇w(t′)∥2

Ḣ
d
2−1

dt′

so that, if we set

X(t) := ∥w(t)∥2
Ḣ

d
2−1

+

∫ t

0
∥∇w(t′)∥2

Ḣ
d
2−1

dt′

we have

X(t) ≤ ∥w0∥2
Ḣ

d
2−1

+
33

44

∫ t

0
∥w(t′)∥2

Ḣ
d
2−1

N4(t′)dt′

≤ ∥w0∥2
Ḣ

d
2−1

+
33

44

∫ t

0
X(t′)N4(t′)dt′.
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So by Gronwall’s inequality

∥w(t)∥2
Ḣ

d
2−1

+

∫ t

0
∥∇w(t′)∥2

Ḣ
d
2−1

dt′ ≤ ∥w0∥2
Ḣ

d
2−1

exp

(
33

44

∫ t

0
N4(t′)dt′

)
.

This proves the stability inequality (8.6)
We now consider the blow up criterion (8.4). Suppose that u(t) is a solution in [0, T )

with ∫ T

0
∥u(t)∥4

Ḣ
d−1
2
dt <∞.

Notice that then u ∈ L4([0, T ], Ḣ
d−1
2 ) and

∥QNS(u, u)∥
L2([0,T ],Ḣ

d
2−2)

≤ C∥u∥2
L4([0,T ],Ḣ

d−1
2
. (9.9)

We claim that we can extend u(t) beyond T .

Claim 9.4. There exists a τ > 0 s.t. u extends in a solution in L4([0, T+τ), Ḣ
d−1
2 (Rd,Rd)).

First of all we set
g(ξ) := sup

0≤t′≤T
|û(t′, ξ)|.

Claim 9.5. We have |ξ|
d
2
−1g ∈ L2(Rd).

Proof of Claim 9.5. By (4.15) for s = d
2 − 1 and by (9.1) we have

∥|ξ|
d
2
−1g∥L2 =

∫
Rd

|ξ|d−2

(
sup

0≤t′≤t
|û(t′, ξ)|

)2

dξ

 1
2

≤ ∥u0∥
Ḣ

d
2−1 +

1

2
1
2

∥QNS∥
L2([0,T ],Ḣ

d
2−2)

≤ ∥u0∥
Ḣ

d
2−1 +

C

2
1
2

∥u∥2
L4([0,T ],Ḣ

d−1
2 )

<∞.

This proves Claim 9.5.
Proof of Claim 9.4. Claim 9.5 implies∫

|ξ|≥ρ
|ξ|d−2|g(ξ)|2dξ ρ→+∞−−−−→ 0.

Thus there exists ρ > 0 s.t for any preassigned c > 0∫
|ξ|≥ρ

|ξ|d−2|û(t, ξ)|2dξ < c2 for all t ∈ [0, T ).

Now, recalling the splitting in high and low energies in the proof of the 1st sentence in the
statement of Theorem 8.1, there exists a fixed τ > 0 s.t. the lifespan of the solution with
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initial datum u(t) is bounded below by τ independently of t ∈ [0, T ). Indeed there exists a
c1 > 0 independent from t ∈ [0, T ) s.t. 1

8ρ
1
2C∥u(t)∥

Ḣ
d
2−1

4

> c1 > 0.

This follows from the fact that

∥u(t)∥
Ḣ

d
2−1 ≤ ∥|ξ|

d
2
−1g∥L2 <∞

So we can take τ = c1. Then Tu0 ≥ T + τ and this yields Claim 9.4.
Let us now discuss the blow up criterion (8.5). Suppose that Tu0 <∞ and that

CL2 :=

∫ Tu0

0
∥∇u(t)∥2

Ḣ
d
2−1

dt <∞. (9.10)

Since we have (8.4) and

L4([0, T ], Ḣ
d−1
2 (Rd,Rd)) ⊆ L∞([0, T ], Ḣ

d
2
−1(Rd,Rd)) ∩ L2([0, T ], Ḣ

d
2 (Rd,Rd))

it follows that since we must have (8.4), then (9.10) implies that

lim
T→Tu0

∥u(t)∥
L∞([0,T ],Ḣ

d
2−1)

= ∞ (9.11)

For 0 ≤ t ≤ T < Tu0 we have, by (9.8) and interpolation,

∥u(t)∥2
Ḣ

d
2−1

+ 2

∫ t

0
∥∇u(t′)∥2

Ḣ
d
2−1

dt′ = ∥u(t1)∥2Ḣσs
+ 2

∫ t

0
⟨Q(u(t′), u(t′)), u(t′)⟩

Ḣ
d
2−1dt

′

⩽ ∥u(0)∥2
Ḣ

d
2−1

+ C ′
d

∫ t

0
∥u(t′)∥2

Ḣ
d−1
2
∥∇u(t′)∥

Ḣ
d
2−1dt

′

⩽ ∥u(0)∥2
Ḣ

d
2−1

+ Cd

∫ t

0
∥u(t′)∥

Ḣ
d
2−1∥∇u(t′)∥2

Ḣ
d
2−1

dt′

(9.12)
and so

∥u∥2
L∞([0,T ],Ḣ

d
2−1)

⩽ ∥u(0)∥2
Ḣ

d
2−1

+ CdCL2∥u∥
L∞([0,T ],Ḣ

d
2−1)

.

But this means that

∥u∥
L∞([0,T ],Ḣ

d
2−1)

≤ 1

2
CdCL2 +

1

2

√
C2
dC

2
L2 + 4∥u(0)∥2

Ḣ
d
2−1

<∞,

contradicting (9.11). This contradiction proves the blow up criterion (8.5).
The proof of Theorem 8.1 is completed.

Theorem 8.1 yields also an alternative proof of Leray’s Theorem 6.5 for d = 2.
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Corollary 9.6. In the case d = 2, Theorem 8.1 implies Leray’s Theorem 6.5 for d = 2

Proof. By the Leray’s Theorem 6.3 we know that given a divergence free u0 ∈ L2(R2,R2)
there are weak solutions in the sense of Leray with u ∈ L∞([0,∞), L2(R2,R2)) and ∇u ∈
L2([0,∞), L2(R2,R4)). Interpolating, for each such a solution we have

∥∥u∥
Ḣ

1
2
∥L4

t
≤ ∥∥u∥

1
2

L2∥∇u∥
1
2

L2∥L4
t
≤ ∥u∥

1
2

L∞
t L2∥∇u∥

1
2

L2
tL

2

and so we obtain also u ∈ L4([0,∞), Ḣ
1
2 (R2,R2)).

By Lemma 9.2 we know that this implies

QNS(u, u) ∈ L2([0,∞), Ḣ−1(R2,R2)).

Notice that the right hand side of (6.8) satisfies the hypothesis of the force term in the
linear heat equation (4.1). As a weak solution of the Navier Stokes equation in the sense
of Definition 6.1, u is then also a solution of the linear heat equation (4.1) in the sense of
Definition 4.1. This means that it is also a solution of (8.2). Since by Theorem 8.1 such
solution is a unique, we conclude that the solution of Leray’s Theorem 6.3 in the case d = 2
is unique. Furthermore by Theorem 8.1 we know also that u ∈ C0([0,∞), L2(R2,R2)).
We now turn to the energy identity. By Leray’s Theorem 6.3 we know that

∥u(t)∥2L2(R2) + 2

∫ t

0
∥∇u(t′)∥2L2(R2)dt

′ ≤ ∥u0∥2L2(R2).

We want now to prove that ≤ can be replaced by = in this formula. As we have mentioned
above, u solves in the sense of Definition 4.1 the problem

∂tu−△u = QNS(u, u) with QNS(u, u) ∈ L2(R+, Ḣ
−1(R2,R2)),

Then, by Theorem 4.2 for s = 0 the identity (4.5) yields

∥u(t)∥2L2 + 2

∫ t

0
∥∇u(t′)∥2L2dt

′ = ∥u0∥2L2 + 2

∫ t

0
⟨QNS(u(t

′), u(t′)), u(t′)⟩L2dt′.

By Lemma 6.6 we have the cancelation

⟨QNS(u, u), u⟩ = ⟨P(div(u⊗ u), u⟩ = ⟨div(u⊗ u), u⟩ = 0.

This completes the proof, by giving the energy identity.

10 The case of initial data in L3(R3)

It is possible to prove the following theorem.
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Theorem 10.1. For any divergence free u0 ∈ L3(R3,R3) there is a T > 0 and a unique
solution u ∈ C0([0, T ), L3(R3,R3)) of

u = et△u0 +B(u, u). (8.2)

Furthermore there exists a ε3 > 0 s.t. for ∥u0∥L3 < ε3 we have T = ∞. Furthermore, if
u0 ∈ Ḣ1/2(R3,R3), the life span is the same of Theorem 8.1.

Exercise 10.2. Prove that the mapping Ḣ1/2(R3,R3) → L3(R3,R3) is not surjective.

Exercise 10.3. Prove that the subspace of divergence free vector fields in Ḣ1/2(R3,R3) is
closed in Ḣ1/2(R3,R3). Prove the same for with Ḣ1/2(R3,R3) replaced by L3(R3,R3).

Exercise 10.4. Prove that the Sobolev embedding from the subspace of divergence free
vector fields in Ḣ1/2(R3,R3) to the subspace of divergence free vector fields in L3(R3,R3)
is not surjective.

Exercise 10.5. Pick a divergence free u0 belonging to L3(R3,R3) but not to Ḣ1/2(R3,R3).

Show that there exists a sequence of divergence free vector fields {u(n)0 } in Ḣ1/2(R3,R3)

with u
(n)
0 → u0 in L3(R3,R3). Show also that ∥u(n)0 ∥Ḣ1/2 → ∞.

Exercise 10.6. Show that it is possible to define divergence free sequences {v(n)0 } in

Ḣ1/2(R3,R3) with ∥v(n)0 ∥Ḣ1/2 → ∞ and ∥v(n)0 ∥L3 → 0.

Remark 10.7. For a sequence such as in Exercise 10.6, for n≫ 1 the corresponding solutions
of the NS equation are globally defined in time by Theorem 10.13, while Theorem 8.1 is
able to guarantee only on short intervals of time.

To prove Theorem 10.13 we will apply the abstract Lemma 6.9 in an appropriate
Banach space X. The striking fact though, is that the space X will not be of the form
C0([0, T ], L3(R3,R3)). This because if X where this space, then the bilinear form B defined
by (8.1) is known not to be continuous. It turns out that to get the right Banach space X,
has required a certain degree of imagination and insight.

Definition 10.8 (Kato’s Spaces). For p ∈ [d,∞] and T ∈ (0,∞) we set

Kp(T ) := {u ∈ C0((0, T ], Lp(Rd,Rd)) : ∥u∥Kp(T ) := sup
t∈(0,T ]

t
d
2

(
1
d
− 1

p

)
∥u(t)∥Lp <∞}

(10.1)
and for p ∈ [1, d)

Kp(T ) := {u ∈ C0([0, T ], Lp(Rd,Rd)) : ∥u∥Kp(T ) := sup
t∈(0,T ]

t
d
2

(
1
d
− 1

p

)
∥u(t)∥Lp <∞}.

(10.2)
We denote by Kp(∞) the spaces defined as above, with (0, T ] replaced by (0,∞).
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We recall that the solution of the heat equation ut − ν△u = 0 is et△f = Kt ∗ f where

Kt(x) := (4πt)−
d
2 e−

|x|2
4t . Notice that Kt(x) = t−

d
2K(t−

1
2x), where K(x) := (4π)−

d
2 e−

|x|2
4

and where K̂(ξ) = e−|ξ|2 .
Notice that for u0 ∈ Ld(Rd) and p ≥ d we have from (1.13),

∥et∆u0∥Lp(Rd) ⩽ (4πt)
d
2

(
1
p
− 1

d

)
∥u0∥Ld(Rd) for all p ≥ d, (10.3)

it can be proved that et∆u0 ∈ C(R+, L
p), and so et∆u0 ∈ Kp(∞).

Lemma 10.9. Let u0 ∈ Ld(Rd,Rd) and p > d. Then

lim
T→0

∥et∆u0∥Kp(T ) = 0. (10.4)

Proof. For any ϵ > 0 there exists ϕ ∈ Ld(Rd,Rd) ∩ Lp(Rd,Rd) s.t. ∥u− ϕ∥Ld < ϵ. Then by
(10.3) we have

∥u− ϕ∥Kp(T ) ≤ (4πT )
d
2

(
1
p
− 1

d

)
ϵ.

Since ∥et∆ϕ∥Lp ≤ ∥ϕ∥Lp , it follows

∥etν△ϕ∥Kp(T ) = sup
t∈(0,T ]

t
d
2

(
1
d
− 1

p

)
∥et∆ϕ∥Lp ≤ T

d
2

(
1
d
− 1

p

)
∥ϕ∥Lp

T→0−−−→ 0.

Lemma 10.10. Let p, q and r satisfy

0 <
1

p
+

1

q
⩽ 1

1

r
⩽

1

p
+

1

q
<

1

d
+

1

r

(10.5)

Then the bilinear map B defined in (8.1) maps Kp(T ) × Kq(T ) → Kr(T ) and there is a
constant C independent from T s.t.

∥B(u, v)∥Kr(T ) ⩽ C∥u∥Kp(T )∥v∥Kq(T ). (10.6)

To prove Lemma 10.10 we consider for any m = 1, ..., d the problem{
(Lmf)t −△Lmf = P∂mf

Lmf(0, x) = 0
(10.7)

(Lmf is by definition the solution of the above heat equation). Then by (4.7) and (6.10)

for cijk the constants s.t. P̂u
i
=
∑d

j,k=1 cijkξjξk|ξ|−2ûk, we have

L̂mf i(t, ξ) =
d∑

j,k=1

cijk

∫ t

0
e−(t−t′)|ξ|2ξjξkξm|ξ|−2f̂k(t′, ξ)dt′. (10.8)
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This means, for Γjkm(t, x) the inverse Fourier transform of e−t|ξ|2ξjξkξm|ξ|−2,

Lmf
i(t) =

d∑
j,k=1

cijk

∫ t

0
Γjkm(t− t′) ∗ f̂k(t′)dt′. (10.9)

We claim the following.

Claim 10.11. We have for a fixed C > 0

|Γjkm(t, x)| ⩽ C(
√
t+ |x|)−d−1. (10.10)

Proof. It is elementary that Γjkm(t, x) = t−
d+1
2 Γjkm(t−1/2x) with Γ̂jkm(x) = e−|ξ|2ξjξkξm|ξ|−2.

Then (10.10) is a consequence of

|Γjkm(x)| ⩽ C(1 + |x|)−d−1. (10.11)

It is straightforward that Γjkm ∈ C∞(Rd+1) ∩ L∞(Rd+1), because of the rapid decay to 0

at infinity of e−|ξ|2ξjξkξm|ξ|−2. Hence, to prove (10.11) it suffices to consider |x| ≫ 1. For
χ0 a smooth cutoff of compact support equal to 1 near 0 and with χ1 := 1− χ0, we set

Γjkm(x) = (2π)−
d
2

∫
Rd

e−iξ·xχ0 (|x|ξ) e−|ξ|2ξjξkξm|ξ|−2dξ

+ (2π)−
d
2

∫
Rd

e−iξ·xχ1 (|x|ξ) e−|ξ|2ξjξkξm|ξ|−2dξ

The 1st term in the r.h.s. is

≲
∫
|ξ|≤|x|−1

|ξ| dξ ∼ |x|−d−1.

We next consider the other term, which we split as

(2π)−
d
2

∫
Rd

e−iξ·xχ1 (|x|ξ)χ0 (ξ) e
−|ξ|2ξjξkξm|ξ|−2dξ (10.12)

+ (2π)−
d
2

∫
Rd

e−iξ·xχ1 (ξ) e
−|ξ|2ξjξkξm|ξ|−2dξ. (10.13)

Notice that the last line is O(|x|−N ) for any N . Indeed, χ1 (ξ) e
−|ξ|2ξjξkξm|ξ|−2 ∈ S(Rd),

and so also its Fourier transform (10.13) is rapidly decreasing.
Let us consider the term in (10.12). Set L := i x

|x|2 · ∇ξ and notice that Le−iξ·x = e−iξ·x.

Then, the term in (10.12) is

(2π)−
d
2

∫
Rd

e−iξ·xLd+2
(
χ1 (|x|ξ) e−|ξ|2ξjξkξm|ξ|−2

)
dξ.

The absolute value of the integrand is for fixed C∣∣∣Ld+2 (· · ·)
∣∣∣ ≤ C|x|−d−2|ξ|−d−1.
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Here we used that in the support of ∇ξ (χ1 (|x|ξ)) we have |x| ∼ |ξ|−1. So the last integral
is bounded

≲ |x|−d−2

∫
1≥|ξ|≥|x|−1

|ξ|−d−1dξ ∼ |x|−d−2|x| = |x|−d−1.

This completes the proof of Claim 10.11.

Completion of proof of Lemma 10.10. By (10.10) we have by Young’s inequality for
convolutions and Hölder’s inequality for the tensor product of u and v the bound (here
1
a = 1 + 1

r −
1
β and 1

β = 1
p + 1

q )

∥B(u, v)∥Lr ⩽ C1

∑
j,m,k

∫ t

0

∥∥Γj,m,k(t− t′)
∥∥
La

∥∥u(t′)⊗ v(t′)
∥∥
Lβ dt

′

⩽ C1

∑
j,m,k

∫ t

0

∥∥Γj,m,k(t− t′)
∥∥
La

∥∥u(t′)∥∥
Lp

∥∥v(t′)∥∥
Lq dt

′

≲
∫ t

0
(t− t′)

− 1
2
− d

2

(
1
p
+ 1

q
− 1

r

)
(t′)

− d
2

(
2
d
− 1

p
− 1

q

)
dt′ ∥u∥Kp(t)

∥v∥Kq(t)
(10.14)

where in the 3rd line we used

∥∥Γj,m,k(t− t′)
∥∥
La(Rd)

≲
∥∥∥(√t− t′ + |x|)−d−1

∥∥∥
La(Rd)

= (t− t′)−
d+1
2

∥∥∥∥∥
(
1 +

|x|√
t− t′

)−d−1
∥∥∥∥∥
La(Rd)

= (t− t′)−
d+1
2 (t− t′)

d
2a

∥∥∥(1 + |x|)−d−1
∥∥∥
La(Rd)

∼ (t− t′)
− d+1

2
+ d

2

(
1+ 1

r
− 1

p
− 1

q

)

= (t− t′)
− 1

2
− d

2

(
1
p
+ 1

q
− 1

r

)
.

We then conclude

∥B(u, v)∥Lr ⩽ Ct−
d
2 (

1
d
− 1

r ) ∥u∥Kp(t)
∥v∥Kq(t)

(10.15)

where we used the fact that ∀ α, β ∈ (−∞, 1) we have∫ t

0
(t−t′)−α(t′)−βdt′ = C(α, β)t1−α−β for all t > 0 and for C(α, β) :=

∫ 1

0
(1−t′)−α(t′)−βdt′.

(10.16)
and

1

2
+
d

2

(
1

p
+

1

q
− 1

r

)
+
d

2

(
2

d
− 1

p
− 1

q

)
=

1

2
+
d

2

(
2

d
− 1

r

)
=

1

2
+ 1− d

2r

= 2− 1

2
− d

2r
= 1 + 1− d

2r
= 1 +

d

2

(
1

d
− 1

r

)
.

Notice that in the inequalities in (10.5) we need:
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•
1

β
:=

1

p
+

1

q
⩽ 1 in order for u⊗ v to belong to the Lebesgue space Lβ(Rd);

• 0 <
1

p
+

1

q
is needed because otherwise in (10.14) we get (t′)−1 and the integral is

undefined;

•
1

r
⩽

1

p
+

1

q
is needed for a ≥ 1;

•
1

p
+

1

q
<

1

d
+

1

r
is needed to get −1

2
− d

2

(
1

p
+

1

q
− 1

r

)
> −1 in the exponent of (t− t′)

in (10.14).

We have the following fact.

Proposition 10.12. For any p ∈ (d,∞] there exists a constant εpν > 0 s.t. if

∥et△u0∥Kp(T ) < εpν (10.17)

then there exists and is unique u in the ball of center 0 and radius 2εpν in Kp(T ) which
satisfies (8.2).

Proof. Setting r = q = p, we see that for p > d we have B : Kp(T ) ×Kp(T ) → Kp(T ) is
bounded and with norm that admits a finite upper bound independent from T . The proof
follows then from the abstract Lemma 6.9.

Theorem 10.13. For any u0 ∈ Ld(Rd,Rd) there is a T > 0 and solution u ∈ C0([0, T ), Ld(Rd,Rd))
of (8.2) which is unique. Furthermore there exists a εd > 0 s.t. for ∥u0∥Ld < εd we have
T = ∞. In the case d = 2, in particular, all solutions are defined for all T > 0.

Proof. We have et△u0 ∈ Kp(T ) for any p > d, see (10.3). Furthermore, ∥et△u0∥Kp(T )
T→0−−−→

0 for p > d by Lemma 10.9. Then we can apply Proposition 10.12 concluding that there
exists a solution u of (8.2) in K2d(T ) for T > 0 small enough. Applying Lemma 10.10 for
p = q = 2d and r = d we get B(u, u) ∈ C0([0, T ], Ld), and so u ∈ C0([0, T ], Ld).
We assume now that there are two solutions u1 and u2 in C0([0, T ], Ld). We already know
the uniqueness for d = 2, so we will focus uniquely on the case d = 3.

Setting u21 = u2 − u1 and wj = B(uj , uj) we have{
∂tu21 −△u21 = f21

u21(0) = 0
with

f21 = 2Q(et△u0, u21) +Q(w2, u21) +Q(w1, u21).

By L
3
2 (R3) ↪→ Ḣ− 1

2 (R3), which is the dual of Sobolev’s Embedding Ḣ
1
2 (R3) ↪→ L3(R3), we

have
∥Q(u, v)∥

Ḣ− 3
2 (R3)

≤ ∥u⊗ v∥
Ḣ− 1

2 (R3)
≲ ∥u⊗ v∥

L
3
2 (R3)

≤ ∥u∥L3∥v∥L3 .
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Then, by (4.5) and entering the definition of f21

∥u21(t)∥2
Ḣ− 1

2
+ 2

∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′ ≤ 2

∫ t

0
⟨f21(t′), u21(t′)⟩

Ḣ− 1
2
dt′

≤ 4

∫ t

0
∥Q(et

′△u0, u21)∥
Ḣ− 3

2
∥∇u21(t′)∥

Ḣ− 1
2
dt′

+ 2

∫ t

0
∥Q(w2, u21) +Q(w1, u21)∥

Ḣ− 3
2
∥∇u21(t′)∥

Ḣ− 1
2
dt′. (10.18)

We bound the last line with, for j = 1, 2,

2

∫ t

0
∥Q(wj , u21)∥

Ḣ− 3
2
∥∇u21(t′)∥

Ḣ− 1
2
dt′ ≲ ∥wj∥K3(t)

∫ t

0
∥u21(t′)∥L3∥∇u21(t′)∥

Ḣ− 1
2
dt′

≲ ∥wj∥K3(t)

∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′, (10.19)

where in the last line we used Sobolev’s Embedding Ḣ
1
2 (R3) ↪→ L3(R3).

So, the last line of (10.18) is

≲
(
∥w1∥K3(t) + ∥w2∥K3(t)

) ∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′. (10.20)

We split now

u0 = u
(1)
0 + u

(2)
0 with ∥u(1)0 ∥L3 < ϵ and u

(2)
0 ∈ L6 ∩ L3

and we bound similarly to (10.19)∫ t

0
∥Q(et

′△u
(1)
0 , u21)∥

Ḣ− 3
2
∥∇u21(t′)∥

Ḣ− 1
2
dt′ ≲ ∥u(1)0 ∥L3

∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′.

Finally, we bound∫ t

0
∥Q(et

′△u
(2)
0 , u21)∥

Ḣ− 3
2
∥∇u21(t′)∥

Ḣ− 1
2
dt′

≤
∫ t

0
∥et′△u(2)0 ⊗ u21∥

Ḣ− 1
2
∥∇u21(t′)∥

Ḣ− 1
2
dt′ ≲

∫ t

0
∥et′△u(2)0 ⊗ u21∥

L
3
2
∥∇u21(t′)∥

Ḣ− 1
2
dt′

≤
∫ t

0
∥et′△u(2)0 ∥L6 ∥u21∥L2∥∇u21∥

H− 1
2
dt′ ≤ ∥u(2)0 ∥L6

∫ t

0
∥u21∥

1
2

H− 1
2
∥∇u21∥

3
2

H− 1
2
dt′.

So we get

∥u21(t)∥2
Ḣ− 1

2
+ 2

∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′ ≲

(
∥w1∥K3(t) + ∥w2∥K3(t) + ∥u(1)0 ∥L3

)∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt

+
3

4C
4
3

∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′ +

C4

4
∥u(2)0 ∥4L6

∫ t

0
∥u21∥2

H− 1
2
dt′.
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Taking C large, and t small, so that ∥w1∥K3(t)+∥w2∥K3(t)+∥u(1)0 ∥L3 < 3ϵ with ϵ sufficiently
small, we obtain

∥u21(t)∥2
Ḣ− 1

2
+

∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′ ≲

C4

4
∥u(2)0 ∥4L6

∫ t

0
∥u21∥2

H− 1
2
dt′.

Gronwall’s Inequality implies that u21(t
′) = 0 for all t′ ∈ [0, t] with t > 0 sufficiently small.

The above argument shows that the set

{t ∈ [0, T ) : u21 ≡ 0 in [0, t]} (10.21)

is open (and, obviously, non empty) in [0, T ). On the other hand, since u21 ∈ C0([0, T ), L3(R3,R3)),
the set in (10.21) is also closed in [0, T ). Hence, since it is non empty because if contains 0,
it coincides with [0, T ).

Next we turn to the global existence for small data. This follows ∥et∆u0∥K2d(∞) ≤
Cd∥u0∥Ld(Rd) and Proposition 10.12 when Cd∥u0∥Ld(Rd) < ε2d.

Remark 10.14. Let u0 ∈ Ḣ
1
2 (R3,R3). Then it can be proved that if T3 > 0 is the lifespan

of the corresponding solution u ∈ C0([0, T3), L
3(R3,R3)) provided by Theorem 10.13 and if

Tu0 > 0 is the lifespan of the solution provided by Theorem 8.1, we have T3 = Tu0 . We will
prove the simpler result in Proposition 10.15.

Proposition 10.15. Let u0 ∈ Ḣ
1
2 (R3,R3). There there exists ϵ3ν > 0 s.t. for ∥u0∥L3(R3) <

ϵ3ν and if Tu0 > 0 is the lifespan of the solution provided by Theorem 8.1, we have Tu0 = ∞.

Proof. Taking ϵ3ν > 0 sufficiently small we can assume by Theorem 10.13 that u ∈ C0([0,∞), L3).
In fact, if it is sufficiently small we can prove ∥u∥L∞([0,∞),L3) < C0∥u0∥L3 for a fixed C0 > 0.
Suppose that Tu0 <∞. Then by Theorem 8.1 we have the blow up

lim
T↗Tu0

∫ T

0
∥∇u(t)∥2

Ḣ
1
2
dt = ∞. (10.22)

By Theorem 8.1 and by (4.5), for 0 < t ≤ T < Tu0 we have

∥u(t)∥2
Ḣ

1
2
+ 2

∫ t

0
∥∇u(t′)∥2

Ḣ
1
2
dt′ = ∥u0∥2

Ḣ
1
2
+ 2

∫ t

0
⟨u(t′) · ∇u(t′), u(t′)⟩

Ḣ
1
2
dt′. (10.23)

By Sobolev’s Embedding Ḣ
1
2 (R3,R3) ↪→ L3(R3,R3) we obtain

|⟨u · ∇u, u⟩
Ḣ

1
2
| = |⟨u · ∇u,∇u⟩L2 | ≤ ∥u∥L3∥∇u∥2L3 ≤ C∥u∥L3∥∇u∥2

Ḣ
1
2
.

Then

∥u(t)∥2
Ḣ

1
2
+ 2

∫ t

0
∥∇u(t′)∥2

Ḣ
1
2
dt′ ≤ ∥u0∥2

Ḣ
1
2
+ C∥u∥L∞(R+,L3)

∫ t

0
∥∇u(t′)∥2

Ḣ
1
2
dt′

≤ ∥u0∥2
Ḣ

1
2
+ C0C∥u0∥L3

∫ t

0
∥∇u(t′)∥2

Ḣ
1
2
dt′.
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So, for C0C∥u0∥L3 < 1, we get

∥u(t)∥2
Ḣ

1
2
+

∫ t

0
∥∇u(t′)∥2

Ḣ
1
2
dt′ ≤ ∥u0∥2

Ḣ
1
2
,

which contradicts (10.22).

We will prove now the following.

Lemma 10.16. The solutions u ∈ C0([0, T ), Ld(Rd,Rd)) in Theorem 10.13 are in C∞((0, T )×
Rd,Rd).

Proof. A proof of this lemma is in [12, Proposition 15.1], but it uses Besov spaces so here
we modify the argument. We know the result already for d = 2, so we consider only d = 3.
We notice that et△u0 ∈ Kr(∞) for all r ≥ d and et△u0 ∈ C∞((0, T )× Rd,Rd). We already
know that, for S > 0 sufficiently small, we have u ∈ K2d(S), see the proof of Theorem
10.13. Then, using Lemma 10.10 we conclude that B(u, u) ∈ Kr(S) for any r ∈ [d,∞)
(notice 1

p + 1
q < 1

d + 1
r in (10.5), where p = q = 2d in our case). So u ∈ Kr(S) for all

r ∈ [d,∞). But then, applying again Lemma 10.10, we conclude that u ∈ Kr(S) for all
r ∈ [d,∞], and in particular u ∈ L∞([t0, S], L

r(Rd)) for any t0 ∈ (0, S) and any r ∈ [d,∞).

Let us fix an r ∈ (2d,∞) and let us prove by induction that u ∈ L∞([t0, S],W
k
2
,r(Rd)) for

all k ∈ N ∪ {0}. We have shown this for k = 0, and let us suppose by induction that it is

true for some k. Then we will show u ∈ L∞([t1, S],W
k+1
2

,r(Rd)) for any t0 < t1 < S. We
can write

u(t) = e(t−t0)△u(t0)−
∫ t

t0

e(t−s)△P∇ · (u⊗ u)ds. (10.24)

We know that e(t−t0)△u(t0) ∈ C∞([t1, S],W
k+1
2

,r(Rd)) for all k, so we focus on the integral.
We write for k ≥ 1

∥(−△)
1
4

∫ t

t0

e(t−s)△P∇ · (u⊗ u)ds∥
W

k
2 ,r ≲

∫ t

t0

∥(−△)−
1
2∇ · e(t−s)△(−△)

3
4 (u⊗ u)∥

W
k
2 ,rds

≤ Cd,r

∫ t

t0

(t− s)−
3
4 ∥e(t−s)△(−(t− s)△)

3
4 (u⊗ u)∥

W
k
2 ,rds

≤ C ′
d,r,S,k

∫ t

t0

(t− s)−
3
4 ∥u⊗ u∥

W
k
2 ,rds ≤ C ′′

d,r,S,k

∫ t

t0

(t− s)−
3
4 ∥u∥2

W
k
2 ,r
ds

= 4C ′′
d,r,S,k(t− t0)

1
4 ∥u∥2

L∞([t0,S],W
k
2 ,r(Rd))

,

where we exploited the Calderon Zygmund theory (for example, Theorem 3 at p. 96 in [18],
and the relation between the constants B and Ap in that statement where, from the proof,
Ap = Ap(B)). Next, for k = 0 we use Hölder’s inequality to bound

C ′
d,r,S,0

∫ t

t0

(t− s)−
3
4 ∥u⊗ u∥Lrds ≤ C ′

d,r,S,0

∫ t

t0

(t− s)−
3
4 ∥u∥2L2rds ≤ C ′′

d,r,S,0(t− t0)
1
4 ∥u∥2L∞([t0,S],L2r(Rd))
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while for k ≥ 1 we use the fact that W
k
2
,r(Rd) is an algebra to bound

C ′
d,r,S,k

∫ t

t0

(t− s)−
3
4 ∥u⊗ u∥

W
k
2 ,rds ≤ C ′′

d,r,S,k

∫ t

t0

(t− s)−
3
4 ∥u∥2

W
k
2 ,r
ds

= 4C ′′′
d,r,S,k(t− t0)

1
4 ∥u∥2

L∞([t0,S],W
k
2 ,r(Rd))

.

Now we use a general result of the theory of semigroups which guarantees that for f ∈
L1((0, T ), X), where X is a Banach space where et△ is a contraction semigroup, then

v(t) := −
∫ t

t0

e(t−s)△f(s)ds

satisfies ∂tv = △v + f(t) in D′((t0, T ), X), see [3, Proposition 4.1.6 (ii)]. In our case, since
u ∈ L∞([t0, S],W

k,r(Rd)) for all k and appropriate r <∞, and f = −P∇ · (u⊗ u), we have
v′ = △v + f(t) in D′((t0, T ),W

k,r), since et△ is a contraction semigroup in any space W k,r

for r <∞.
Furthermore, the Hille–Yosida–Phillips Theorem, see [3, Theorem 3.1.1], guarantees that
∂te

t△u(t0) = △et△u(t0) in D′((t0, T ),W
k,r) for all k and our r <∞.

Summing up, we obtain that

∂tu = △u− P∇ · (u⊗ u) in D′((0, S),W k,r(Rd)) for all k. (10.25)

Since the r.h.s. is in L∞((t0, S),W
k,r(Rd)) for all k, it follows that u ∈W 1,∞((t0, S),W

k,r(Rd))
for all k, which fed again in (10.25) yields u ∈ W 2,∞((t0, S),W

k,r(Rd)), by applying Leib-
nitz rule like in Brezis [2, Corollary 8.10]. By induction, proceeding iteratively we get
u ∈W l,∞((t0, S),W

k,r(Rd)) for all l and k, and so the statement.

11 Vorticity

We recall the following.

Lemma 11.1. Suppose that f ∈ S(R3). Then u ∈ S ′(R3) satisfies −△u = f if and only if

u = K ∗ f + h with K(x) :=
1

4π|x|
(11.1)

and h(x) a harmonic polynomial.

Proof. Notice that −△h = 0 requires |ξ|2ĥ = 0, that is, suppĥ = {0}. But suppĥ = {0}
implies ĥ =

∑
|α|≤k aα∂

α
ξ δ, with k the order of û and aα arbitrary constants, see [8, Theorem

2.3.4]. Then h is a degree k harmonic polynomial.
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Next, let us consider the tempered distribution given by v̂ = 1
|ξ|2 f̂ . Recall from Lemma

2.23, that

F(| · |−γ)(ξ) =
2

d−γ
2 Γ

(
d−γ
2

)
2

γ
2Γ
(γ
2 + 1

) |ξ|γ−d.

So, for γ = 2 and d = 3, using Γ(2) = 1 and Γ(1/2) =
√
π, we get F−1(|ξ|−2) =

√
π
2

1
|x| .

Recalling also the formula f̂ ∗ g = (2π)
3
2 f̂ ĝ, we get

v =
1

(2π)
3
2

√
π

2

1

|x|
∗ f =

1

4π

1

|x|
∗ f.

By linearity, u ∈ S ′(R3) satisfies −△u = f exactly if it is like in (11.1).

If we consider a field u ∈ S ′(R3,R3), then its vorticity is ω := ∇× u.

Lemma 11.2 (Biot–Savart Law). Let u ∈W 1,p(R3,R3) with p ∈ (1, 3) and with divu = 0.
Then

u = Tω for ω = ∇× u, (11.2)

where

Tω := − 1

4π

∫
R3

x− y

|x− y|3
× ω(y)dy. (11.3)

Proof. First of all, for divergent free vector–fields we have the identity −△u = ∇× ω.
Let us now assume ω ∈ C∞

c (R3,R3). Then we claim

1

|x|
∗ ∂jωk =

(
∂j

1

|x|

)
∗ ωk. (11.4)

Indeed, by applying the divergence theorem, we have

1

|x|
∗ ∂jωk = − lim

ϵ→0+

∫
|x−y|≥ϵ

ωk(y)∂yj
1

|x− y|
dy + lim

ϵ→0+

∫
|x−y|=ϵ

xj − yj
|x− y|2

ωk(y)dS

= −
∫
R3

ωk(y)∂yj
1

|x− y|
dy =

(
∂j

1

|x|

)
∗ ωk.

Still for ω ∈ C∞
c (R3,R3), from −△u = ∇× ω, from Lemma 11.1 and (11.4) we have

u = −→e iϵijk
1

4π

1

|x|
∗ ∂jωk + h = −→e iϵijk

1

4π

(
∂j

1

|x|

)
∗ ωk + h

= −−→e iϵijk
1

4π

xj
|x|3

∗ ωk + h = Tω + h,
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where the components of h are harmonic polynomials. From the Hardy-Littlewood-Sobolev
inequality, we have ∥Tω∥Lq(R3) ≤ c∥ω∥Lp(R3) for 1

q = 1
p − 1

3 , if 1 < p < 3. Since also

u ∈ Lq(R3,R3) it follows that also h ∈ Lq(R3,R3) which, given that the coordinates of h
are polynomials, implies u = K ∗ (∇× ω) = Tω in the case ω ∈ C∞

c (R3,R3).
Let us consider a general u like in the statement, with ω its vorticity.
Let C∞

c (R3,R3) ∋ ω̃n
n→∞−−−→ ω in Lp(R3,R3). Then un = T ω̃n −→ ũ ∈ Lq(R3,R3),

with ũ = Tω. We need to show that u = ũ.
Notice that

∇ · un = ∇ · Tωn = ∇ ·
[
(−△)−1(∇× ω̃n)

]
= (−△)−1 [∇ · (∇× ω̃n)] = (−△)−10 = 0.

This implies, in particular, since un
n→∞−−−→ ũ, we have ∇ · ũ = 0.

Next notice that P, which is a Calderon–Zygmund operator, is a bounded operator inside
Lp(R3,R3). Thus, for

ω̃n = ω̃(1)
n + ω̃(2)

n , with ω̃(1)
n := Pω̃n and ω̃(2)

n := (1− P)ω̃n,

we have ω̃
(1)
n

n→∞−−−→ ω and ω̃
(2)
n

n→∞−−−→ 0 in Lp(R3,R3).

From un = K ∗ (∇× ω̃n) = K ∗ (∇× ω̃
(1)
n ), we have

−△un = ∇× ω̃(1)
n ,

and for ωn := ∇× un and un = Pun = −△−1∇× ωn, we also have

−△un = ∇× ωn.

Then ω̃
(1)
n = ωn by

ω̃(1)
n = Pω̃(1)

n = −△−1∇× (∇× ω̃(1)
n ) = −△−1∇× (∇× ωn) = Pωn = ωn. (11.5)

Hence we have proved that ∇× un = ω̃
(1)
n .

Now we show ∇ × ũ = ω. Indeed this follows from un
n→∞−−−→ ũ in Lq(R3,R3) and from

∇× un = ω̃
(1)
n

n→∞−−−→ ω. Hence we conclude that ∇× u = ∇× ũ. Using again formula (2.9)
and proceeding like in (11.5), we conclude u = Pu = Pũ = ũ.

Notice that for any u ∈ S ′(R3,R3) we have ∇ · ω = 0. Indeed

∇ · (∇× u) = (ϵijk∂i∂j)uk = 0uk = 0

by ∂i∂j = ∂j∂i and by ϵijk = −ϵjik.
As we know, a solution of NS formally satisfies

ut −△u+ u · ∇u = −∇p .
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Notice that if u is regular,

(u · ∇)u = 2−1∇|u|2 − u× ω, (11.6)

since indeed (u · ∇)u = −→e iuj∂jui , 2
−1∇|u|2 = −→e iuj∂iuj and

u× (∇× u) = −→e iεijkuj(∇× u)k = −→e iεijkεi′j′kuj∂i′uj′ =
−→e i(δii′δjj′ − δij′δji′)uj∂i′uj′

= −→e iuj∂iuj −−→e iuj∂jui.

Summing up, we obtain (11.6).
From (11.6) we obtain

∇× ((u · ∇)u) = −∇× (u× ω) = (u · ∇)ω − (ω · ∇)u, (11.7)

from div u = div ω = 0 and

∇× (u× ω) = −→e iεijk∂j(u× ω)k = −→e iεijkεi′j′k(ωj′∂jui′ + ui′∂jωj′) =
−→e i(δii′δjj′ − δij′δji′)(ωj′∂jui′ + ui′∂jωj′)

= −→e i(ωj∂jui + ui∂jωj)−−→e i(ωi∂juj + uj∂jωi) =
−→e iωj∂jui −−→e iuj∂jωi.

Then, applying ∇× to the NS, we formally obtain

ωt −△ω + (u · ∇)ω = (ω · ∇)u. (11.8)

If we apply ⟨·, ϕ⟩L2
tx
to (11.8) with ϕ(t, x) a function in C∞

c ((0,∞)×R3,R3), then, exploiting

∇x · u = ∇x · ω = 0, (11.8) implies∫ ∞

0
(⟨ω, ∂tϕ⟩+ ⟨ω,△ϕ⟩+ ⟨ω, u · ∇ϕ⟩ − ⟨u, ω · ∇ϕ⟩) dt′ = 0 for all ϕ ∈ C∞

c ((0,∞)× R3,R3),

(11.9)

which is the weak form of the vorticity equation. The above discussion is purely heuristic,
but we have the following.

Lemma 11.3. Let u be Leray Hopf solution of the NS, in the sense of Definition 6.1, with
u ∈ L∞(R+, L

2) and ∇u ∈ L2(R+, L
2) and consider the vorticity ω. Then, the pair (u, ω)

satisfies (11.9).

Proof. For ϕ ∈ C∞
c ((0,∞) × R3,R3) we have ∇× ϕ ∈ C∞

cσ((0,∞) × R3,R3). So, by (6.4),
we have ∫

R+

(−⟨u,△∇× ϕ⟩ − ⟨u,∇× ∂tϕ⟩+ ⟨(u · ∇)u,∇× ϕ)⟩) dt′ = 0.

Integrating by parts, we have ⟨u,△∇×ϕ⟩ = −⟨ω,△ϕ⟩ and ⟨u,∇×∂tϕ⟩ = −⟨ω, ∂tϕ⟩. Notice
that the fact u(t) ∈ C∞(R3,R3) for a.a. t implies that formulas (11.6)–(11.6) are for a.a. t.
This yields (11.9).
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Lemma 11.4 (Local Biot–Savart Law). Let B be a bounded open subset of R3, consider a
divergence free vector–field u ∈ Lr(B,R3) with ∇u ∈ Lp(B), where r ∈ [1,∞] and 1 < p <
∞. Let Ω be an open subset of B with Ω ⊂⊂ B and with boundary . Then

u(x) = T (χΩω) + h(x) for all x ∈ Ω, (11.10)

where h is a harmonic vector–field in Ω.

Proof. We can start by defining h by formula (11.10). We return to h later. Let us consider
an open ball B1 in Ω, and another ball B1 ⊂⊂ B2 ⊂ B2 ⊂⊂ Ω. Then let φ ∈ C∞

c (Ω, [0, 1]),
with φ|B2 = χB2 . Then we write

ũ := T∇× (φu) = T (φω) + T (∇φ× u)

= T (χΩω) + h̃ where h̃ = T ((φ− χΩ)ω) + T (∇φ× u).

Notice that h̃ is harmonic inside B1. Indeed, inside B2

△h̃ = − 1

4π
△
∫
B\B2

x− y

|x− y|3
× ω(y)(φ(y)− χΩ(y))dy −

1

4π
△
∫
B\B2

x− y

|x− y|3
× (∇φ(y)× u(y))dy = 0

by △x
x−y

|x−y|3 = 0 (this follows from ∆r−1 = (∂2r + 2
r )r

−1 = 0 for r ̸= 0, and then applying

∇ to this equation), for x ̸= y and by differentiation with respect to a parameter in an
integral. In B2 we have

∇× (u− ũ) = ∇× (φu− T∇× (φu)) = 0, (11.11)

where the 1st equality follows from u = φu in B2 and from the definition of ũ, and where
the 2nd equality follows from

P(φu) = T∇× P(φu) = T∇× (φu) (11.12)

where for the 1st equality we apply the Biot Savart Law, Lemma 11.2, to P(φu), as we
show now. Indeed we claim φu ∈ W 1,p(R3,R3). Then, for p ∈ (1, 3) the Biot Savart Law
Lemma 11.2 applies to P(φu) ∈ W 1,p(R3,R3). If p ≥ 3, notice that φu ∈ W 1,p(R3,R3)
is equivalent to φu ∈ W 1,p(B,R3). The latter implies φu ∈ W 1,a(B,R3) for any a ≤ p,
which again is equivalent to φu ∈ W 1,a(R3,R3) for any a ≤ p, and in particular implies
P(φu) ∈W 1,a(R3,R3) for any 1 < a ≤ p.

Now we need to prove the claim φu ∈ W 1,p(R3,R3). By u ∈ Lr(B,R3) with ∇u ∈
Lp(B), if the boundary ∂B is smooth, by Poincaré–Wirtinger inequality we have

∥u− |B|−1

∫
B
u∥Lp(B) ≤ CB∥∇u∥Lp(B).

If the boundary ∂B is not smooth, we can simply replace B by another open domain B′

s.t. Ω ⊂⊂ B′ ⊂ B′ ⊂⊂ B with ∂B′ is smooth. With this we have completed the proof of
(11.12) and of (11.11).
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From (11.11) and from the usual identity

△(u− ũ) = ∇(∇ · (u− ũ))−∇× (∇× (u− ũ))

we obtain △(u− ũ) = 0 in B2. So u− ũ = h1 with h1 harmonic in B2. So u = ũ+ h1 Thus
we conclude that u = ũ + h1 = T (χΩω) + h with h = h̃ + h1 harmonic vector–field in B1.
This implies the statement of the lemma.

Recall that, for Ω an open subset of Rd, the space Ck,α(Ω) with α ∈ (0, 1) is the subspace
of Ck(Ω) ∩W k,∞(Ω) defined by the functions f satisfying the additional conditions

sup
|µ|=k

sup
x ̸=y in Ω

|∂µf(x)− ∂µf(y)|
|x− y|α

<∞.

Let BR a ball of radius R and a fixed center(which we can take to be 0) in R3.

Lemma 11.5. Let u ∈ L∞((0, T ), L2(BR)). Then, for any R′ < R we have:

1. for β ∈ [2,∞] and k ∈ {0, 1, ...}, ω ∈ Lβ((0, T ),W k,∞(BR)) ⇒ u ∈ Lβ((0, T ),W k,∞(BR′));

2. for α ∈ (0, 1) and k ∈ {0, 1, 2, ...}, ω ∈ Lβ((0, T ), Ck,α(BR)) ⇒ u ∈ Lβ((0, T ), Ck+1,α′
(BR′))

for any α′ ∈ (0, α).

Proof. The proof of the first statement is elementary. We consider only case k = 0. We fix
R′′ ∈ (R′, R). Then, by Lemma 11.4 we have

u(x) = − 1

4π

∫
BR′′

x− y

|x− y|3
× ω(y)dy + h(x) for all x ∈ BR′′ ,

Since h is harmonic in BR′′ , it follows that h ∈ Lβ((0, T ),Wn,∞(BR′′)). Next, for x ∈ BR

we have∣∣∣∣∣
∫
BR′′

x− y

|x− y|3
× ω(y)dy

∣∣∣∣∣ ≤
∫
BR′′

1

|x− y|2
dy∥ω∥L∞(BR) ≤

∫
B2R′′ (x)

1

|x− y|2
dy∥ω∥L∞(BR) = c3R

′′∥ω∥L∞(BR).

The 2nd claim in the statement of Lemma 11.5 is more delicate. It is not restrictive to
consider only k = 0. Using the above discussion, we do not need to worry about h. We
consider φ ∈ C∞

c (BR′′ , [0, 1]), with φ|BR′ = 1 in a slightly larger ball than R′. Then is

u(x) =

∫
BR′′

x− y

|x− y|3
× ω(y)dy =

∫
BR′′

x− y

|x− y|3
× ω(y)φ(y)dy +

∫
BR′′

x− y

|x− y|3
× ω(y)(1− φ(y))dy

and it is elementary to see, that the 2nd integral on the r.h.s. is harmonic in BR′ . We look
then at the 1st integral on the r.h.s. and we absorb φ in ω, simply assuming ω ∈ C0,α

c (BR)
and let us consider

v(x) :=

∫
R3

x− y

|x− y|3
× ω(y)dy.

We have the following lemma.
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Lemma 11.6. Let K be smooth in Rd\{0}, homogeneous of degree −(d− 1). Then

⟨∂jK,ψ⟩ = P.V.

∫
Rd

∂jK(y)ψ(y)dy − cjψ(0) for all ψ ∈ C∞
c (Rd), (11.13)

where cj =
∫
|x|=1K(x)xjdS.

Proof. We have

− ⟨K, ∂jψ⟩ = − lim
ϵ→0+

∫
|y|≥ϵ

K(y)∂jψ(y)dy = lim
ϵ→0+

∫
|y|≥ϵ

∂jK(y)ψ(y)dy + lim
ϵ→0+

∫
|y|=ϵ

K(y)ψ(y)
yj
|y|
dS

= P.V.

∫
Rd

∂jK(y)ψ(y)dy + ψ(0)

∫
|y|=1

K(y)yjdS.

Exercise 11.7. For K like in Lemma 11.6, that is smooth in Rd\{0} and homogeneous of
degree −(d− 1), we have

∫
|x|=1 ∂jK(x)dS = 0 for any j. Show this in two ways. First way,

by using the information that P.V.∂jK ∈ S ′(Rd). Second way, by a direct computation of
the integral

∫
|x|=1 ∂jK(x)dS.

ANSWER. Let us look only at the 2nd approach. It is enough to consider j = d. Let
us consider cylindrical coordinates

xd = xd

(x1, ..., xd−1) = rω with r > 0 and ω ∈ Sd−2

Then, for xd = ρ cosϕ and r = ρ sinϕ,∫
|x|=1

∂dK(x)dS =

∫
Sd−2

dS(ω)

∫
x2
d+r2=1
r>0

rd−2∂dKdℓ =

∫
Sd−2

dS(ω)

∫ π

0
sind−2(ϕ)(cosϕ∂ρK − sinϕ∂ϕK)dϕ

= −
∫
Sd−2

dS(ω)

∫ π

0
((d− 1) sind−2(ϕ) cosϕK + sind−1(ϕ)∂ϕK)dϕ

= −
∫
Sd−2

dS(ω) sind−1(ϕ)K]ϕ=π
ϕ=0 = 0 by sin(0) = sin(π) = 0.

Here we used ∂xd
K = cosϕ∂ρK − sinϕ

ρ ∂ϕK.

Returning to the proof of Lemma 11.5, we can assume initially that ω ∈ C∞
c (BR,R3).
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Then, for a test field ψ ∈ C∞
c (R3,R3),

⟨∂jv, ψ⟩ = −⟨v, ∂jψ⟩ = −
〈∫

R3

x− y

|x− y|3
× ω(y)dy, ∂jψ

〉
= −

∫
R3×R3

εiabωb(y)
xa − ya
|x− y|3

∂xjψi(x)dxdy

= − lim
ϵ→0+

∫
|x−y|≥ϵ

εiabωb(y)
xa − ya
|x− y|3

∂xjψi(x)dxdy

= lim
ϵ→0+

∫
|x−y|≥ϵ

εiabωb(y)∂xj

xa − ya
|x− y|3

ψi(x)dxdy + lim
ϵ→0+

∫
R3

dyεiabωb(y)

∫
|x−y|=ϵ

xa − ya
|x− y|3

xj − yj
|x− y|

ψi(x)dS(x)

= lim
ϵ→0+

∫
|x−y|≥ϵ

εiabωb(y)∂yj
ya − xa
|x− y|3

ψi(x)dxdy +

∫
|x−y|=1

(xa − ya)(xj − yj)

|x− y|4
dS(x)

∫
R3

dyεiabωb(y)ψi(y)

= − lim
ϵ→0+

∫
|x−y|≥ϵ

εiab∂yjωb(y)
ya − xa
|x− y|3

ψi(x)dxdy

=

〈∫
R3

x− y

|x− y|3
× ∂jω(y)dy, ψ

〉
.

So we conclude

∂jv(x) =

∫
R3

x− y

|x− y|3
× ∂jω(y)dy.

On the other hand, by Lemma 11.6

∇v(x) = P.V.

∫
R3

∇x
x− y

|x− y|3
× ω(y)dy + Lω(x) = P.V.

∫
R3

∇y
y − x

|y − x|3
× ω(y)dy + Lω(x)

with L some fixed linear operator in R3. Obviously ∥Lω∥C0,α(BR′ ) ≤ ∥L∥ ∥ω∥C0,α(BR), so
the key term we need to bound is the P.V.
Let us define Hik(y − x) by

−→e iHik(y − x)ωk(y) =
−→e iεijk

yj − xj
|x− y|3

ωk(y).

Then

P.V.

∫
R3

∂ya
y − x

|y − x|3
× ω(y)dy) = −→e iP.V.

∫
R3

∂yaHik(y − x)ωk(y)dy.

An elementary computation shows that

K
(a)
ik (x) := ∂xaHik(x) = εiak

1

|x|3
− 3εijk

xjxa
|x|5

.

These functions are homogeneous degree −3 and satisfy∫
|x|=1

K
(a)
ik (x)dS = εiak

∫
|x|=1

1

|x|3
dS − 3εijk

∫
|x|=1

xjxa
|x|5

dS = 4πεiak − 3εiak

∫
|x|=1

x23dS

= 4πεiak − 6πεiak

∫ π

0
cos2(ϕ) sin(ϕ)dϕ = 4πεiak − 6πεiak

cos3(ϕ)

3
]π0 = −4πεiak − 6πεiak

(
−2

3

)
= 0.
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We claim now that for any α′ ∈ (0, α) there is a constant Cα′ s.t. for all x, x′ ∈ BR′∣∣∣∣P.V. ∫
R3

K
(a)
ik (y)ω(x− y)dy − P.V.

∫
R3

K
(a)
ik (y)ω(x′ − y)dy

∣∣∣∣ ≤ Cα′∥ω∥
C0,α

c (BR)
|x− x′|α′

.

(11.14)

This will prove the second claim in the statement of Lemma 11.5 for ω ∈ C∞
c (BR), but in

fact by density this will extend to all ω ∈ C0,α
c (BR).

The l.h.s. of (11.14) can be written as∣∣∣∣P.V. ∫
R3

K
(a)
ik (y)

(
ω(x′ − y)− ω(x′)− ω(x− y) + ω(x)

)
dy

∣∣∣∣
by the cancelation

∫
|x|=1K

(a)
ik (x)dS = 0. It is elementary that∣∣ω(x′ − y)− ω(x′)− ω(x− y) + ω(x)

∣∣ ≤ 2∥ω∥
C0,α

c (BR)
min{|y|α, |x′ − x|α}.

Then∣∣∣∣P.V. ∫
R3

K
(a)
ik (y)ω(x′ − y)dy − P.V.

∫
R3

K
(a)
ik (y)ω(x− y)dy

∣∣∣∣
≲ ∥ω∥

C0,α
c (BR)

∫
B2R

1

|y|3
min{|y|α, |x′ − x|α}dy

≲ ∥ω∥
C0,α

c (BR)

(∫ |x′−x|

0
|y|α−1d|y|+ |x′ − x|α

∫ 2R

|x′−x|
|y|−1d|y|

)
≈ ∥ω∥

C0,α
c (BR)

|x′ − x|α
∣∣log |x′ − x|

∣∣ .
The following result will be useful in the sequel.

Lemma 11.8. Given a field u ∈ Lr(R3,R3) for r ∈ (2,∞) there is a unique solution
p ∈ L

r
2 (R3) of the equation

−△p = ∂i∂j(uiuj) (11.15)

which is given by

p =
∂i√
−△

∂j√
−△

(uiuj) = RiRj(uiuj). (11.16)

It satisfies

∥p∥
L

r
2
≤ Cr

∑
i,j

∥uiuj∥L r
2
≤ Cr∥u∥2Lr . (11.17)

Proof. The discussion is similar to that in Lemma 11.2. The estimates follow by the esti-
mates on Rietz transformations.
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Proposition 11.9. Consider a weak solution u of NS in d = 3 with u ∈ L∞(R+, L
2) ∩

L2(R+, Ḣ
1) and define the pressure p ∈ L1(R+, L

3) by the equation (11.15). Then u is a
distributional solution in R+ × R3 of the equation

ut + u · ∇u−△u = −∇p (11.18)

Proof. Recall that u satisfies equation (6.4), and thus, in particular,∫
R+

(⟨u,△Ψ⟩+ ⟨u, ∂tΨ⟩ − ⟨div(u⊗ u),Ψ⟩) dt′ = 0 for all Ψ ∈ C∞
cσ(R+ × R3,R3).

Exploiting Remark 2.3, which states that C∞
cσ(R3,R3) is dense in V , we claim that

for any T > 0 the space C∞
cσ((0, T )× R3,R3) is dense in C1

c ((0, T ), V ). (11.19)

To prove (11.19), consider Φ ∈ C1
c ((0, T ), V ) and its derivative Φ̇ ∈ C0

c ((0, T ), V ). For
any given ϵ > 0, let 0 < t0 < t1 < ... < tM < T , with Φ̇ = 0 outside [t0, tM ], and
∥Φ̇(t) − Φ̇(s)∥H1 < ϵ for t, s ∈ [tj−1, tj ], for any j = 1, ...,M . For a δ > 0 to be fixed

later, let ˜̇Ψ(tj) ∈ C∞
cσ(R3,R3) s.t. ∥ ˜̇Ψ(tj) − Φ̇(tj)∥H1 < δ for all j = 1, ...,M and define˜̇Ψ(t) =

tj−t
tj−tj−1

˜̇Ψ(tj−1) +
t−tj−1

tj−tj−1

˜̇Ψ(tj) for t ∈ [tj−1, tj ] and Ψ̇ = 0 outside [t0, tM ]. Then

∥ ˜̇Ψ(t)− Φ̇(t)∥H1 < δ for all t ∈ [0, T ]. We also have∥∥∥∥∫ T

0

˜̇Ψ(t)dt

∥∥∥∥
H1

≤ Tδ

For θ ∈ C0
c ((0, T ), [0, 1]) a cutoff with

∫ 1
0 θ(t)dt = 1, let

̂̇Ψ(t) = ˜̇Ψ(t)− θ(t)

∫ T

0

˜̇Ψ(t)dt

Then

∥ ̂̇Ψ(t)− Φ̇(t)∥H1 < δ(T + 1)

and for Ψ̂(t) :=
∫ t
0
̂̇Ψ(t′)dt′ ∈ C1

c ((0, T ), V ) we have Ψ̂(t) ∈ C∞
cσ(R3,R3) for any t and

∥Ψ̂(t)− Φ(t)∥H1 < δ(T + 1)T.

Next, taking a cutoff ρ ∈ C∞
c (R, [0, 1]) with

∫
R ρ(t)dt = 1, we can assume that Ψ(t) := ρh ∗t

Ψ̂(t) is in C∞
c ((0, T ), V ) and that

∥Ψ̂(t)−Ψ(t)∥C1
c ([0,T ],V ) < δ.

Then ∥Φ(t) − Ψ(t)∥C1
c ([0,T ],V ) ≤ δ(T + 1)2 + δ < ϵ, if we pick δ > 0 small enough. This

completes the proof of (11.19), since clearly Ψ ∈ C∞
cσ((0, T )× R3,R3).
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By (11.19), we claim that∫
R+

(−⟨∇u,∇Φ⟩+ ⟨u, ∂tΦ⟩ − ⟨Pdiv(u⊗ u),Φ⟩) dt′ = 0 for all Φ ∈ C1
c (R+, V ), (11.20)

which, in particular, implies∫
R+

(⟨u,△Φ⟩+ ⟨u, ∂tΦ⟩ − ⟨Pdiv(u⊗ u),Φ⟩) dt′ = 0 for all Φ ∈ C∞
c ((0, T )× R3,R3).

(11.21)
To get (11.20) consider a sequence C∞

cσ((0, T )× R3,R3) ∋ Φn
n→∞−−−→ Φ in C1

c ([0, T ], V ), for
T appropriately large s.t. suppΦ ⊂ (0, T )× R3. Then, obviously∫ T

0
(−⟨∇u,∇Φn⟩+ ⟨u, ∂tΦn⟩) dt′

n→∞−−−→
∫ T

0
(−⟨∇u,∇Φ⟩+ ⟨u, ∂tΦ⟩) dt′

and, from Ḣ3/4
(
R3
)
↪→ L4

(
R3
)
by 1

4 = 1
2 − 3/4

3 ,∫ T

0
|⟨Pdiv(u⊗ u),Φ− Φn⟩| ≤ ∥u⊗ u∥L1((0,T ),L2)∥Φn − Φ∥C0

c ([0,T ],V ) ≤ ∥u∥2L2((0,T ),L4)∥Φn − Φ∥C0
c ([0,T ],V )

≤ ∥∇u∥
3
2

L2((0,T ),L2)
∥u∥

1
2

L2((0,T ),L2)
∥Φn − Φ∥C0

c ([0,T ],V )
n→∞−−−→ 0.

So, by taking the limit with n↗ ∞, we obtain (11.20).
Now, looking at (11.21), we can write Pdiv(u⊗ u) = div(u⊗ u)− (1− P)div(u⊗ u). So, by
a direct computation which uses Pv = v +−→e iRiRjvj , we have

⟨Pdiv(u⊗ u),Φ⟩ = ⟨div(u⊗ u),Φ⟩+ ⟨RiRj∂k(u
kuj),Φi⟩ = ⟨div(u⊗ u),Φ⟩+ ⟨∂iRjRk(u

kuj),Φi⟩
= div(u⊗ u),Φ⟩+ ⟨∇p,Φ⟩.

So, plugging in the previous equation, we get the desired result:∫
R+

(⟨u,△Φ⟩+ ⟨u, ∂tΦ⟩ − ⟨div(u⊗ u),Φ⟩ − ⟨∇p,Φ⟩) dt′ = 0 for all Φ ∈ C∞
c (R+ × R3,R3).

Remark 11.10. Notice that the related remarks at the bottom of p. 116 [14] are based on an
incorrect Helmholz–Weyl decomposition of vector fields in S(Rd,Rd). Notice in particular
that the solution of exercise 5.2 in p. 429 is wrong.

12 Local Serrin regularity

In this section we will prove the following result.
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Theorem 12.1. Consider u, a Leray–Hopf solution of NS in d = 3 with u ∈ L∞(R+, L
2)∩

L2(R+, Ḣ
1) and suppose that, for an open subspace U ⊆ R3, we have

u ∈ Lr((0, T ), Ls(U)) where
2

r
+

3

s
= 1, with r ≥ 2 and s ≥ 3, (12.1)

excluding case (r, s) = (0, 3). Then for any open Ω ⊂ Ω ⊂⊂ U and any t0 ∈ (0, T ]
u ∈ L∞((t0, T ), H

k(Ω)) for any k = 0, 1, ... and u ∈ C0,γ
t ([t0, T ], C

0
x(Ω)) for any γ ∈ (0, 1/2).

The case (r, s) = (0, 3) is also true, but is not discussed here.
Theorem 12.1 will be obtained as a consequence of Theorem 12.6, see below, which

requires a definition.

Definition 12.2. We say that u is a local weak solution of NS in (a, b)× U if

1. u ∈ L∞((a, b), L2(U)) and ∇u ∈ L2((a, b), L2(U)) and

2. u satisfies∫ b

a
(⟨u,△Ψ⟩+ ⟨u, ∂tΨ⟩ − ⟨div(u⊗ u),Ψ⟩) dt′ = 0 for all Ψ ∈ C∞

cσ((a, b)× U,R3).

Notice that weak solutions in [0,∞)×R3 are local weak solutions in (a, b)×U for any
a ≥ 0. The viceversa is not true.

Example 12.3 (Serrin’s example). Notice that u(t, x) = α(t)∇ψ(x), with ψ : U → R har-
monic and α ∈ L1(R+) ∩ L∞(R+) is a local weak solution of NS. Obviously ⟨α∇ψ,△Ψ⟩ =
⟨α∇△ψ,Ψ⟩ = 0. Also

⟨div(u⊗ u),Ψ⟩ = α2⟨∂jψ∂j∂kψ,Ψk⟩ = 2−1α2
∑
j

〈
∂k(∂jψ)

2,Ψk

〉
= −α2

〈
|∇ψ|2,∇ ·Ψ

〉
= 0.

Finally, by ∇ ·Ψ = 0,

⟨u, ∂tΨ⟩ = α⟨∇ψ, ∂tΨ⟩ = −α⟨∇ψ, ∂t∇ ·Ψ⟩ = 0.

Remark 12.4. In view of Serrin’s example, for Theorem 12.1 it is crucial equation

ut + u · ∇u−△u = −∇p. (11.18)

Notice on the other hand that, since p = RiRj(uiuj) and the Riesz Transforms are non
local operators, the regularity in x of u in U × (a, b) does not lead in an obvious way to
regularity of p in U × (a, b).

Remark 12.5. Since equation (11.18) contains a non–local term like the pressure p, while
the results of this section involve local properties of u, it is natural that in the literature
the proofs are based on the equation for the vorticity

ωt −△ω + (u · ∇)ω = (ω · ∇)u. (11.8)

Indeed (11.8) has the advantage, over (11.18), of containing only local terms.
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In this section we will use pairs (q′, q) of indexes, where q′ is not the dual index of q.
The main technical result of this section is the following.

Theorem 12.6. Consider a local weak solution u in a parabolic cylinder QR(t0, x0). Then,
if

u ∈ Lq′Lq(QR(t0, x0)) where
2

q′
+

3

q
≤ 1, for q′ ≥ 2 and q ≥ 3, (12.2)

u is smooth in the x variable in QR′(t0, x0) for any R′ ∈ (0, R).

We will not prove the case (q′, q) = (∞, 3), which is more complicated and was proved
in [5] some time after the other cases. Notice that, in view of Example 12.3, we cannot
get any regularity in t. On the other hand, we will see later how to recover the Hölder
regularity for the weak solutions of the NS in Theorem 12.1.

Theorem 12.6 is, in the case (q′, q) ̸= (∞, 3), a consequence of the following theorem.
Indeed given any point (a, s) ∈ QR(t0, x0) we have for Qρ(s, a) ⊂ QR(t0, x0)

∥u∥Lq′Lq(Qρ(s,a))
≤ ∥u∥Lq′Lq((s−ρ2,s)×BR(t0))

ρ→0−−−→ 0

for q′ <∞ when 2
q′ +

3
q = 1, while if q′ = ∞ and q > 3, we can use

∥u∥L∞L3(Qρ(s,a)) ≤ ∥u∥L∞Lq(Qρ(s,a))|B(a, ρ)|
q−3
3q = (4π/3)

q−3
3q ∥u∥L∞Lq(Qρ(s,a))ρ

q−3
q

ρ→0−−−→ 0.

Theorem 12.7. There exists an ϵq′q > 0 such that if u is a local weak solution in a parabolic
cylinder QR(t0, x0) s.t. u satisfies (12.2), with

∥u∥Lq′Lq(QR(t0,x0))
< ϵq′q, (12.3)

then u is in L∞
t H

k
x(QR′(t0, x0)) for any R′ ∈ (0, R) and k ∈ N.

Considering that the condition of u being smooth in Theorem 12.6 is a local condition,
it is natural that, in the case (q′, q) ̸= (∞, 3), around each point of the cylinder in Theorem
12.6, we can consider a sufficiently small cylinder where (12.3) is satisfied, etc.

We will prove Theorem 12.7 also in the case (q′, q) = (∞, 3). The proof will exploit the
vorticity Propositions 5.1–5.5.

The proof of Theorem 12.7 is divided in two parts. The first is the following.

Proposition 12.8. Consider a local weak solution u in a parabolic cylinder QR(t0, x0)
Then, if

u ∈ Lq′Lq(QR(t0, x0)) where
2

q′
+

3

q
< 1, (12.4)

u is smooth in the x variable in QR′(t0, x0) for any R′ ∈ (0, R).
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Proof. It is enough to prove that u is smooth in the x variable in QR/2(t0, x0). To proceed
we observe that an analogue of Lemma 11.3 shows that the pair (u, ω) satisfies the following
analogue of (11.9):∫ ∞

0
(⟨ω, ∂tΦ⟩+ ⟨ω,△Φ⟩+ ⟨ω, u · ∇Φ⟩ − ⟨u, ω · ∇Φ⟩) dt′ = 0 for all Φ ∈ C∞

c (QR(t0, x0),R3).

(12.5)

We defineW = ϕω with a cutoff ϕ ∈ C∞
c (R4, [0, 1]) with suppϕ∩(QR(t0, x0) ⊆ QρlR(t0, x0),

with ϕ = 1 in QρiR(t0, x0), where ρi and ρl will be chosen later, they depend on the pair
(q′, q) and satisfy 1/2 < ρi < ρl < 1. Then, in a weak sense, the weak formulation of (12.5)
implies a weak form of

Wt −△W = (W · ∇)u− ϕ(u · ∇)ω + (ϕt −△ϕ)ω − 2∇ϕ · ∇ω.

Writing −2∇ϕ·∇ωi = −2∂j(ωi∂jϕ)+2ωi△ϕ, the above equation can be conveniently written
as

∂tWi −△Wi = ∂j(Wjui −Wiuj)− 2∂j(ωi∂jϕ) (12.6)

+ (ϕt +△ϕ)ωi − ∂jϕ(ωjui − ωiuj)). (12.7)

The proof of Proposition 12.8 is divided in two parts. In the first, we will prove that
ω ∈ L∞L∞(Q3R/4(t0, x0)). Let us assume this and see the conclusion of Proposition 12.8.

The rather standard second part of the proof of Proposition 12.8, starts by noticing
that Lemma 11.5 implies, for k = 0, u ∈ L∞

t W
k,∞
x (QR′

k
(t0, x0)) for any R

′
k ∈ (R/2, 3R/4).

Having u, ω ∈ L∞
t W

k,∞
x (QR′

k
(t0, x0)) we can fix an arbitrary R′′

k ∈ (R/2, R′
k). Then let us

consider a cutoff ϕ ∈ C∞
c (R4, [0, 1]) with suppϕ∩Q3R/4(t0, x0) ⊆ QR′

k
(t0, x0) and with ϕ = 1

in QR′′
k
(t0, x0). For W = ϕω we have the above equation. Applying Propositions 5.4–5.5

in QR′
k
(t0, x0) we obtain W ∈ L∞

t C
k,α
x (QR′′

k
(t0, x0)), that is ω ∈ L∞

t C
k,α
x (QR′′

k
(t0, x0)) from

ϕ = 1 in QR′′
k
(t0, x0), for any α ∈ (0, 1). Then Lemma 11.5 implies (in fact, more regular-

ity than) u ∈ L∞
t C

k,α
x (QR′′′

k
(t0, x0)) for any R′′′

k ∈ (R/2, R′′
k) and for any α ∈ (0, 1). Now

we fix R
(4)
k ∈ (R/2, R′′′

k ) and a cutoff ϕ ∈ C∞
c (R4, [0, 1]) with suppϕ ∩ Q3R/4(t0, x0) ⊆

QR′′′
k
(t0, x0) with ϕ = 1 in Q

R
(4)
k

(t0, x0). For W = ϕω we have the above equation.

Applying Propositions 5.4–5.5 in QR′′′
k
(t0, x0) we obtain ∇k+1W ∈ L∞

t L
∞
x (Q

R
(4)
k

(t0, x0))

combined with W ∈ L∞
t C

k,α
t (QR(4)(t0, x0)). Thus ∇k+1ω ∈ L∞

t L
∞
x (Q

R
(4)
k

(t0, x0)) and

ω ∈ L∞
t C

k,α
x (Q

R
(4)
k

(t0, x0)). For R′
k+1 = R

(4)
k , we can repeat the argument with k re-

placed by k + 1. By induction there is a decreasing sequence {Rn} with Rn > R/2 with
u ∈ L∞

t C
n(QRn

(t0, x0)) for any n ∈ N.
We now start the proof of ω ∈ L∞L∞(Q3R/4(t0, x0)). We start by assuming ω ∈

Lm′
Lm(QR(t0, x0)) for some (m′,m). This is certainly true for (m′,m) = (2, 2). Obviously,
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we assume (m′,m) ̸= (∞,∞), since otherwise there is nothing to prove. As we did above,
we considerW = ϕω with a cutoff ϕ ∈ C∞

c (R4, [0, 1]) with suppϕ∩QR(t0, x0) ⊆ QρlR(t0, x0)
and with ϕ = 1 in QρiR(t0, x0). Notice that W ∈ Lm′

Lm((t0 −R2, t0)× R3).
Using Propositions 5.1–5.2, we have

∥W∥Lr′Lr ≲ ∥Wu∥La′La + ∥ω∇ϕ∥Lm′Lm + ∥(ϕt +△ϕ)ω∥Ll′Ll + ∥ωu∇ϕ∥Ll′Ll (12.8)

where{
1 ≤ a ≤ r ≤ ∞, 1 ≤ a′ ≤ r′ ≤ ∞

3
a + 2

a′ <
3
r +

2
r′ + 1

,

{
1 ≤ m ≤ r ≤ ∞, 1 ≤ m′ ≤ r′ ≤ ∞

3
m + 2

m′ <
3
r +

2
r′ + 1{

1 ≤ l ≤ r ≤ ∞, 1 ≤ l′ ≤ r′ ≤ ∞
3
l +

2
l′ <

3
r +

2
r′ + 2

. (12.9)

Now we have to choose the indexes. Recall that u ∈ Lq′Lq(QρlR(t0, x0)), see (12.2). We
consider

1

l
=

1

a
=

1

q
+

1

m
and

1

l′
=

1

a′
=

1

q′
+

1

m′ . (12.10)

Here notice that from 2
q + 3

q′ < 1 obviously we have q > 2 and q′ > 3, to that from m ≥ 2

and m′ ≥ 2, we have l ≥ 1 and l′ ≥ 1.
Inequalities (12.9) become

3

m
+

3

q
+

2

m′ +
2

q′
<

3

r
+

2

r′
+ 1,

3

m
+

2

m′ <
3

r
+

2

r′
+ 1

3

m
+

3

q
+

2

m′ +
2

q′
<

3

r
+

2

r′
+ 2,

where obviously the 1st implies the other two. Then we have

∥W∥Lr′Lr ≲ ∥W∥Lm′Lm∥u∥Lq′Lq + ∥u∥Lq′Lq∥ω∥Lm′Lm + ∥ω∥Lm′Lm . (12.11)

In fact we get ∥W∥Lr′Lr((t0−R2,t0)×R3) ≲ ∥ω∥Lm′Lm(QR(t0,x0))
, where

3

m
− 3

r
+

2

m′ −
2

r′
< 1− 3

q
− 2

q′
. (12.12)

Since by hypothesis the r.h.s. in (12.12) is strictly positive and (m′,m) are given, we can
find m ≤ r and m′ ≤ r′, not both equal, so that (12.18) is true. In fact this can be written

in a systematic way, setting χ := 1
6

(
1− 3

q −
2
q′

)
and defining

r =

{ m
1−χm if mχ < 1

∞ if mχ ≥ 1
and r′ =

{
m′

1−χm′ if m′χ < 1

∞ if m′χ ≥ 1.
(12.13)
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With these choices we have 3
m − 3

r ≤ 3χ and 2
m′ − 2

r′ ≤ 2χ, so that 3
m − 3

r +
2
m′ − 2

r′ ≤ 5χ <
1− 3

q −
2
q′ . Then we have obtained

ω ∈ Lm′
Lm(QR(t0, x0)) =⇒ ω ∈ L

m′
1−χm′L

m
1−χm (QρiR(t0, x0)).

We repeat this argument until both exponents are (∞,∞). Notice that if we repeat the

procedure k times, we reach ω ∈ L
m′

1−kχm′L
m

1−kχm (Qρki R
(t0, x0)), since, for km < 1,

m
1−(k−1)χm

1− χ m
1−(k−1)χm

=
m

1− (k − 1)χm− χm
=

m

1− kχm
.

It is clear that, after a finite number k of iterations, with k dependent on the initial
pairs (m′,m) and (q′, q), the procedure has to stop because, for example, either we get to
χ m

1−kχm ≥ 1 or 1 − kχm < 0. But 1 − kχm < 0 cannot occur if 0 < χ m
1−(k−1)χm < 1 in

the previous iterate. Hence at some point we get to χ m
1−kχm ≥ 1, so that from that iterate

on, we have r = ∞. For r′ the same argument is true. So, after a finite number of iterate,
we obtain the pair (∞,∞). We also choose 3/4 < ρi < ρl < 1 so that ρki > 3/4 for all the
finitely many iterates.

Now we consider the 2nd part of the proof of Theorem 12.7.

Proposition 12.9. There exists an ϵq′q > 0 such that if u is a local weak solution in a
parabolic cylinder QR(t0, x0) which satisfies (12.2) with 2

q′ +
3
q = 1 and if

∥u∥Lq′Lq(QR(t0,x0))
< ϵq′q, (12.14)

then u is smooth in the x variable in QR′(t0, x0) for any R′ ∈ (0, R).

The proof consists in finding β′ > 2 s.t. u ∈ Lβ′
L∞(QR′(t0, x0)) for any R′ ∈ (0, R).

Then we can apply Proposition 12.8.
Notice that we can normalize and consider R = 1, thanks to scaling. It would be reasonable
to proceed as in the proof of Proposition 12.8, starting with ω ∈ Lm′

Lm(QR(t0, x0)) and
then reaching ω ∈ Lβ′

L∞(QR′(t0, x0)), and then to apply Lemma 11.5.
So we could consider (12.8)

∥W∥Lr′Lr ≲ ∥Wu∥La′La + ∥ω∇ϕ∥Lm′Lm + ∥(ϕt +△ϕ)ω∥Lm′Lm + ∥ωu∇ϕ∥Ll′Ll (12.8)

with {
1 ≤ a ≤ r ≤ ∞, 1 ≤ a′ ≤ r′ <∞

3
a + 2

a′ =
3
r +

2
r′ + 1 = 3

r +
2
r′ +

3
q +

2
q′

,{
1 ≤ m ≤ r ≤ ∞, 1 ≤ m′ ≤ r′ <∞

3
m + 2

m′ ≤ 3
r +

2
r′ + 1{

1 ≤ l ≤ r ≤ ∞, 1 ≤ l′ ≤ r′ <∞
3
l +

2
l′ ≤

3
r +

2
r′ + 2

. (12.15)
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Next, in analogy to (12.10) we could consider

1

l
=

1

q
+

1

m
and

1

l′
=

1

q′
+

1

m′ , (12.16)

while we will take

1

a
=

1

q
+

1

r
and

1

a′
=

1

q′
+

1

r′
, (12.17)

(notice that here 1
r +

1
q ≤ 1 (because r ≥ 3 and q ≥ 3) and 1

r′ +
1
q′ ≤ 1, so a ≥ 1 and a′ ≥ 1).

Here the point is that if we chose exactly (12.10), we would be forced, from

0 ≤ 3

m
− 3

r
+

2

m′ −
2

r′
≤ 1− 3

q
− 2

q′
= 0

and from m ≤ r and m′ ≤ r′, to have exactly (m,m′) = (r, r′). So (12.16)–(12.17), gives us
a little more of flexibility. Indeed (12.15) reduce to{

1 ≤ m ≤ r ≤ ∞, 1 ≤ m′ ≤ r′ <∞
3
m − 3

r +
2
m′ − 2

r′ ≤ 1
(12.18)

and we can certainly pick m ≤ r and m′ ≤ r′ appropriate and not both equalities if (m′,m)
is not of the form (β′,∞) with β′ > 0.
Then we obtain, in QR(t0, x0),

∥W∥Lr′Lr ≲ ∥W∥Lr′Lr∥u∥Lq′Lq + ∥u∥Lq′Lq∥ω∥Lm′Lm + ∥ω∥Lm′Lm ≲ ∥W∥Lr′Lr∥u∥Lq′Lq + ∥ω∥Lm′Lm .
(12.19)

Then, from ∥u∥Lq′Lq < ϵq′q, for ϵq′q small enough we would absorb the ∥W∥Lr′Lr∥u∥Lq′Lq

into the l.h.s., obtaining

∥W∥Lr′Lr(QR(t0,x0))
≲ ∥ω∥Lm′Lm(QR(t0,x0))

. (12.20)

Then we could improve until we get to the desired (β′,∞). In fact, for χ = 1/6, we can
proceed like in (12.13) obtaining 3

m − 3
r ≤ 3χ and 2

m′ − 2
r′ ≤ 2χ, so that 3

m − 3
r +

2
m′ − 2

r′ ≤
5χ < 1. After a finite number of iterates, we would get to (β′,∞) and stop.
However, the above argument is formal only, because it assumes implicitly that ∥W∥Lr′Lr <
∞. To perform rigorously the argument, we consider a mollification, both in space and time.
We still can consider the equation (12.6)–(12.7) for W .
Now consider

∂tW
ϵ
i −△W ϵ

i = ∂j(W
ϵ
j u

ϵ
i −W ϵ

i u
ϵ
j)− 2∂j(ωi∂jϕ)

+ (ϕt +△ϕ)ωϵ
i − ∂jϕ(ω

ϵ
ju

ϵ
i − ωϵ

iu
ϵ
j)), (12.21)

where W ϵ
i is an unknown, we set (uϵ, ωϵ) := ρϵ ∗ (u, ω) and W ϵ

i

(
t0 −R2

)
= 0, where we

extend (ω, u) = 0 in R4\QR(t0, x0).
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Now the previous argument works, and we obtain for a fixed c (notice that in the equation,
ωϵ appears with factors involving ϕ which live in QR(t0, x0))

∥W ϵ∥Lr′Lr((t0−R2,t0)×R3) ≤ c∥ωϵ∥Lm′Lm((t0−R2,t0)×R3).

There exists a sequence ϵn
n→∞−−−→ 0, such that W ϵn ⇀W in Lr′Lr((t0 −R2, t0)×R3)), and

we have

∥W∥Lr′Lr((t0−R2,t0)×R3) ≤ c∥ω∥Lm′Lm(QR(t0,x0))
. (12.22)

Now we have to establish that W =W in Lr′Lr((t0 −R2, t0)× R3) to obtain

∥W∥Lr′Lr(QR(t0,x0))
≤ c∥ω∥Lm′Lm(QR(t0,x0))

.

and so, restricting the domain in the left

∥W∥Lr′Lr(QρiR
(t0,x0))

≤ c∥ω∥Lm′Lm(QR(t0,x0))
.

Once we do this, we conclude that the formal argument leading to (12.20) is correct.
The first step to prove W =W , is to show that W is a weak solution of (12.6)–(12.7).

Taking a test function ψ ∈ C∞
c

([
t0 −R2, t0

)
× R3,R3

)
, from (12.21) we have

0 =

∫ t0

t0−R2

(⟨W ϵn
i , ∂tψi⟩+ ⟨W ϵn

i ,△ψi⟩) dt′ −
∫ t0

t0−R2

〈
W ϵn

j uϵni −W ϵn
i uϵnj , ∂jψi

〉
dt′

+ 2

∫ t0

t0−R2

⟨ωϵn
i ∂jϕ, ∂jψi⟩ dt′ +

∫ t0

t0−R2

⟨(ϕt +△ϕ)ωϵn
i , ∂jψi⟩ dt′ +

∫ t0

t0−R2

〈
∂jϕ(ω

ϵn
j u

ϵn
i − ωϵn

i u
ϵn
j ), ψi

〉
dt′.

Taking the limit n→ ∞ we get

0 =

∫ t0

t0−R2

(〈
W i, ∂tψi

〉
+
〈
W i,△ψi

〉)
dt′ − lim

n→+∞

∫ t0

t0−R2

〈
W ϵn

j uϵni −W ϵn
i uϵnj , ∂jψi

〉
dt′

+ 2

∫ t0

t0−R2

⟨ωi∂jϕ, ∂jψi⟩ dt′ +
∫ t0

t0−R2

⟨(ϕt +△ϕ)ωi, ∂jψi⟩ dt′ +
∫ t0

t0−R2

⟨∂jϕ(ωjui − ωiuj), ψi⟩ dt′.

Now we show that

lim
n→+∞

∫ t0

t0−R2

〈
W ϵn

j uϵni −W ϵn
i uϵnj , ∂jψi

〉
dt′ =

∫ t0

t0−R2

⟨Wjui −Wiuj , ∂jψi⟩ dt′. (12.23)

We have∫ t0

t0−R2

〈
W ϵn

j uϵni , ∂jψi

〉
dt′ =

∫ t0

t0−R2

〈
W ϵn

j ui, ∂jψi

〉
dt+

∫ t0

t0−R2

〈
W ϵn

j (uϵni − ui), ∂jψi

〉
dt′.

But now ∫ t0

t0−R2

〈
W ϵn

j ui, ∂jψi

〉
dt′

n→∞−−−→
∫ t0

t0−R2

〈
W jui, ∂jψi

〉
dt′
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while∣∣∣∣∫ t0

t0−R2

〈
W ϵn

j (uϵni − ui), ∂jψi

〉
dt′
∣∣∣∣ ≤ C∥W ϵn

j ∥Lr′Lr((t0−R2,t0)×R3)∥u
ϵn
i − ui∥Lq′Lq((t0−R2,t0)×R3)

≤ C ′∥ωϵn∥Lr′Lr((t0−R2,t0)×R3)∥u
ϵn
i − ui∥Lq′Lq((t0−R2,t0)×R3)

≤ C ′∥ω∥Lr′Lr((t0−R2,t0)×R3)∥u
ϵn
i − ui∥Lq′Lq((t0−R2,t0)×R3)

n→∞−−−→ 0.

Notice that here 1
r +

1
q ≤ 1 (because r ≥ 2 and q ≥ 3) and 1

r′ +
1
q′ ≤ 1 (because r′ ≥ 2 and

q′ ≥ 2) justify the above use of Hölder inequality. Proceeding in this way we obtain the
proof of limit (12.23).
So we conclude that for any ψ ∈ C∞

c

([
t0 −R2, t0

)
× R3,R3

)
0 =

∫ t0

t0−R2

(〈
W i, ∂tψi

〉
+
〈
W i,△ψi

〉)
dt′ −

∫ t0

t0−R2

〈
W j , ui −W iuj , ∂jψi

〉
dt′

+ 2

∫ t0

t0−R2

⟨ωi∂jϕ, ∂jψi⟩ dt′ +
∫ t0

t0−R2

⟨(ϕt +△ϕ)ωi, ∂jψi⟩ dt′ +
∫ t0

t0−R2

⟨∂jϕ(ωjui − ωiuj), ψi⟩ dt′.

This implies that W ∈ Lr′Lr(
[
t0 −R2, t0

)
× R3,R3) is a distributional solution of (12.6)–

(12.7) with initial datum W (t0 −R2) = 0, see Takahashi [20].
Then, taking the difference between the equations of W and W , we have

∂t(Wi −W i)−△(Wi −W i) = ∂jfj (12.24)

with fj = (Wj −W j)ui − (Wi −W i)uj

and initial condition (W −W )(t0 −R2) = 0

in a weak sense, that is for any ψ ∈ C∞
c

([
t0 −R2, t0

)
× R3,R3

)
0 =

∫ t0

t0−R2

(〈
Wi −W i, ∂tψi

〉
+
〈
Wi −W i,△ψi

〉)
dt′ −

∫ t0

t0−R2

〈
(Wj −W j)ui − (Wi −W i)uj , ∂jψi

〉
dt′.

We claim that

Wi −W i =

∫ t

t0−R2

e(t−t′)△∂j((Wj −W j)ui − (Wi −W i)uj)dt
′ (12.25)

Indeed both sides are solutions in L2((t0−R2, t0)×R3,R) of the equation (∂t−△)w = ∂jfj
with initial condition w(t0 − R2) = 0. So their difference, is a solution, which we again
denote by w, with w ∈ L2((t0 −R2, t0)× R3,R) with

(∂t −△)w = 0 with w(t0 −R2) = 0.

By scaling and translation we get a solution w ∈ L2((0, 1)× R3,R)

(∂t −△)w = 0 with w(0) = 0,
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which satisfies ∫ 1

0
⟨w, (∂t +△)φ⟩ dt′ = 0 for all φ ∈ S([0, 1]× R3,R).

But for any F ∈ S([0, 1]×R3,R) with FxF ∈ C∞
c ([0, 1]×R3,R) it is possible to define such

a φ with (∂t +△)φ = F proceeding as right under (1.10). Then by density of such F ’s in
L2((0, 1)× R3,R), we conclude w = 0.
Having established formula (12.25), we can apply Propositions 5.1–5.2 to W −W . For

3

l
+

2

l′
≤ 3

r
+

2

r′
+ 1 =

3

r
+

2

r′
+

3

q
+

2

q′
,

we have

∥W −W∥Lr′Lr(QR(t0,x0))
≲ ∥(W −W )u∥Ll′Ll(QR(t0,x0))

≲ ∥W −W∥Lr′Lr(QR(t0,x0))
∥u∥Lq′Lq(QR(t0,x0))

≤ ϵq′q∥W −W∥Lr′Lr(QR(t0,x0))
,

where we are free to choose a Lr′Lr(QR(t0, x0)) s.t. both W and W belong to it. We
exploited the fact that ∥u∥Lq′Lq((t0−R2,t0)×R3) = ∥u∥Lq′Lq(QR(t0,x0))

and, in the left hand

side, that ∥W −W∥Lr′Lr(QR(t0,x0))
≤ ∥W −W∥Lr′Lr((t0−R2,t0)×R3).

Now we exploit that ϵq′q is small, to conclude that W = W in QR(t0, x0). This completes
the proof of Proposition 12.9.

End of the proof of Theorem 12.1. By Theorem 12.6, in particular by its proof, we
know that △u ∈ L∞[t0, T ], L

∞(Ω)) for Ω ⊂ Ω ⊂⊂ U and for any t0 ∈ (0, T ). Next, we
claim that

u · ∇u+∇p ∈ L
2r

4r−3 ((0, T ), Lr(R3)) for all 1 < r ≤ 3/2. (12.26)

Assuming (12.26), it follows from (11.18) that u ∈ W 1, 2r
4r−3 (t0, T ), L

r(Ω)). We know that

elements ofW 1, 2r
4r−3 ((t0, T ), L

r(Ω)) are classes of functions and that, by Sobolev’s inequality,
one of the elements of this class is in C0,α([t0, T ], L

r(Ω)) for α = 1− 4r−3
2r = 3−2r

2r . In fact,
by u ∈ C0([0, T ], L2

w(R3)), it is easy to conclude that u ∈ C0,α([t0, T ], L
r(Ω)), so that

∥u(t)− u(s)∥Lr(Ω) ≤ c|t− s|α for t0 ≤ s < t ≤ T . (12.27)

Next, by the variation of Agmon’s inequality in (2.32), for almost any pair (t, s) in (t0, T )
we have

∥u(t)− u(s)∥L∞(Ω) ≤ CΩ,k,r∥u(t)− u(s)∥θLr(Ω)∥u(t)− u(s)∥1−θ
Hk(Ω)

with θ =
r
(
k − 3

2

)
kr + 3

2(2− r)

≤ C ′
k,r|t− s|αθ = C ′

k,r|t− s|
3−2r

2

(k− 3
2)

kr+3
2 (2−r) = C ′

k,r|t− s|
3−2r

2

(k− 3
2)

(k− 3
2)r+3 . (12.28)
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Then, for any γ < 1/2 we can find r ∈ (1, 3/2) and k ∈ N s.t. γ = αθ so that

∥u(t)− u(s)∥L∞(Ω) ≤ Cγ |t− s|γ for almost any pair (t, s) in (t0, T ). (12.29)

Notice that (12.27) and (12.29), together imply that (12.29) must be true for all pairs (t, s)
in (t0, T ) and on Ω. Hence we have proved that u ∈ C0,γ

t ([t0, T ), C
0
x(Ω)). In fact, this

extends to an element of C0,γ
t ([t0, T ], C

0
x(Ω)), and by the continuity u ∈ C0([0, T ], L2

w(R3))
we conclude that the extension in C0,γ

t ([t0, T ], C
0
x(Ω)) is exactly u. With this the proof of

Theorem 12.1 is completed except for (12.26).
To prove (12.26) notice first of all that a weak solution satisfies

u ∈ Ls((0, T ), Lr(R3)) for all
2

s
+

3

r
= 3/2. (12.30)

Indeed the case (s, r) = (∞, 2) follows from u ∈ L∞(R+, L
2(R3)) and case (s, r) = (2, 6)

from ∇u ∈ L2(R+, L
2(R3)) and Sobolev’s embedding. The intermediate cases are obtained

by Hölder inequality. Next, by Hölder inequality we get

∥u · ∇u∥r ≤ ∥∇u∥2∥u∥ 2r
2−r

,

where 2r
2−r ≤ 6 ⇔ r ≤ 3/2. Now, since the pair

(
2r

3r−3 ,
2r
2−r

)
satisfies the condition in (12.30),

we obtain

∥u · ∇u∥
L

2r
4r−3 ((0,T ),Lr

≤ ∥∇u∥L2(R+,L2)∥u∥
L

2r
3r−3 ((0,T ),L

2r
2−r )

.

The same is true for P (u · ∇u) and for ∇p = (1− P) (u · ∇u), proving (12.26). This proves
u ∈ C0,γ

t ([t0, T ], C
0
x(Ω)) for any γ ∈ (0, 1/2) and any t0 ∈ (0, T ) and any open Ω ⊂ Ω ⊂⊂ U .

Remark 12.10. Notice that it is easy to prove

∥∇f∥L∞(Ω) ≤ C∥f∥θLr(Ω)∥f∥
1−θ
Hk(Ω)

for appropriate θ and in fact more generally

∥∇lf∥L∞(Ω) ≤ C∥f∥θlLr(Ω)∥f∥
1−θl
Hk(Ω)

for appropriate θl with l ≤ L and k−L sufficiently large. Then, one can repeat the argument
and prove u ∈ C0,γ

t ([t0, T ], C
L−2
x (Ω)) for L arbitrary and appropriate γ ∈ (0, 1) and for any

t0 ∈ (0, T ) and any open Ω ⊂ Ω ⊂⊂ U . This yields the result stated in Remark ??.

13 Local energy inequality

We will later need suitable weak solutions.
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Proposition 13.1 (Global suitable weak solutions). Consider u0 ∈ L2(R3,R3) and a
Leray–Hopf solution u proved to exists in Sect. 6. Then u satisfies the following Local
Energy Inequality:

2

∫ T

0

∫
R3

|∇u|2φdxds ≤
∫ T

0

∫
R3

|u|2(φt +△φ)dxds (13.1)

+

∫ T

0

∫
R3

(|u|2 + 2p)(u · ∇)φdxds for all φ ∈ C∞
c ((0, T )× R3, [0,+∞)),

where p is defined by (11.16).

Proof. Consider the sequence{
(∂t −△)un + ρϵn ∗ un · ∇un = −∇RiRj(ρϵn ∗ uinu

j
n)

un(0, x) = u0(x).

We apply to the above equation ⟨·, φun⟩. Then, for pn := RiRj(ρϵn ∗ uinu
j
n),

1

2

d

dt
⟨un, φun⟩ −

1

2

〈
|un|2, ∂tφ

〉
− ⟨△un, φun⟩+ ⟨ρϵn ∗ un · ∇un, φun⟩ = −⟨∇pn, φun⟩ .

We have

−⟨△un, φun⟩ =
〈
|∇un|2, φ

〉
+ ⟨∂jun, un∂jφ⟩ =

〈
|∇un|2, φ

〉
+ 2−1

〈
∂j |un|2, ∂jφ

〉
=
〈
|∇un|2, φ

〉
− 2−1

〈
|un|2,△φ

〉
,

⟨∇pn, φun⟩ =
〈
∂jpn, φu

j
n

〉
= −⟨pn, (un · ∇)φ⟩

and

⟨ρϵn ∗ un · ∇un, φun⟩ = 2−1
〈
ρϵn ∗ un · ∇|un|2, φ

〉
= −2−1

〈
|un|2, ρϵn ∗ un · ∇φ

〉
So, integrating, we obtain

2

∫ T

0

〈
|∇un|2, φ

〉
dt = 2

∫ T

0

〈
|un|2, ∂tφ+△φ

〉
dt+

∫ T

0

〈
|un|2 + 2pn, un · ∇φ

〉
dt

+

∫ T

0

〈
|un|2, (ρϵn ∗ un − un) · ∇φ

〉
dt

which, up to the term the last line, is formula (13.1) for the solutions of the truncated
problems. So now we will take the limit for n↗ ∞ in this equality.

We have ∫ T

0

〈
|un|2, ∂tφ+△φ

〉
dt

n→∞−−−→
∫
R+

〈
|u|2, ∂tφ+△φ

〉
dt
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because un
n→∞−−−→ u in L2((0, T ) ×K,R3) for any compact set K ⊂⊂ R3 and any T > 0.

We have ∫ T

0

〈
|∇u|2, φ

〉
dt ≤ lim inf

n→∞

∫ T

0

〈
|∇un|2, φ

〉
dt

by ∇un
n→∞
⇀ ∇u in L2(R+×R3), which in turn implies ∇un

√
φ

n→∞
⇀ ∇u√φ in L2(R+×R3),

and by Fathou’s Lemma. Next, we claim

lim
n→+∞

∫ T

0

(〈
|un|2, (un · ∇)φ

〉
dt−

〈
|u|2, (u · ∇)φ

〉)
dt = 0. (13.2)

Indeed, the difference of the two terms is a sum of various terms. We bound a typical one:∣∣∣∣∫ T

0
⟨un − u, un(un · ∇)φ⟩ dt

∣∣∣∣ ≲ ∥un − u∥L2
tL

4
x(Ω)∥un∥L∞

t L2
x(Ω)∥un∥L2

tL
4
x(Ω) ≤ CΩ∥un − u∥L2

tL
4
x(Ω)

for Ω =suppφ and where ∥un∥L∞
t L2

x(Ω)∥un∥L2
tL

4
x(Ω) ≤ CΩ by the energy equality (4.5),

satisfied by the un. By (6.32) we have ∥un−u∥L2
tL

4
x(Ω)

n→∞−−−→ 0 and so, treating analogously
the other similar terms, we get the desired limit (13.2) Similarly, for the pressure we have

lim
n→+∞

∫ T

0
(⟨pn, (un · ∇)φ⟩ dt− ⟨p, (u · ∇)φ⟩) dt = 0. (13.3)

Next we show

lim
n→+∞

∫ T

0

〈
|un|2, (ρϵn ∗ un − un) · ∇φ

〉
dt = 0.

Like above, we have∣∣∣∣∫ T

0

〈
|un|2, (ρϵn ∗ un − un) · ∇φ

〉
dt

∣∣∣∣ ≲ ∥ρϵn ∗ un − un∥L2
tL

4
x(Ω)∥un∥L∞

t L2
x(Ω)∥un∥L2

tL
4
x(Ω)

≲ ∥ρϵn ∗ un − un∥L2
tL

4
x(Ω) ≤ ∥ρϵn ∗ u− u∥L2

tL
4
x(Ω) + ∥ (ρϵn ∗ −id ) (u− un) ∥L2

tL
4
x(Ω)

≲ ∥ρϵn ∗ u− u∥L2
tL

4
x(Ω) + ∥u− un∥L2

tL
4
x(Ω)

n→∞−−−→ 0

Proposition 13.2 (Alternative local energy inequality). Suppose that u s.t. u ∈ L∞((a, b), L2(U))
and ∇u ∈ L2((a, b), L2(U)) satisfies also the Local Energy Inequality

2

∫ b

a

∫
R3

|∇u|2φdxds ≤
∫ b

a

∫
R3

|u|2(φs +△φ)dxds (13.4)

+

∫ b

a

∫
R3

(|u|2 + 2p)(u · ∇)φdxds for all φ ∈ C∞
c ((a, b)× U, [0,+∞)),
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where p is defined by (11.16). Then u satisfies for almost all t ∈ (a, b) also∫
R3

|u(t)|2ϕ(t)dx+ 2

∫ t

a

∫
R3

|∇u|2ϕdxds ≤
∫ t

a

∫
R3

|u|2(ϕs +△ϕ)dxds (13.5)

+

∫ t

a

∫
R3

(|u|2 + 2p)(u · ∇)ϕdxds for all ϕ ∈ C∞
c ((a, b)× U, [0,+∞)).

Proof. We start from (13.4) and we consider φϵ(s, x) = ϕ(s, x)χ
(
t−s
ϵ

)
where χ ∈ C∞(R, [0, 1])

satisfies χ = 0 in R− and χ = 1 in [1,∞). Notice that

χ′
(
t− s

ϵ

)
= 0 for s ≤ t− ϵ and s ≥ t and

∫ t

t−ϵ
ϵ−1χ′

(
t− s

ϵ

)
ds = −χ

(
t− s

ϵ

)
]ts=t−ϵ = χ(1)− χ(0) = 1.

We have

∂sφϵ(s, x) = ∂sϕ(s, x)χ

(
t− s

ϵ

)
− ϕ(s, x)ϵ−1χ′

(
t− s

ϵ

)
.

So when we enter this information in (13.4) with φ = φϵ, we obtain∫ b

a

∫
R3

|u|2ϕ(s)ϵ−1χ′
(
t− s

ϵ

)
ds+ 2

∫ b

a

∫
R3

|∇u|2ϕχ
(
t− s

ϵ

)
dxds ≤

∫ b

a

∫
R3

|u|2χ
(
t− s

ϵ

)
(ϕs +△ϕ) dxds

+

∫ b

a

∫
R3

(|∇u|2 + 2p)χ

(
t− s

ϵ

)
(u · ∇)ϕdxds.

Taking limit ϵ↘ 0 we get

lim
ϵ↘0

∫ b

a

∫
R3

|u|2ϕ(s)ϵ−1χ′
(
t− s

ϵ

)
dsdx+ 2

∫ t

0

∫
R3

|∇u|2ϕdxds ≤
∫ t

0

∫
R3

|u|2 (ϕs +△ϕ) dxds

+

∫ t

0

∫
R3

(|∇u|2 + 2p)(u · ∇)ϕdxds

where we have applied dominated convergence, leaving aside the most crucial limit. We
have∫ b

a

∫
R3

|u|2ϕ(s)ϵ−1χ′
(
t− s

ϵ

)
dsdx =

∫ t

t−ϵ
dsϵ−1χ′

(
t− s

ϵ

)∫
R3

|u(s, x)|2ϕ(s, x)dx.

Now, we have∫ t

t−ϵ
dsϵ−1χ′

(
t− s

ϵ

)∫
R3

|u(s, x)|2ϕ(s, x)dx ϵ↘0−−→
∫
R3

|u(t, x)|2ϕ(t, x)dx in Lp(R)

for any 1 ≤ p < ∞, by u ∈ L∞((a, b), L2(U)), ϕ ∈ C∞
c ((a, b) × U, [0,+∞)) and, finally, by

Theorem 1.6. Then, there is a sequence ϵn ↘ 0, s.t. for a.e. t we have∫ t

t−ϵ
dsϵ−1

n χ′
(
t− s

ϵn

)∫
R3

|u(s, x)|2ϕ(s, x)dx n↗∞−−−→
∫
R3

|u(t, x)|2ϕ(t, x)dx for a.e. t ∈ R,

see in the proof of Theorem A.19.
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14 A first result of Caffarelli, Kohn and Nirenberg

Definition 14.1 (Suitable pairs). A pair (u, p) is suitable in (a, b)× U if:

1. u ∈ L∞((a, b), L2(U,R3)) and ∇u ∈ L2((a, b) × U) and is divergence free, and p ∈
L3/2((a, b)× U,R);

2. −△p = ∂i∂j(uiuj);

3. u satisfies for all t ∈ (a, b) the local energy inequality∫
R3

|u(t)|2ϕ(t)dx+ 2

∫ t

a

∫
R3

|∇u|2ϕdxds ≤
∫ t

a

∫
R3

|u|2(ϕt +△ϕ)dxds (14.1)

+

∫ t

a

∫
R3

(u|2 + 2p)(u · ∇)ϕdxds for all ϕ ∈ C∞
c ((a, b)× U, [0,+∞)).

In this section we will prove the following theorem.

Theorem 14.2. There exists absolute constants ϵ∗0 > 0 and cM > 0 s.t. if (u, p) is a
suitable weak solution of the NS with

R−2

∫
QR(t0,x0)

(
|u|3 + |p|

3
2

)
dtdx < ϵ0 (14.2)

for an R > 0 and for a ϵ0 ∈ (0, ϵ∗0], then ∥u∥L∞(QR/2(t0,x0)) ≤ cM ϵ
1
3
0 .

Notice that, in view of Theorem 12.1, u would be smooth in x and Hölder continuous
in t inside QR/2(t0, x0). The proof of Theorem 14.2 is rather articulated. Before proving it
we will discuss a consequence. Notice that Theorem 14.2 says that for an R > 0 and for a
ϵ0 ∈ (0, ϵ∗0]

R−2

∫
QR

(
t0+

R2

8
,x0

) (|u|3 + |p|
3
2

)
dtdx < ϵ0 =⇒ ∥u∥

L∞
(
QR/2

(
t0+

R2

8
,x0

)) ≤ cM ϵ
1
3
0 . (14.3)

Notice that QR/2

(
t0 +

R2

8 , x0

)
=
(
t0 +

R2

8 − R2

4 , t0 +
R2

8

)
×BR/2(x0) is a neighborhood of

(t0, x0)

Definition 14.3. A point (t, x) ∈ R+ ×R3 is called a regular point of a weak solution u if
there exists a neighborhood of (t, x) in R+ ×R3 such that u ∈ L∞(U,R3). If not regular, a
point (t, x) ∈ R+ × R3 is called singular.

A simple consequence of Theorem 14.2 is the following result.

Proposition 14.4. Given a suitable Leray–Hopf weak solution u, then the set of singular
points S of u is bounded in in [0,∞)× R3.
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Proof. We already know that there exists T s.t. u ∈ C∞((T,∞) × R3,R3). Now we will
show that there is an R0 > 0 s.t. S ⊂ [0, T ] × B(0, R0). Theorem 14.2 implies that if
(t, x) ∈ S, then

R−2

∫
QR(t+ηR2,x)

(
|u|3 + |p|

3
2

)
≥ ϵ0 for all R > 0 and for η ∈ (0, 1) such that t+ ηR2 −R2 > 0.

From

∥u∥L3(QR(t+ηR2,x)) ≤ ∥u∥
L

10
3 (QR(t+ηR2,x))

|QR

(
t+ ηR2, x

)
|

1
30 = ∥u∥

L
10
3 (QR(t+ηR2,x))

(
4π

3

) 1
30

2−
1
6R

1
6

and

∥p∥
L

3
2 (QR(t+ηR2,x))

≤ ∥p∥
L

5
3 (QR(t+ηR2,x))

|QR

(
t+ ηR2, x

)
|

1
15 = ∥p∥

L
10
3 (QR(t+ηR2,x))

(
4π

3

) 1
15

2−
1
3R

1
3 ,

we get ∫
QR(t+ηR2,x)

(
|u|

10
3 + |p|

5
3

)
≥ Cϵ

10
9
0 R− 5

3 for all R > 0. (14.4)

But we also know that u ∈ L
10
3 ((0, T ) × R3,R3) and p ∈ L

5
3 ((0, T ) × R3,R3). If S is

unbounded, then for any R there is a sequence (tn, xn) in [0, 2T ] × R3 and corresponding
ηn ∈ (0, 1) where

(
tn + ηnR

2, xn
)
∩
(
tm + ηnR

2, xm
)
= ∅, we have QR

(
tn + ηnR

2, xn
)
⊂

[0, 2T ]× R3 for any n and, for any fixed R > 0 with tn − 77
8R

2 > 0,∫
QR(tn+ηnR2,xn)

(
|u|

10
3 + |p|

5
3

)
≥ Cϵ

10
9
0 R− 5

3 .

But then we get a contradiction

∞ >

∫
[0,2T ]×R3

(
|u|

10
3 + |p|

5
3

)
≥
∑
n

∫
QR(tn+ηnR2,xn)

(
|u|

10
3 + |p|

5
3

)
= +∞.

Another corollary is the following.

Proposition 14.5. Given a suitable Leray–Hopf weak solution u and any compact subspace
K ⊂⊂ R+ × R3, then the set of singular points S satisfies dimB(S ∩K) ≤ 5/3.

Proof. Suppose this is false, so that we have that dimB(S ∩ K) > 5/3 in a case, and
let dimB(S ∩ K) > d > 5/3. Then, by Lemma 7.11 there is a sequence ϵj → 0 s.t.
M(S ∩K, ϵj) ≥ ϵ−d

j , where M(S ∩K, ϵj) the largest number of disjoint open balls of radius
ϵj with centers at points of S ∩K. Now for ϵ ∈ (0, 1) we have

Bϵ(t, x) ⊃ Q∗
ϵ/2(t, x) = Qϵ/2(t+ ϵ2/8, x) =

(
t− ϵ2

4
, t+

ϵ2

4

)
×Bϵ/2(x),
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indeed, for any (s, y) ∈ Q∗
ϵ/2(t, x) we have for

√
(t− s)2 + (y − x)2 <

√
ϵ4

16
+
ϵ2

4
≤
√
ϵ4

16
+
ϵ2

4
< 2−

1
2 ϵ.

For any j, fix Mj := M(S ∩K, ϵj) open balls of radius ϵj with centers at points of S ∩K.
Then, we get a contradiction:

∞ >

∫
[0,2T ]×R3

(
|u|

10
3 + |p|

5
3

)
≥

Mj∑
l=1

∫
Qϵj/2

(tl+ϵ2/8,xl)

(
|u|

10
3 + |p|

5
3

)
≥ cϵ−d

j ϵ
5
3
j

j↗∞−−−→ ∞.

We now turn to the proof of Theorem 14.2. Following [14] we proceed by outlining
twice the argument, with increasing precision, before giving a full proof in the third try.
First of notice that, by scaling invariance of the NS and of the estimate (14.6), it is enough
to take R = 1. Furthermore, we can take t0 = 0 and x0 = 0.

14.1 First outline

We oversimplify and we assume that there is no pressure in the local energy inequality
(13.5), so that the latter is for s ∈ (a, b) of the form∫

R3

|u(s)|2ϕ(s)dx+ 2

∫ s

a

∫
R3

|∇u|2ϕ ≤
∫ s

a

∫
R3

|u|2(∂t +△)ϕ (14.5)

+

∫ s

a

∫
R3

|u|2(u · ∇)ϕ for all ϕ ∈ C∞
c ((a, b)× U, [0,+∞)).

Then using (14.5) it is possible to prove the following.

Proposition 14.6. There exists absolute constants ϵ∗0 > 0 s.t. if u satisfies (14.5) and

R−2

∫
QR(t0,x0)

|u|3dtdx < ϵ0 (14.6)

for an R > 0 and for a ϵ0 ∈ (0, ϵ∗0], then ∥u∥L∞(QR/2(t0,x0)) ≤ ϵ
2
9
0 .

First we give a heuristic argument picking R = 1 and (t0, x0) = (0, 0). We will prove
that for any (s, a) ∈ Q1/2(0, 0) we have

25n
∫
Q2−n (s,a)

|u|3dtdx < ϵ
2
3
0 for all n ∈ N (14.7)

Then by Lebesgue’s Differentiation Theorem, this will imply ∥u∥L∞(QR/2(t0,x0)) ≤ ϵ
2
9
0 for a.a.

(t0, x0).
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We will consider an appropriate sequence of cutoffs ϕn. They are chosen so that (∂t +
△)ϕn ≈ 0. Here let us assume (∂t +△)ϕn = 0. In fact the ϕn’s will be almost fundamental
solutions of the backwards heath equation, but not quite. They will satisfy estimates of the
form

ϕn ∼ 2n in Q2−n(s, a) and

|∇ϕn| ≤
{

C22n in Q2−n(s, a)
C2−2n24k in Q2−k(s, a)\Q2−(k+1)(s, a).

(14.8)

We assume by induction that

22k
∫
Q

2−k (s,a)
|u|3dtdx < ϵ

2
3
0 2

−3k for all k ≤ n. (14.9)

Using (14.5) we have for t ∈ (s− 2−2n, s)∫
B2−n (a)

|u(t)|22ndx+ 2

∫∫
Q2−n (s,a)∩{t′<t}

|∇u|22ndxdt′ ≤
∫∫

Q2−1 (s,a)
|u|3|∇ϕn|dxdt′

=

n−1∑
k=1

∫∫
Q

2−k (s,a)\Q2−(k+1) (s,a)
|u|3|∇ϕn|dxdt′ +

∫∫
Q2−n (s,a)

|u|3|∇ϕn|dxdt′

where we decomposed the domain of integration on the r.h.s.

Q2−1(s, a) = (Q2−1(s, a)\Q2−2(s, a)) ∪ (Q2−2(s, a)\Q2−3(s, a)) ∪ ... ∪ (Q2−(n−1)(s, a)\Q2−n(s, a)) ∪Q2−n(s, a).

Now, using (14.8) we obtain for t ∈ (s− 2−2n, s)

2n
∫
B2−n (a)

|u(t)|2dx+ 2n2

∫∫
Q2−n (s,a)∩{t′<t}

|∇u|2dxdt′ ≤

≤ C
n−1∑
k=1

2−2n24k
∫∫

Q
2−k (s,a)

|u|3dxdt′ + C22n
∫∫

Q2−n (s,a)
|u|3dxdt′

≤ C2−2n
n−1∑
k=1

2−kϵ
2
3
0 + C2−3nϵ

2
3
0 = C2−2nϵ

2
3
0

n∑
k=1

2−k < C2−2nϵ
2
3
0 .

From this, for t ∈ (s− 2−2n−2, s) we get

2n+1

∫
B2−n−1 (a)

|u(t)|2dx+ 2n+12

∫∫
Q2−n−1 (s,a)

|∇u|2dxdt < 23C2−2(n+1)ϵ
2
3
0 . (14.10)

So far we have shown

(14.7) for n” =⇒ ”(14.10)

using heuristically inequality (14.5). Now we show rigorously

(14.10) =⇒ (14.7) for n+ 1,

using Sobolev’s Embedding and, specifically, the following lemma.
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Lemma 14.7. There exists a constant C0 > 0 such that for any s ∈ R, r > 0 and a ∈ R3

and any u s.t.

u ∈ L∞ ((s− r2, s
)
, L2(Br(a))

)
and ∇u ∈ L2 (Qr(s, a)) ,

then

r−2

∫
Qr(s,a)

|u|3dx ≤ C0

[
r−1 sup

s−r2<t<s

∫
Br(a)

|u(t)|2dx+ r−1

∫
Qr(s,a)

|∇u|2dtdx

] 3
2

. (14.11)

Proof. By scaling, it is sufficient to consider r = 1, and by translation invariance we can con-

sider (s, a) = (0, 0). By Hölder inequality ∥u∥L3(B1) ≤ ∥u∥
1
2

L6(B1)
∥u∥

1
2

L2(B1)
and by Sobolev’s

inequality ∥u∥L6(B1) ≤ c0∥u∥L2(B1)+c0∥∇u∥L2(B1). Then ∥u∥L3(B1) ≤ c
1
2
0

(
∥u∥L2(B1) + ∥∇u∥

1
2

L2(B1)
∥u∥

1
2

L2(B1)

)
and so, by (α+ β)q ≤ 2q−1 (αq + βq) for q ≥ 1 and for α, β ∈ R+ (this by the convexity of
t→ tq) ∫

B1

|u|3dx ≤ c
3
2
0

(
∥u∥L2(B1) + ∥∇u∥

1
2

L2(B1)
∥u∥

1
2

L2(B1)

)3

≤ 4c
3
2
0

(
∥u∥3L2(B1)

+ ∥∇u∥
3
2

L2(B1)
∥u∥

3
2

L2(B1)

)
.

Then, by Hölder,∫
Q1

|u|3dxdt ≤ 4c
3
2
0

∫ 0

−1
∥∇u∥

3
2

L2(B1)
∥u∥

3
2

L2(B1)
dt+ 4c

3
2
0

∫ 0

−1
∥u∥3L2(B1)

dt

≤ 4c
3
2
0 ∥∥∇u∥

3
2

L2(B1)
∥
L

4
3 (−1,0)

∥∥u∥
3
2

L2(B1)
∥L4(−1,0) + 4c

3
2
0

∫ 0

−1
∥u∥3L2(B1)

dt

= 4c
3
2
0 ∥∥∇u∥L2(B1)∥

3
2

L2(−1,0)
∥∥u∥L2(B1)∥

3
2

L6(−1,0)
+ 4c

3
2
0

∫ 0

−1
∥u∥3L2(B1)

dt

= 4c
3
2
0 ∥∇u∥

3
2

L2(Q1)

(
sup

−1<t<0
∥u∥L2(B1)

) 3
2

+ 4c
3
2
0

(
sup

−1<t<0
∥u∥L2(B1)

)3

= 4c
3
2
0 ∥∇u∥

3
2

L2(Q1)

(
sup

−1<t<0
∥u∥2L2(B1)

) 3
4

+ 4c
3
2
0

(
sup

−1<t<0
∥u∥2L2(B1)

) 3
2

≤ 2c
3
2
0 ∥∇u∥

3
L2(Q1)

+ 6c
3
2
0

(
sup

−1<t<0
∥u∥2L2(B1)

) 3
2

≤ 6c
3
2
0

[
∥∇u∥3L2(Q1)

+

(
sup

−1<t<0
∥u∥2L2(B1)

) 3
2

]

≤ 6c
3
2
0

[
∥∇u∥2L2(Q1)

+ sup
−1<t<0

∥u∥2L2(B1)

] 3
2

,

where in the last step we use αq + βq ≤ (α+ β)q for q ≥ 1 and for α, β ∈ R+, which follows

from

(
α

α+ β

)q

+

(
β

α+ β

)q

≤ α

α+ β
+

β

α+ β
= 1 for q ≥ 1.
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Then we are done, for C0 = 6c
3
2
0 .

Then, applying the lemma, for ϵ0 < (2
9
2C0C

3
2 )−3,

22n+2

∫∫
Q2−n−1 (s,a)

|u|3 ≤ C0

[
23C2−2(n+1)ϵ

2
3
0

] 3
2

= 2
9
2C0C

3
2 2−3(n+1)ϵ0 < 2−3(n+1)ϵ

2
3
0

(14.12)

where C is a fixed constant, dependent on the ϕn. Notice that (14.12) yields the induc-
tion (14.9) with n replaced by n + 1. Notice that here the nonlinear structure is crucial,
specifically the fact that we have taken the 3/2 power of (14.10).

14.2 Proof of Proposition 14.6

It is worth, first of all, to see the definition of the cutoffs ϕn, in order to make sense of the
bounds in (14.11).

Lemma 14.8. There exists a constant C1 > 1 and for any fixed (s, a) ∈ R4 a sequence
ϕn ∈ C∞

c

((
s− 1/9, s+ 2−(n+1)

)
×B1/3(a)

)
such that for all n ≥ 2 we have the following

facts:

(i) C−1
1 2n ≤ ϕn ≤ C12

n and |∇ϕn| ≤ C12
2n in Q2−n(s, a);

(ii) ϕn ≤ C12
−2n23k and |∇ϕn| ≤ C12

−2n24k in Q2−(k−1)(s, a)\Q2−k(s, a);

(iii) suppϕn ∩ ((−∞, s]× R3) ⊂ Q1/3(s, a);

(iv) |(∂t +△)ϕn| ≤ C12
−2n in (−∞, s]× R3.

Proof. It is enough to consider (s, a) = (0, 0). Then

ϕn(t, x) = 2−2nθn(t, x) = 2−2nχn(t, x)ψn(t, x). (14.13)

Here we choose ψn such that

(∂t +△)ψn(t, x) = 0 for t < 2−2n and with initial value ψn(2
−2n, x) = δ(x). (14.14)

Recall that Kt(x) = (4πt)−
3
2 e−

|x|2
4t satisfies (∂t − △)Kt(x) = 0 for t > 0 and Kt(x)|t=0 =

δ(x). ThenK−t(x) solves the analogue of problem (14.14) but with the conditionK−t(x)t=0 =
δ(x). Finally, by translation invariance we find

ψn(t, x) = K2−2n−t(x) = (4π(2−2n − t))−
3
2 e

− |x|2

4(2−2n−t) . (14.15)
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Notice that the constant factor (4π)−
3
2 is not important in the discussion. We have

ψn(t, x) = (4π(2−2n − t))−
3
2 e

− |x|2

4(2−2n−t) ≤ (4π(2−2n − t))−
3
2

≤ (4π2−2n)−
3
2 = (4π)−

3
2 23n in Q2−n = (−2−2n, 0)×B2−n (14.16)

ψn(t, x) = (4π(2−2n + |t|))−
3
2 e

− |x|2

4(2−2n+|t|)

≥ (4π(2−2n + 2−2n))−
3
2 e

− 2−2n

4(2−2n+2−2n) = (8π)−
3
2 e−

1
8 23n in Q2−n . (14.17)

Next,

∇ψn(t, x) = −2−1π−
3
2 (4(2−2n − t))−

5
2 e

− |x|2

4(2−2n−t) x

so that

|∇ψn(t, x)| ≤ 2−6π−
3
2 25n2−n = 2−6π−

3
2 24n in Q2−n . (14.18)

Keeping in mind the factor 2−2n in (14.13), (14.16)–(14.18) explain (i). We will see of course
the full estimate of ϕn shortly.
Next, still focusing on ∇ψn(t, x) only, observe that

Q2−(k−1)\Q2−k = (−2−2(k−1),−2−2k)×B2−(k−1) ∪ [−2−2k, 0)× (B2−(k−1)\B2−k) .

Now, in (−2−2(k−1),−2−2k)×B2−(k−1) we have

ψn(t, x) = (4π(2−2n + |t|))−
3
2 e

− |x|2

4(2−2n+|t|) ≤ (4π(2−2n + 2−2k))−
3
2

≤ (4π2−2k)−
3
2 = (4π)−

3
2 23k, (14.19)

while in [−2−2k, 0)× (B2−(k−1)\B2−k) we have

ψn(t, x) = (4π(2−2n + |t|))−
3
2 e

− |x|2

4(2−2n+|t|) ≤ (4π(2−2n + |t|))−
3
2 e

− 2−2k

4(2−2n+|t|)

= (4π)−
3
2 23k

(
2−2k

2−2n + |t|

) 3
2

e
− 2−2k

4(2−2n+|t|) ≤ (4π)−
3
2 23k sup

α≥0
α

3
2 e−

α
4 . (14.20)

Turning to ∇ψn(t, x), in (−2−2(k−1),−2−2k)×B2−(k−1) we have

|∇ψn(t, x)| = 2−1π−
3
2 (4(2−2n + |t|))−

5
2 e

− |x|2

4(2−2n+|t|) |x| ≤ π−
3
2 (82−2k)−

5
2 2−k

= π−
3
2 (8)−

5
2 24k, (14.21)

and in [−2−2k, 0)× (B2−(k−1)\B2−k) we have

|∇ψn(t, x)| = 2−1π−
3
2 (4(2−2n + |t|))−

5
2 e

− |x|2

4(2−2n+|t|) |x| ≤ 2−1π−
3
2 (4(2−2n + |t|))−

5
2 e

− 2−2k

4(2−2n+|t|) 2−(k−1)

= 4−
5
2π−

3
2 24k

(
2−2k

2−2n + |t|

) 5
2

e
− 2−2k

4(2−2n+|t|) ≤ 4−
5
2π−

3
2 24k sup

α≥0
α

5
2 e−

α
4 . (14.22)
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Keeping in mind the factor 2−2n in (14.13), (14.20)–(14.22) explain (ii).
If we chose χn(t, x) ≡ 1 in (14.13), that is if we chose ϕn(t, x) = 2−2nψn(t, x), we would

then have (i),(ii) and (vi), but obviously we would not have (iii). We define

χn(t, x) = X(x)Tn(t) where

X(x) =

{
1 in B1/4

0 outside B1/3
and Tn(t) =

{
1 for t ∈ (−1/16, 0)

0 for t < −1/9 and t > 2−2n−1,
(14.23)

with Tn|(−∞,0] = T independent of n, and they areX ∈ C∞
c (R3, [0, 1]) and Tn ∈ C∞

c (R, [0, 1]).
Now suppχn ⊆ Q1/3∪[0, 2−2n−1]×B1/3, and so clearly the ϕn in (14.13) satisfies (iii). Notice
now that

∇θn(t, x) = ψn(t, x)∇χn(t, x) + χn(t, x)∇ψn(t, x).

Then |χn∇ψn| ≤ |∇ψn| and the previous estimates apply, while |ψn∇χn| ≤ |ψn∇X| ≤ cψn

is smaller. Hence our ϕn in (14.13) satisfies (i) and (ii).
Finally, we have

(∂t +△)ϕn(t, x) = 2−2nψn(t, x)(∂t +△)χn(t, x) + 2 2−2n∇χn(t, x) · ∇ψn(t, x). (14.24)

Here is important to observe that χn = 1 in Q1/4 and χn = 0 in (−∞, 0]×R3 outside Q1/3.
This means that the terms in (14.24) need to be bounded only in Q1/3\Q1/4 ⊂ Q1/2\Q1/4,

where ψn ≤ (4π)−
3
2 26, by (14.19), and where |∇ψn| ≤ c02

8, by (14.20)–(14.21). From
|∇χn| ≤ |∇X| ≤ c, it follows that the 2nd term in the r.h.s. of (14.24) satisfies the desired
estimate. The same is true for the 1st, since

|(∂t +△)χn(t, x)| ≤ |T ′
n|+ |△X| ≤ |T ′|+ |△X| ≤ c1

and so

|ψn(∂t +△)χn| ≤ c1|ψn|Q1/2\Q1/4
| ≤ c1(8π)

− 3
2 26.

Proof of Proposition 14.6. We proceed proving by induction

A′
n

25n
∫
Q2−n (s,a)

|u|3dtdx < ϵ
2
3
0 for all n ≥ 4 (14.25)

Bn

2n sup
s−2−2n<t<s

∫
B2−n (a)

|u(t)|2dx+ 2n
∫∫

Q2−n (s,a)
|∇u|2 ≤ CB2

−2nϵ
2
3
0 . (14.26)
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We already saw how Bn =⇒ A′
n by Lemma 14.7. Now we prove A′

4 and how A′
4, ..., A

′
n =⇒

Bn+1.
We start with A′

n for n ≤ 4. We have the following, which uses the hypothesis (14.6) for
R = 1 and (t0, x0) = (0, 0) and which proves A′

n for n ≤ 4: for any (s, a) ∈ Q1/2(0, 0)

25·n
∫
Q2−n (s,a)

|u|3dtdx ≤ 220
∫
Q1(0,0)

|u|3dtdx ≤ 220ϵ0 < ϵ
2
3
0 for 220ϵ

1
3
0 < 1, that is for ϵ0 < 2−15.

Now we show that A′
1, ..., A

′
n =⇒ Bn+1. We consider, for t ≤ 0,∫

B1

|u(t)|2ϕn(t) + 2

∫ t

−1

∫
B1

|∇u|2ϕn ≤
∫ t

−1/9

∫
B1/3

|u|2(∂t +△)ϕn

+

∫ t

−1/9

∫
B1/3

|u|2(u · ∇)ϕn,

where we exploited that suppϕn(x) ⊂suppX ⊂ B1/3 and suppϕn(t) ⊂suppTn ⊂ (−1/9, 2−2n−1).
Let us focus now on one term of the l.h.s. at a time.
For s− 2−2n < t < s and restricting to a = 0, we have

C−1
1 2n

∫
B2−n

|u(t)|2 ≤
∫
B2−n

|u(t)|2ϕn(t) ≤
∫ t

−1/9

∫
B1/3

|u|2(∂t +△)ϕn +

∫ t

−1/9

∫
B1/3

|u|2(u · ∇)ϕn

≤ C12
−2n

∫ s

−1/9

∫
B1/3

|u|2 +
∫ s

−1/9

∫
B1/3

|u|3|∇ϕn|.

and similarly

2C−1
1 2n

∫ t

s−2−2n

∫
B2−n

|∇u|2 ≤ 2

∫ t

−1/9

∫
B1

|∇u|2ϕn ≤ C12
−2n

∫ s

−1/9

∫
B1/3

|u|2 +
∫ s

−1/9

∫
B1/3

|u|3|∇ϕn|,

so that

C−1
1 2n sup

s−2−2n<t<s

∫
B2−n

|u(t)|2 + C−1
1 2n

∫ t

s−2−2n

∫
B2−n

|∇u|2

≤ 3

2
C12

−2n

∫ s

−1/9

∫
B1/3

|u|2 + 3

2

∫ s

−1/9

∫
B1/3

|u|3|∇ϕn|. (14.27)

Now we examine the 1st term in the r.h.s. of (14.27), for which by s ≤ 0 we have

3

2
C12

−2n

∫ s

−1/9

∫
B1/3

|u|2 = 3

2
C12

−2n

∫∫
Q1/3(s,0)

|u|2

≤ 3

2
C12

−2n|Q1/3|1/3∥u∥2L3(Q1/3(s,0))
≤ 3

2
C12

−2n|Q1/3|1/3∥u∥2L3(Q1(0,0))
(14.28)

< C12
−2n 3

2

(
3−5 4π

3

)1/3

ϵ
2/3
0 = C12

−2n 3

2 · 32
(4π)1/3 ϵ

2/3
0 < C12

−2nϵ
2/3
0 < C12

−2nϵ
2/3
0 ,
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where we used ∥u∥L3(Q1(0,0)) < ϵ
1/3
0 from hypothesis (14.6) for R = 1 and (t0, x0) = (0, 0)

and 3
√
4π/6 < 1.

We consider now the 2nd term in the r.h.s. of (14.27). We have, by s ≤ 0∫ s

−1/9

∫
B1/3

|u|3|∇ϕn| ≤
∫∫

Q1/3(s,0)
|u|3|∇ϕn| ≤

∫∫
Q1/2(s,0)

|u|3|∇ϕn|

=
n∑

k=2

∫∫
Q

2−(k−1) (s,0)\Q2−k (s,0)
|u|3|∇ϕn|+

∫∫
Q2−n (s,0)

|u|3|∇ϕn|

≤
n∑

k=2

C12
−2n24k

∫∫
Q

2−(k−1)(s,0)
\Q

2−k (s,0)
|u|3 + C12

2n

∫∫
Q2−n (s,0)

|u|3

≤
n∑

k=2

C12
−2n24k

∫∫
Q

2−(k−1)(s,0)

|u|3 + C12
2n

∫∫
Q2−n (s,0)

|u|3 =
n∑

k=1

C12
−2n24k

∫∫
Q

2−k (s,0)
|u|3

≤ C12
−2nϵ

2
3
0

n∑
k=1

2−k = C12
−2nϵ

2
3
0 2

−1
n−1∑
k=0

2−k < C12
−2nϵ

2
3
0 2

−12 = C12
−2nϵ

2
3
0 .

So, returning to (14.27), we have proved

2n sup
s−2−2n<t<s

∫
B2−n

|u(t)|2 + 2n
∫ s

−1

∫
B2−n

|∇u|2 ≤ 3C2
12

−2nϵ
2
3
0 .

Then

2n+1 sup
s−2−2(n+1)<t<s

∫
B2−n−1

|u(t)|2 + 2n+1

∫∫
Q2−n−1 (s,0)

|∇u|2 ≤ 233C2
12

−2(n+1)ϵ
2
3
0

and this proves the induction argument for CB = 24C2
1 .

14.3 Proof of Theorem 14.2

In the proof of Theorem 14.2, the presence of the pressure complicates the discussion. As
before, we normalize to the case Q1(0, 0). We proceed by induction proving the following:

An

22n
∫
Q2−n (s,a)

|u|3 + 2
3
2
n

∫
Q2−n (s,a)

|p− (p)B2−n (a)|
3
2 < 2−3nϵ

2
3
0 for all n ∈ N; (14.29)

Bn

2n sup
s−2−2n<t<s

∫
B2−n (a)

|u(t)|2dx+ 2n
∫∫

Q2−n (s,a)
|∇u|2 ≤ CB2

−2nϵ
2
3
0 . (14.30)
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We prove A1, then A1, ..., An =⇒ Bn+1 and, finally, B2, ..., Bn =⇒ An. The first of these
two implications is based on the local energy inequality (14.1), while the last of the two
implications follows essentially from Sobolev’s Embedding and like in Lemma (14.7), exactly
like in the proof of Proposition 14.6, and estimate on the pressure, see Lemma 14.9 below,
which essentially bounds p in terms of |u|2.

Step 1: proof of An for n ≤ 4. We use, for (p)Br(a) =average of p in Br(a) =
|Br(a)|−1

∫
Br(a)

p,∫
Qr(s,a)

|(p)Br(a)|
q ≤

∫
Qr(s,a)

(|p|)qBr(a)
=

∫ s

s−r2

4π

3
r3(|p|)qBr(a)

dr

=

∫ s

s−r2

4π

3
r3

(
1

4π
3 r

3

∫
Br(a)

|p|

)q

dr ≤
∫ s

s−r2
dr

4πr3

3

1
4π
3 r

3

∫
Br(a)

|p|q =
∫
Qr(s,a)

|p|q,

where in the 1st inequality we used the obvious fact that |(p)Br(a)| ≤ (|p|)Br(a) and the 2nd
inequality follows by q ≥ 1 and the Jensen inequality. Using (α+ β)q ≤ 2q−1 (αq + βq) for
q ≥ 1 and for α, β ∈ R+ (this by the convexity of t→ tq), we obtain

22n
∫
Q2−n (s,a)

|u|3 + 2
3
2
n

∫
Q2−n (s,a)

|p− (p)B2−1 (a)|
3
2

≤ 22n
∫
Q2−1 (s,a)

|u|3 + 2
3
2
n+ 1

2

∫
Q2−n (s,a)

(
|p|

3
2 + |(p)B2−1 (a)|

3
2

)
≤ 22n

∫
Q2−n (s,a)

|u|3 + 2
3
2
n+ 3

2

∫
Q2−n (s,a)

|p|
3
2 ≤ 22n+

3
2

∫
Q1(0,0)

(
|u|3 + |p|

3
2

)
≤ 22n+

3
2 ϵ0 < 2−3nϵ

2
3
0

for 25n+
3
2 ϵ0 < 2−15 for n ≤ 4.

Step 2: proof of A1, ..., An =⇒ Bn+1. We consider, for t ≤ 0,∫
B1

|u(t)|2ϕn(t) + 2

∫ t

−1

∫
B1

|∇u|2ϕn ≤
∫ t

−1

∫
B1

|u|2(∂t +△)ϕn

+

∫ t

−1

∫
B1

(|u|2 + 2p)(u · ∇)ϕn,

and we conclude

C−1
1 2n sup

s−2−2n<t<s

∫
B2−n (a)

|u(t)|2 + C−1
1 2n

∫
Q2−n (s,a)

|∇u|2

≤ 3

2
C12

−2n

∫ s

−1/9

∫
B1/3(a)

|u|2 + 3

∫ s

−1/9

∫
B1/3(a)

|u|3|∇ϕn|+ 2

∫ s

−1/9

∫
B1/3(a)

pu · ∇ϕn

=: I1 + I2 + I3.

We have already seen, in (14.28), that I1 ≤ C12
−2nϵ

2/3
0 and, in the inequality after (14.28),

that I2 ≤ 3
2C12

−2nϵ
2
3
0 .
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We now focus on I3. We consider a sequence χk ∈ C∞
c ((−∞, s]×R3, [0, 1]) for k = 1, ...., n,

with

χk = 1 in Q 7
8
2−k(s, a), suppχk ∩Q1(s, a) ⊂ Q2−k(s, a) and |∇χk| ≤ 2k16. (14.31)

It is enough to pick χk(t, x) = T (22k(t − s))X(2k(x − a)) with X(y) = 1 for |y| ≤ 7
8 and

X(y) = 0 for |y| ≥ 1 and with T (l) = 1 for |l| ≤ 72

82
and T (l) = 0 |l| ≥ 1.

Now we write

I3 = 3

∫ s

−1/9

∫
B1/3(a)

pu · ∇ϕn = 3

∫ s

−1/9

∫
B1/3(a)

pu · ∇ [ϕnχ1]

= 3

n−1∑
k=1

∫
Q1/3(s,a)

pu · ∇ [ϕn (χk − χk+1)] + 3

∫
Q1/3(s,a)

pu · ∇ [ϕnχn]

= 3
n−1∑
k=1

∫
Q1/3(s,a)

(
p− (p)B

2−k (a)

)
u · ∇ [ϕn (χk − χk+1)] + 3

∫
Q1/3(s,a)

(
p− (p)B2−n (a)

)
u · ∇ [ϕnχn]

= 3
n−1∑
k=1

∫
Q

2−k (s,a)

(
p− (p)B

2−k (a)

)
u · ∇ [ϕn (χk − χk+1)] + 3

∫
Q2−n (s,a)

(
p− (p)B2−n (a)

)
u · ∇ [ϕnχn] ,

where we used suppχk ∩Q1(s, a) ⊂ Q2−k(s, a). Then we have

|I3| ≤ 3
n−1∑
k=1

∫
Q

2−k (s,a)

∣∣∣p− (p)B
2−k (a)

∣∣∣ |u| |∇ [ϕn (χk − χk+1)]|+ 3

∫
Q2−n (s,a)

∣∣∣p− (p)B2−n (a)

∣∣∣ |u| |∇ [ϕnχn]| .

Now we use the bounds

|(χk − χk+1)∇ϕn)| ≤ (χQ
2−k (s,a)\Q2−k−1 (s,a) + χQ

2−k−1 (s,a)\Q2−k−2 (s,a)) |∇ϕn|

≤ C12
−2n24(k+1) + C12

−2n24(k+2), from (ii) Lemma 14.8,

where we used the fact that χk − χk+1 = 0 in Q 7
8
2−k−1(s, a) and outside Q2−k(s, a) (in the

region {t < s}),

χn |∇ϕn| ≤ χQ2−n (s,a) |∇ϕn| ≤ C12
2n, from (i) Lemma 14.8,

|ϕn (∇χk −∇χk+1))| ≤ ϕn

(
16 2kχQ

2−k (s,a)\Q 7
8 2−k (s,a)) + 16 2k+1χQ

2−k−1 (s,a)\Q 7
8 2−k−1 (s,a))

)
≤ ϕn

(
16 2kχQ

2−k (s,a)\Q2−k−1 (s,a)) + 16 2k+1χQ
2−k−1 (s,a)\Q2−k−2 (s,a))

)
≤ 16 2kC12

−2n23(k+1) + 16 2k+1C12
−2n23(k+2) from (ii) Lemma 14.8 and (14.31)

and, finally

|ϕn∇χn| ≤ ϕn16χQ2−n (s,a)\Q 7
8 2−n (s,a)) ≤ ϕn16χQ2−n (s,a) ≤ 16C12

n from (i) Lemma 14.8 and (14.31).
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Then, for an appropriate c′0, we have

|I3| ≤ c′0C1

n−1∑
k=1

2−2n24k
∫
Q

2−k (s,a)

∣∣∣p− (p)B
2−k (a)

∣∣∣ |u|+ c′0C12
2n

∫
Q2−n (s,a)

∣∣∣p− (p)B2−n (a)

∣∣∣ |u|
= c′0C12

−2n
n∑

k=1

24k
∫
Q

2−k (s,a)

∣∣∣p− (p)B
2−k (a)

∣∣∣ |u|
≤ c′0C12

−2n
n∑

k=1

2
7
3
k2

2
3
k∥u∥L3(Q

2−k (s,a))2
k∥p− (p)B

2−k (a)∥L 3
2 (Q

2−k (s,a))

≤ c0C12
−2n

n∑
k=1

2
7
3
k

(
22k
∫
Q

2−k (s,a)
|u|3 + 2

3
2
k

∫
Q

2−k (s,a)
|p− (p)B2−n (a)|

3
2

)

≤ c′0C12
−2n

n∑
k=1

2−
2
3
kϵ

2
3
0 ≤ c′02

−2nC1ϵ
2
3
0

1

2
2
3 − 1

.

So we have shown that A1, ..., An imply

I1 + I2 + I3 ≤ C1 (1 + 2 + c0) 2
−2nϵ

2
3
0 for c0 =

c′0

2
2
3 − 1

.

Then

2n sup
s−2−2n<t<s

∫
B2−n (a)

|u(t)|2 + 2 2n
∫
Q2−n (s,a)

|∇u|2 ≤ (1 + 2 + c0)C
2
12

−2nϵ
2
3
0

and so also

2n+1 sup
s−2−2n−2<t<s

∫
B2−n (a)

|u(t)|2 + 2n+1

∫
Q2−n−1 (s,a)

|∇u|2

≤ 2 (1 + 2 + c0)C
2
12

−2(n+1)ϵ
2
3
0 .

So, if we set CB = 2 (1 + 2 + c0)C
2
1 we have A1, ..., An =⇒ Bn+1.

Proof of B2, ..., Bn =⇒ An.
Recall that we need the bound

22n
∫
Q2−n (s,a)

|u|3 + 2
3
2
n

∫
Q2−n (s,a)

|p− (p)B2−n (a)|
3
2 < 2−3nϵ

2
3
0 .

The first term in this formula can be bounded using (14.11), that is, using Bn

22n
∫
Q2−n (s,a)

|u|3 ≤ C0

[
2n sup

s−2−2n<t<s

∫
B2−n (a)

|u(t)|2 + 2n
∫
Q2−n (s,a)

|∇u|2
] 3

2

≤ C0

[
CB2

−2nϵ
2
3
0

] 3
2

=
1

4
4C0C

3
2
B2

−3nϵ0 <
1

4
2−3nϵ

2
3
0 for ϵ0 < 4−3C−3

0 C
− 9

2
B .
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To finish, we will prove

2
3
2
n

∫
Q2−n (s,a)

|p− (p)B2−n (a)|
3
2 <

3

4
2−3nϵ

2
3
0 . (14.32)

To this effect we will use the formula, valid for 0 < r ≤ ρ/2,

r−
3
2

∫
Qr(s,a)

|p− (p)Br(a)|
3
2 < C2r

− 3
2

∫
Q2r(s,a)

|u|3

+ C2r
5

[
sup

s−r2<t<s

∫
2r<|y−a|<ρ

|u(t)|2

|y − a|4

] 3
2

(14.33)

+ C2
r3

ρ
9
2

∫
Qρ(s,a)

(
|u|3 + |p|

3
2

)
.

We apply this formula for r = 2−n and ρ = 1/2, to get

2
3
2
n

∫
Q2−n (s,a)

|p− (p)B2−n (a)|
3
2 < C22

3
2
n

∫
Q

2−(n−1) (s,a)
|u|3

+ C22
−5n

[
sup

s−2−2n<t<s

∫
2−(n−1)<|y−a|<1/2

|u(t)|2

|y − a|4

] 3
2

(14.34)

+ C22
9
2 2−3n

∫
Q1/2(s,a)

(
|u|3 + |p|

3
2

)
.

Then we estimate the three terms on the r.h.s. of (14.34).
For the first, we have, using inequality (14.11),

C22
3
2
n

∫
Q

2−(n−1) (s,a)
|u|3 = 4C22

− 1
2
n22(n−1)

∫
Q

2−(n−1) (s,a)
|u|3 (14.35)

≤ 4C2C02
− 1

2
n

[
2n−1 sup

s−2−2(n−1)<t<s

∫
B

2−(n−1) (a)
|u(t)|2dx+ 2n−1

∫
Q

2−(n−1) (s,a)
|∇u|2

] 3
2

≤ 4C2C02
− 1

2
n

[
CB2

−2(n−1)ϵ
2
3
0

] 3
2

=
1

4
16C2C0C

3
2
B2

− 1
2
n2−3(n−1)ϵ0 ≤

(
32C2C0C

3
2
Bϵ

1
3
0

)
1

4
2−3nϵ

2
3
0 <

1

4
2−3nϵ

2
3
0 .

The last term in (14.34) is bounded using
∫
Q1(0,0)

(
|u|3 + |p|

3
2

)
< ϵ0, which yields

C22
9
2 2−3n

∫
Q1/2(s,a)

(
|u|3 + |p|

3
2

)
≤
(
4C22

9
2 2−3nϵ

1
3
0

)
1

4
2−3nϵ

2
3
0 <

1

4
2−3nϵ

2
3
0 . (14.36)
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We consider now the middle term in (14.34). We have

sup
s−2−2n<t<s

∫
2−(n−1)<|y−a|<1/2

|u(t)|2

|y − a|4
= sup

s−2−2n<t<s

n−1∑
k=2

∫
2−k<|y−a|<2−(k−1)

|u(t)|2

|y − a|4

≤ 24
n−1∑
k=2

24(k−1) sup
s−2−2(k−1)<t<s

∫
B

2−(k−1) (a)
|u(t)|2 = 24

n−2∑
k=1

24k sup
s−2−2k<t<s

∫
B

2−k (a)
|u(t)|2

≤ 24CBϵ
2
3
0

n−2∑
k=1

2k ≤ 24CBϵ
2
3
0 2

n.

Then

C22
−5n

[
sup

s−2−2n<t<s

∫
2−(n−1)<|y−a|<1/2

|u(t)|2

|y − a|4

] 3
2

(14.37)

≤ C22
−5n

[
24CBϵ

2
3
0 2

n

] 3
2

<
1

4

(
26C2C

3
2
Bϵ

1
3
0

)
2−2nϵ

2
3
0 <

1

4
2−2nϵ

2
3
0 .

So, summing up (14.35)–(14.37), we get (14.32), and this ends the proof ofB2, ..., Bn =⇒ An.

We will prove now formula (14.33).

Lemma 14.9. There exists C2 such that for p ∈ L
3
2 (Qρ) and u ∈ L3(Qρ)∩L∞((−ρ2, 0), L2(Bρ))

and for −△p = ∂i∂j(uiuj) in Qρ, then for any 0 < r < ρ/2 we have

r−
3
2

∫
Qr

|p− (p)Br |
3
2 < C2r

− 3
2

∫
Q2r

|u|3

+ C2r
5

[
sup

−r2<t<0

∫
2r<|y|<ρ

|u(t, y)|2

|y|4

] 3
2

(14.38)

+ C2
r3

ρ
9
2

∫
Qρ

(
|u|3 + |p|

3
2

)
.

Proof. We will start by assuming u ∈ L∞((−ρ2, 0), CN (Bρ)) with N ≫ 1. This in turn
implies that p(t) ∈ L∞((−ρ2, 0)), Ck(Bρ′)) for a large k < N and for ρ′ < ρ: this is
analogous to Lemma 11.5 valid for the pair (u, ω).

Let now ϕ ∈ C∞
c (R3, [0, 1]) with

ϕ(x) =

{
1 in B3ρ/4

0 outside Bρ
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with |∇ϕ| ≤ cρ−1 and |∂i∂jϕ| ≤ cρ−2. Then, like in Lemma 11.2, we have

ϕp = (−△)−1(−△)ϕp =
1

4π|x|
∗ ((−△)ϕp) =

1

4π|x|
∗ (−ϕ△p− p△ϕ− 2∇ϕ · ∇p)

=
1

4π|x|
∗ (ϕ∂i∂j(uiuj)− p△ϕ− 2∇ϕ · ∇p)

=
1

4π|x|
∗ (∂i∂j(ϕuiuj)− ∂i (uiuj∂jϕ)− ∂j(uiuj∂iϕ) + uiuj∂j∂iϕ− p△ϕ− 2∇ · (p∇ϕ) + 2p△ϕ)

= ∂i
1

4π|x|
∗ (∂j(ϕuiuj)− 2uiuj∂iϕ− 2p∂jϕ) +

1

4π|x|
∗ (uiuj∂j∂iϕ+ p△ϕ)

= − xi
4π|x|3

∗ (∂j(ϕuiuj)− 2uiuj∂iϕ− 2p∂jϕ) +
1

4π|x|
∗ (uiuj∂j∂iϕ+ p△ϕ)

Now we can apply Lemma 11.6 and conclude that, for some constant C,

ϕp = − 1

4π
P.V.

(
δij
|x|3

− 3xixj
|x|5

)
∗ (ϕuiuj) + Cϕ|u|2

+
xi

4π|x|3
∗ (2uiuj∂iϕ+ 2p∂jϕ) +

1

4π|x|
∗ (uiuj∂j∂iϕ+ p△ϕ) .

We have p = ϕp in Q3ρ/4. We write

p11 := − 1

4π
P.V.

((
δij
|x|3

− 3xixj
|x|5

))
∗ (χB2rϕuiuj) + Cϕ|u|2

p12 := − 1

4π
P.V.

((
δij
|x|3

− 3xixj
|x|5

))
∗ ((1− χB2r)ϕuiuj).

Then

∥p11∥
L

3
2 (Br)

≤ C
∑
i,j

∥ϕuiuj∥
L

3
2 (B2r)

≤ C
∑
i,j

∥uiuj∥
L

3
2 (B2r)

≤ C ′∥u∥2L3(B2r)
.

and so also

∥p11 − (p11)Br∥L 3
2 (Qr)

≤ 2C ′∥u∥2L3(Q2r)

which is equivalent to ∫
Qr

|p11 − (p11)Br |
3
2 ≤ (2C ′)

3
2

∫
Q2r

|u|3.

Next, we observe that by mean value there exists x0(t) ∈ Br so that (p12)Br = p21(x0(t))

p12(t, x)− (p12)Br(t) =

∫ 1

0
∇p12(t, s(x− x0(t)) + x0(t)) · (x− x0(t))ds
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and so

∥p12 − (p12)Br∥L 3
2 (Qr)

≤ 2r

∫ 1

0
ds∥∇p12(s(x− x0(t)) + x0(t))∥

L
3
2 (Qr)

≤ 2r|Qr|
2
3 ∥∇p12∥L∞(Qr)

= 2r (4π/3)
2
3 r

10
3

1

4π
∥∇
(
δij
|x|3

− 3xixj
|x|5

)
∗ ((1− χB2r)ϕuiuj)∥L∞(Qr)

≤ Cr
13
3

∥∥∥∥∥
∫
ρ>|y|≥2r

1

|x− y|4
|u(t, y)|2dy

∥∥∥∥∥
L∞(Qr)

≤ 24Cr
13
3

∥∥∥∥∥
∫
ρ>|y|≥2r

1

|y|4
|u(t, y)|2dy

∥∥∥∥∥
L∞(Qr)

,

where we used |x− y| = |y|
(
1− |x|

|y|

)
≥ |y|2−1.

So we conclude∫
Qr

|p12 − (p12)Br |
3
2 ≤ 26C

3
2 r

3
2 r5

(
sup

−r2<t<0

∫
ρ>|y|≥2r

1

|y|4
|u(t, y)|2dy

) 3
2

.

Now we set

p2 = p21 + p22 =
xi

2π|x|3
∗ uiuj∂iϕ+

xi
4π|x|3

∗ p∂jϕ.

Then, also from |∇ϕ| ≤ cρ−1, supp|∇ϕ| ⊆ Bρ \B3ρ/4 and, for x ∈ Br,

|x− y| = |y|
(
1− |x|

|y|

)
≥ |y|

(
1− r

3
4ρ

)
≥ |y|

(
1−

1
2ρ
3
4ρ

)
= |y|

(
1− 2

3

)
=

|y|
3
,

we obtain

∥p21 − (p21)Br∥L 3
2 (Br)

≤ 2r|Br|
2
3 ∥∇p21∥L∞(Br) ≤ Cr3ρ−1

∫
3
4
ρ≤|y|≤ρ

|u(y)|2

|x− y|3
dy

≤ 33Cr3ρ−1

∫
3
4
ρ≤|y|≤ρ

|u(y)|2

|y|3
dy ≤ 43Cr3ρ−4

∫
3
4
ρ≤|y|≤ρ

|u(y)|2dy

≤ 43Cr3ρ−4|{3
4
ρ ≤ |y| ≤ ρ}|

1
3

(∫
3
4
ρ≤|y|≤ρ

|u(y)|3dy

) 2
3

≤ C ′Cr3ρ−3

(∫
3
4
ρ≤|y|≤ρ

|u(y)|3dy

) 2
3

.

Then ∫
Qr

|p21 − (p21)Br |
3
2 ≤ (C ′)

3
2 r

9
2 ρ−

9
2

∫
Qρ

|u|3dy.

By the exact same argument,∫
Qr

|p22 − (p22)Br |
3
2 ≤ (C ′)

3
2 r

9
2 ρ−

9
2

∫
Qρ

|p|
3
2dy.
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Finally we set

p3 = p31 + p32 =
1

4π|x|
∗ (uiuj∂j∂iϕ) +

1

4π|x|
∗ (p△ϕ).

They can be treated like p21 and p22, due to |∂i∂jϕ| ≤ cρ−2. Indeed, for example

∥p31 − (p31)Br∥L 3
2 (Br)

≤ 2r|Br|
2
3 ∥∇p31∥L∞(Br) ≤ Cr3ρ−2

∫
3
4
ρ≤|y|≤ρ

|u(y)|2

|x− y|2
dy

≤ 32Cr3ρ−2

∫
3
4
ρ≤|y|≤ρ

|u(y)|2

|y|2
dy ≤ 42Cr3ρ−4

∫
3
4
ρ≤|y|≤ρ

|u(y)|2dy

≤ C ′Cr3ρ−3

(∫
3
4
ρ≤|y|≤ρ

|u(y)|3dy

) 2
3

etc.

All the above estimates have been obtained by assuming u ∈ L∞
t C

N
x (Qρ). In general, we

consider a sequence L∞((−ρ2, 0), CN
x (Bρ)) ∋ un

n→∞−−−→ u, with the convergence occurring
in L3(Qρ) ∩ L∞((−ρ2, 0), L2(Bρ)).

15 A second result of Caffarelli, Kohn and Nirenberg

In this section we will the following theorem.

Theorem 15.1. There exists absolute constants ϵ1 > 0 s.t. if (u, p) is a suitable weak
solution of the NS in QR(t0, x0) for some R > 0 and we have either

lim sup
r→0

1

r

∫
Qr(t0,x0)

|∇u|2 < ϵ1 or (15.1)

lim sup
r→0

1

r
sup

t0−r2<t<t0

∫
Br(x0)

|u|2 < ϵ1, (15.2)

then u ∈ L∞(Qρ(t0, x0))) for some ρ ∈ (0, R).

Specifically, we will show that

(2ρ)−2

∫
Q2ρ(t0,x0)

(
|u|3 + |p|

3
2

)
dtdx < ϵ∗0, (15.3)

with ϵ∗0 the small positive constant in Theorem 14.2. Then, the conclusion follows from
Theorem 14.2.

Like in the previous section, we will at first prove a simplified version of this theorem,
where there is no pressure.
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15.1 A simplified result, without pressure

We oversimplify and we assume that there is no pressure in the local energy inequality
(13.5), so that, as before in (14.5) we have∫

BR(x0)
|u(s)|2ϕ(s)dx+ 2

∫ s

t0−R2

∫
BR(x0)

|∇u|2ϕ ≤
∫ s

t0−R2

∫
BR(x0)

|u|2(∂t +△)ϕ (15.4)

+

∫ s

t0−R2

∫
BR(x0)

|u|2(u · ∇)ϕ for all ϕ ∈ C∞
c (QR(t0, x0), [0,∞)).

Then using (15.4) it is possible to prove rigorously the following.

Proposition 15.2. There exists and absolute constant ϵ1 > 0 such that if for some R > 0

u ∈ L∞((t0 −R2, t0), L
2(BR(x0),R3)) and ∇u ∈ L2(QR(t0, x0)) (15.5)

and u satisfies (15.4) then, if u satisfies either (15.1) or (15.2), there exists ρ ∈ (0, R) s.t.

ρ−2

∫
Qρ(t0,x0)

|u|3 < ϵ∗0. (15.6)

Before proving Proposition 15.2 we give a sketch. First of all, we can assume (t0, x0) =
(0, 0). Next, suppose that (15.1) is true and define

Ẽ(r) =
1

r
sup

−r2<t<0

∫
Br

|u|2.

Then it will be shown that there exists a fixed θ ∈ (0, 1) s.t. Ẽ(θr) ≤ 2−1ϵ1 + 2−1Ẽ(r) for
all r ∈ (0, r0] for r0 > 0 small enough. Then

Ẽ(θnr) ≤ 2−1ϵ1 + 2−1Ẽ(θn−1r) ≤
(
2−1 + 2−2

)
ϵ1 + 2−2Ẽ(θn−2r) ≤

n∑
j=1

2−jϵ1 + 2−nẼ(r)

so that, assuming that Ẽ(r) is uniformly bounded in (0, r0], then picking n sufficiently large,
we find that there exists an r1 > 0 s.t. Ẽ(r) < 2ϵ1 for all r ∈ (0, r1]. Then, by (14.11)

r−2

∫
Qr

|u|3dx ≤ C0

[
r−1 sup

−r2<t<0

∫
Br

|u(t)|2dx+ r−1

∫
Qr

|∇u|2
] 3

2

≤ C0 [3ϵ1]
3
2

= C03
3
2 ϵ

3
2
1 < ϵ∗0 for ϵ1 ∈

(
0, C

− 2
3

0 3−1 (ϵ∗0)
2
3

)
and this, in turn, gives (15.6). So the key point of Proposition 15.2 is that if (15.1) is true,
then Ẽ(r) < 2ϵ1 and also a similar case with (15.1) and (15.2) interchanged.

The proof of Proposition 15.2 exploits the following lemma, about cutoffs.
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Lemma 15.3. There exists a constant C3 ≥ 1 such that, for any fixed r > 0 and θ ∈ (0, 1/2],
there exists ϕ ∈ C∞

c (R4, [0,∞)) such that suppϕ ∩Q1 ⊆ Qr,

ϕ ≥ C−1
3 (θr)−1 in Qθr and (15.7)

0 ≤ ϕ ≤ C3(θr)
−1 , |∇ϕ| ≤ C3(θr)

−2 and |(∂t +△)ϕ| ≤ C3θ
2r−3 in Qr. (15.8)

Proof. We write

ϕ(t, x) = (θr)2ϑ(t, x)ψ(t, x). (15.9)

Here we choose ψ such that

(∂t +△)ψ(t, x) = 0 for t < (θr)2 and with initial value ψ((θr)2, x) = δ(x). (15.10)

Then we know that

ψ(t, x) = K(θr)2−t(x) = (4π((θr)2 − t))−
3
2 e

− |x|2

4((θr)2−t) . (15.11)

Then we have

ψ(t, x) = (4π((θr)2 − t))−
3
2 e

− |x|2

4((θr)2−t) ≤ (4π((θr)2 − t))−
3
2

≤ (4π(θr)2)−
3
2 = (4π)−

3
2 (θr)−3 in Qr = (−r2, 0)×Br (15.12)

ψ(t, x) = (4π((θr)2 + |t|))−
3
2 e

− |x|2

4((θr)2+|t|)

≥ (4π2(θr)2)−
3
2 e

− θ2r2

4(θr)2 = (8π)−
3
2 e−

1
4 (θr)−3 in Qθr. (15.13)

Next,

∇ψ(t, x) = −2−1π−
3
2 (4((θr)2 − t))−

5
2 e

− |x|2

4((θr)2−t) x

= −2−1π−
3
2 (4((θr)2 − t))−2e

− |x|2

4((θr)2−t)
x√

4((θr)2 − t)

so in Qr

|∇ψ(t, x)| ≤ 2−6π−
3
2 (θr)−4e

− |x|2

4((θr)2−t)
|x|√

4((θr)2 − t)
≤ 2−6π−

3
2 (θr)−4 sup

α≥0
αe−α2

. (15.14)

We define, for X ∈ C∞
c (R3, [0, 1]) and T, η ∈ C∞

c (R, [0, 1]),

ϑ(t, x) = X(x/r)T (t/r2)η(t) where

X(x) =

{
1 in B1/2

0 outside B1
and T (t) =

{
1 for t ∈ (−1/4, 1/4)

0 for |t| ≥ 1,
(15.15)
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and

η(t) =

{
1 for t ≤ r2/4
0 for t ≥ r2/2

Now we check if (15.9) satisfies the desired results. First of all, in Q1 we have ϕ(t, x) ̸= 0
only if X(x/r) ̸= 0, that is only if |x| > 1, and T (t/r2) ̸= 0, that is only if −r2/4 < t < 0.
Hence it is true that suppϕ ∩Q1 ⊆ Qr.
Now, let us look at the estimates. In Qθr we have

ϕ(t, x) = (θr)2X(x/r)T (t/r2)η(t)ψ(t, x) = (θr)2ψ(t, x) ≥ (8π)−
3
2 e−

1
8 (θr)−1,

yielding (15.7) and in Qr we have

ϕ(t, x) = (θr)2X(x/r)T (t/r2)η(t)ψ(t, x) ≤ (θr)2ψ(t, x) ≤ (4π)−
3
2 (θr)−1,

so yielding the first estimate in (15.8).
Turning to the gradient, we have

∇ϕ(t, x) = (θr)2ψ(t, x)T (t/r2)η(t)r−1∇X(x/r) + (θr)2T (t/r2)η(t)r−1X(x/r)∇ψ(t, x).

In Qr we have

(θr)2ψ(t, x)T (t/r2)η(t)r−1|∇X(x/r)| ≤ ∥∇X∥L∞(θr)2ψ(t, x) ≤ ∥∇X∥L∞(4π)−
3
2 (θr)−1,

and

(θr)2T (t/r2)η(t)r−1X(x/r)|∇ψ(t, x)| ≤ (θr)2|∇ψ(t, x)| ≤ Cθ−2r−2.

Finally, we have

(∂t +△)ϕ(t, x) = (θr)2ψ(t, x)(∂t +△)
(
X(x/r)T (t/r2)η(t)

)
+ 2(θr)2r−1T (t/r2)η(t)∇X(x/r) · ∇ψ(t, x).

In Qr, using |(∇X)(x/r)| ≠ 0 =⇒ 1/2 ≤ |x/r| ≤ 1, we have

2r−1(θr)2T (t/r2)η(t) |(∇X)(x/r) · ∇ψ(t, x)| ≤ θ2r |(∇X)(x/r)| 2−6π−
3
2 θ−5r−4e−

1
24θ2

|x|
r

≤ 2−6θ2π−
3
2 r−3∥∇X∥L∞ sup

θ>0
θ−5e−

1
24θ2 ≤ Cθ2r−3.

Finally, in Qr, using also T ′(t/r2) ̸= 0 =⇒ 1/4 ≤ |t/r2| ≤ 1

(θr)2ψ(t, x)|(∂t +△)
(
X(x/r)T (t/r2)η(t)

)
| = (θr)2ψ(t, x)|(∂t +△)

(
X(x/r)T (t/r2)

)
|

≤ (θr)2(4π((θr)2 + |t|))−
3
2 e

− |x|2

4((θr)2+|t|) r−2
(
X(x/r)

∣∣T ′(t/r2)
∣∣+ T (t/r2) |(△X)(x/r)|

)
≤ θ2(4π)−

3
2 (1/4)−

3
2 ∥T ′∥L∞(R) + θ2(4π)−

3
2 (θr)−3e−

1
24θ2 ∥△X∥L∞ ≤ Cθ2r−3.

Proof of Proposition 15.2. In the proof it is enough to consider (t0, x0) = (0, 0). The
first important step is the following.
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Lemma 15.4. For C0 the constant in Lemma 14.7, C3 the constant in Lemma 15.3 and
C4 the constant of the Poincaré inequality (15.17) reminded in the proof, we have

max

(
sup

−(θr)2<t<0

1

θr

∫
Bθr

|u(t)|2, 1

θr

∫ t

−(θr)2

∫
Bθr

|∇u|2
)

≤ 3C2
3C

2
3
0 θ

2

[
r−1 sup

−r2<t<0

∫
Br

|u(t)|2 + r−1

∫
Qr

|∇u|2
]

(15.16)

+ 4C2
4C

2
3θ

−6

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
)(

r−1

∫
Qr

|∇u|2
)
.

Proof. Applying (15.4) for the ϕ of Lemma 15.3, we get∫
B1

|u(t)|2ϕ(t) + 2

∫ t

−1

∫
B1

|∇u|2ϕ ≤
∫ t

−1

∫
B1

|u|2(∂t +△)ϕ

+

∫ t

−1

∫
B1

(
|u|2 −

(
|u|2
)
Br

)
(u · ∇)ϕ.

Using the estimates in Lemma 15.3, we obtain

1

θr

∫
Bθr

|u(t)|2 + 1

θr

∫ t

−(θr)2

∫
Bθr

|∇u|2 ≤ C2
3θ

2r−3

∫
Qr

|u|2

+ C2
3θ

−2r−2

∫
Qr

∣∣∣|u|2 − (|u|2)Br

∣∣∣ |u|

≤ C2
3θ

2r−3|Qr|
1
3 ∥u∥2L3(Qr)

+ C2
3θ

−2r−2

∫
Qr

∣∣∣|u|2 − (|u|2)Br

∣∣∣ |u|

= C2
3θ

2r−3+ 5
3

(
4π

3

) 1
3

∥u∥2L3(Qr)
+ C2

3θ
−2r−2

∫
Qr

∣∣∣|u|2 − (|u|2)Br

∣∣∣ |u|

≤ 2C2
3θ

2

(
r−2

∫
Qr

|u|3
) 2

3

+ C2
3θ

−2r−2

∫
Qr

∣∣∣|u|2 − (|u|2)Br

∣∣∣ |u|.

Now we have∫
Br

∣∣∣|u|2 − (|u|2)Br

∣∣∣ |u| ≤ ∥|u|2 −
(
|u|2
)
Br

∥
L

3
2 (Br)

∥u∥L3(Br) ≤ C4∥∇|u|2∥L1(Br)∥u∥L3(Br)

≤ 2C4∥u∥L2(Br)∥∇u∥L2(Br)∥u∥L3(Br),

where we used the Poincaré inequality

∥|u|2 −
(
|u|2
)
Br

∥
L

3
2 (Br)

≤ C4∥∇|u|2∥L1(Br), (15.17)

see [10] Theorem 8.11, where, by scale invariance, the constant C4 does not depend on r.
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Then, from Hölder with 1
6 + 1

2 + 1
3 = 1∫

Qr

∣∣∣|u|2 − (|u|2)Br

∣∣∣ |u| ≤ 2C4∥∇u∥L2(Qr)∥u∥L3(Qr)∥∥u∥L2(Br)∥L6(−r2,0)

≤ 2r
1
3C4∥∇u∥L2(Qr)∥u∥L3(Qr) sup

−r2<t<0

∥u∥L2(Br)

= 2C4r
2

(
r−2

∫
Qr

|u|3
) 1

3
(
r−1

∫
Qr

|∇u|2
) 1

2

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
) 1

2

.

Then we conclude

1

θr

∫
Bθr

|u(t)|2 + 1

θr

∫ t

−(θr)2

∫
Bθr

|∇u|2 ≤ 2C2
3θ

2

(
r−2

∫
Qr

|u|3
) 2

3

+ 2C4C
2
3θ

−2

(
r−2

∫
Qr

|u|3
) 1

3
(
r−1

∫
Qr

|∇u|2
) 1

2

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
) 1

2

≤ 2C2
3θ

2

(
r−2

∫
Qr

|u|3
) 2

3

+ C2
3θ

2

(
r−2

∫
Qr

|u|3
) 2

3

+ 4C2
4C

2
3θ

−6

(
r−1

∫
Qr

|∇u|2
)(

r−1 sup
−r2<t<0

∫
Br

|u(t)|2
)
.

Then, using the inequality

r−2

∫
Qr

|u|3 ≤ C0

[
r−1 sup

−r2<t<0

∫
Br

|u(t)|2 + r−1

∫
Qr

|∇u|2
] 3

2

, (15.18)

we obtain the following, which is (15.16),

max

(
sup

−(θr)2<t<0

1

θr

∫
Bθr

|u(t)|2, 1

θr

∫ t

−(θr)2

∫
Bθr

|∇u|2
)

≤ 3C2
3C

2
3
0 θ

2

[
r−1 sup

−r2<t<0

∫
Br

|u(t)|2 + r−1

∫
Qr

|∇u|2
]

+ 4C2
4C

2
3θ

−6

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
)(

r−1

∫
Qr

|∇u|2
)
.

Having obtained inequality (15.16) we move to the conclusion of the proof of Proposition
15.2.
We assume either (15.1) or (15.2). For definiteness we assume (15.1) , that is

lim sup
r→0

1

r

∫
Qr

|∇u|2 < ϵ1
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but, assuming instead (15.2), that is

lim sup
r→0

1

r
sup

t0−r2<t<t0

∫
Br

|u|2 < ϵ1,

the argument is the same, due to the symmetry with respect to the above quantities of
inequality (15.16). Then for r sufficiently small, we have

1

r

∫
Qr

|∇u|2 < 2ϵ1.

Then, by (15.16), we have

sup
−(θr)2<t<0

1

θr

∫
Bθr

|u(t)|2 ≤ 3C2
3C

2
3
0 θ

2

[
r−1 sup

−r2<t<0

∫
Br

|u(t)|2 + 2ϵ1

]

+ 8C2
4C

2
3θ

−6ϵ1

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
)
.

Setting now

Ẽ(r) :=
1

r
sup

−r2<t<0

∫
Br

|u|2.

we have

Ẽ(θr) ≤ 6C2
3C

2
3
0 θ

2ϵ1 +

(
3C2

3C
2
3
0 θ

2 + 8C2
4C

2
3θ

−6ϵ1

)
Ẽ(r).

Now if we use θ ≤ 1/2 so small that 6C2
3C

2
3
0 θ

2 < 1/2 and ϵ1 > 0 so small that 8C2
4C

2
3θ

−6ϵ1 <
1/4, we obtain

Ẽ(θr) ≤ 1

2
ϵ1 +

1

2
Ẽ(r) for all r ∈ (0, r0] for r0 > 0 small enough. (15.19)

This implies

Ẽ(θnr) ≤ ϵ1 + 2−nẼ(r). (15.20)

We assume now

lim sup
r→0

Ẽ(r) <∞, (15.21)

which implies Ẽ(r) ≤ C5 <∞ for r ∈ (0, r1]. Then (15.20) implies Ẽ(θnr) ≤ ϵ1 + 2−nC5 ≤
2ϵ1 for n > log2

(
C5ϵ

−1
1

)
and 0 < r < min{r0, r1}. This implies Ẽ(r) ≤ 2ϵ1 for 0 < r < r2,
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with r2 = θn0 min{r0, r1}, for a fixed n0 > log2
(
C5ϵ

−1
1

)
. Inserting Ẽ(r) ≤ 2ϵ1 and (15.1) in

(15.18) we obtain

r−2

∫
Qr

|u|3 ≤ C03
3/2ϵ

3
2
1 < ϵ∗0 for ϵ1 < 3

(
C−1
0 ϵ∗0

) 2
3 , (15.22)

yielding (15.6). To complete the proof of Proposition 15.2, we need to prove (15.21). If
(15.21) is false, there exists Rn ↘ 0 with Ẽ(Rn) ↗ ∞. Using (15.19),

Ẽ(Rn) ≤
1

2
ϵ1 +

1

2
Ẽ(θ−1Rn) ≤ ϵ1 + 2−mnẼ(θ−mnRn)

for mn :=
[∣∣∣ log(Rn/r0)

log θ

∣∣∣] which is the largest mn s.t. θ−mnRn ≤ r0, so that we have θr0 ≤
θ−mnRn ≤ r0. This implies

Ẽ(Rn) ≤
1

2
ϵ1 +

1

2
Ẽ(θ−1Rn) ≤ ϵ1 + 2−1 sup

θr0≤r≤r0

Ẽ(r)

which, from Ẽ(Rn)
n→∞−−−→ ∞, implies supθr0≤r≤r0 sup−r2<t<0

∫
Br

|u|2 = ∞. But then, this

would imply u ̸∈ L∞((−R2, 0), L2(BR,R3)), contradicting the hypothesis (15.5).

15.2 Proof of Theorem 15.1

We can focus on the case (t0, x0) = (0, 0). Then using (14.1) like in Sect. 15.1, we have∫
B1

|u(t)|2ϕ(t) + 2

∫ t

−1

∫
B1

|∇u|2ϕ ≤
∫ t

−1

∫
B1

|u|2(∂t +△)ϕ

+

∫ t

−1

∫
B1

(
|u|2 −

(
|u|2
)
Br

)
(u · ∇)ϕ+

∫ t

−1

∫
B1

p(u · ∇)ϕ,

with the test function from Lemma 15.3. Then, by Lemma 15.3 we get

1

θr

∫
Bθr

|u(t)|2 + 1

θr

∫ t

−(θr)2

∫
Bθr

|∇u|2 ≤ C2
3θ

2r−3

∫
Qr

|u|2

+ C2
3θ

−2r−2

∫
Qr

∣∣∣|u|2 − (|u|2)Br

∣∣∣ |u|+ C2
3θ

−2r−2

∫
Qr

|p| |u|.

Now, by the discussion in Sect. 15.1, see (15.16), we have

1

θr

∫
Bθr

|u(t)|2 + 1

θr

∫ t

−(θr)2

∫
Bθr

|∇u|2 ≤ 3C2
3C

2
3
0 θ

2

[
r−1 sup

−r2<t<0

∫
Br

|u(t)|2 + r−1

∫
Qr

|∇u|2
]

+ 4C2
4C

2
3θ

−6

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
)(

r−1

∫
Qr

|∇u|2
)
+ C2

3θ
−2r−1

∫
Qr

|p| |u|.
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We focus now on the additional term

C2
3θ

−2r−2

∫
Qr

|p| |u| ≤ C2
3θ

−2r−2∥u∥L3(Qr)∥p∥L 3
2 (Qr)

= C2
3θ

(
r−2

∫
Qr

|u|3
) 1

3

θ−3

(
r−2

∫
Qr

|p|
3
2

) 2
3

≤ C2
3θ

2

(
r−2

∫
Qr

|u|3
) 2

3

+ C2
3θ

−6

(
r−2

∫
Qr

|p|
3
2

) 4
3

.

So if we apply (15.18), we obtain

max

(
1

θr

∫
Bθr

|u(t)|2, 1

θr

∫ t

−(θr)2

∫
Bθr

|∇u|2
)

≤ 4C2
3C

2
3
0 θ

2

[
r−1 sup

−r2<t<0

∫
Br

|u(t)|2 + r−1

∫
Qr

|∇u|2
]

+ 4C2
4C

2
3θ

−6

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
)(

r−1

∫
Qr

|∇u|2
)
+ C2

3θ
−6

(
r−2

∫
Qr

|p|
3
2

) 4
3

.

Now introduce the estimate(
(θr)−2

∫
Qθr

|p|
3
2

) 4
3

≤ 2C
4
3
5 θ

−2

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
)(

r−1

∫
Qr

|∇u|2
)

+ 2C
4
3
5 θ

4
3

(
r−2

∫
Qr

|p|
3
2

) 4
3

. (15.23)

We need now to exploit one of (15.1)–(15.2). We choose

lim sup
r→0

1

r

∫
Qr

|∇u|2 < ϵ1. (15.24)

Then, for r0 > 0 small enough, we have

1

r

∫
Qr

|∇u|2 < 2ϵ1 for r ∈ (0, r0]. (15.25)

Then we have

1

θr

∫
Bθr

|u(t)|2 ≤ 4C2
3C

2
3
0 θ

2

[
r−1 sup

−r2<t<0

∫
Br

|u(t)|2 + 2ϵ1

]

+ 8C2
4C

2
3θ

−6ϵ1

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
)

+ C2
3θ

−6

(
r−2

∫
Qr

|p|
3
2

) 4
3

and(
(θr)−2

∫
Qθr

|p|
3
2

) 4
3

≤ 4C
4
3
5 ϵ1θ

−2

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
)

+ 2C
4
3
5 θ

4
3

(
r−2

∫
Qr

|p|
3
2

) 4
3

.
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Then we obtain

1

θr

∫
Bθr

|u(t)|2 + θ−7

(
(θr)−2

∫
Qθr

|p|
3
2

) 4
3

≤ 4C2
3C

2
3
0 θ

2

[
r−1 sup

−r2<t<0

∫
Br

|u(t)|2 + 2ϵ1

]

+ 8C2
4C

2
3θ

−6ϵ1

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
)

+ C2
3θθ

−7

(
r−2

∫
Qr

|p|
3
2

) 4
3

+ 4C
4
3
5 ϵ1θ

−9

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
)

+ 2C
4
3
5 θ

4
3 θ−7

(
r−2

∫
Qr

|p|
3
2

) 4
3

.

Setting

E(r) :=
1

r

∫
Br

|u(t)|2 + θ−7

(
r−2

∫
Qr

|p|
3
2

) 4
3

,

we obtain

E(θr) ≤ 8C2
3C

2
3
0 θ

2ϵ1 +

(
4C2

3C
2
3
0 θ

2 + 8C2
4C

2
3θ

−6ϵ1 + C2
3θ + 4C

4
3
5 ϵ1θ

−9 + 2C
4
3
5 θ

4
3

)
E(r).

Choosing θ small enough, we can assume 8C2
3C

2
3
0 θ

2 < 1/2 and C2
3θ+2C

4
3
5 θ

4
3 < 1/5, so that

E(θr) ≤ 5−1ϵ1 +

(
3

10
+ 8C2

4C
2
3θ

−6ϵ1 + 4C
4
3
5 ϵ1θ

−9

)
E(r).

We choose ϵ1 so that 8C2
4C

2
3θ

−6ϵ1 + 4C
4
3
5 ϵ1θ

−9 < 1/5. Then we obtain

E(θr) ≤ 2−1ϵ1 + 2−1E(r).

Then, proceeding as in Sect. 15.1, if we know that lim supr→0E(r) < ∞, we conclude
E(r) ≤ 2ϵ1 for 0 < r < r2 for some appropriately small r2. Then we get

r−2

∫
Qr

|u|3 ≤ C03
3/2ϵ

3
2
1 < 2−1ϵ∗0 for ϵ1 < 3

(
2−1C−1

0 ϵ∗0
) 2

3 , (15.26)

Similarly

r−2

∫
Qr

|p|
3
2 ≤ θ

21
4 E

3
4 (r) ≤ θ

21
4 2

3
4 ϵ

3
4
1 < 2−1ϵ∗0 for ϵ1 < 2−72−

28
3 (ϵ∗0)

4
3 .

Then we get (15.3). To complete the proof, up to (15.23), we need to show lim supr→0E(r) <
∞. By the argument in (15.1), having lim supr→0E(r) = ∞ would imply

sup
θr0≤r≤r0

[
sup

−r2<t<0

∫
Br

|u|2 +
∫
Qr

|p|
3
2

]
= ∞.
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But this would imply either u ̸∈ L∞((−R2, 0), L2(BR,R3)) or p ̸∈ L3/2(QR,R), contradict-
ing the hypotheses.

Finally, we state the lemma needed for (15.23).

Lemma 15.5. There exists C5 such that for p ∈ L
3
2 (Qr) and u ∈ L3(Qr)∩L∞((−r2, 0), L2(Br))

and for −△p = ∂i∂j(uiuj) in Qr, then for any 0 < θ < 1/2 we have

(θr)−2

∫
Qθr

|p|
3
2 ≤ C5θ

−3/2

(
r−1 sup

−r2<t<0

∫
Br

|u(t)|2
) 3

4 (
r−1

∫
Qr

|∇u|2
) 3

4

+ C5θr
−2

∫
Qr

|p|
3
2 . (15.27)

Proof. By scaling, it suffices to consider case r = 1. We will start by assuming u ∈ C∞(Q1).

This in turn implies that p(t) ∈ L
3
2 ((−1, 0)), Ck(B1)) for all k. Let now ϕ ∈ C∞

c (R3, [0, 1])
with

ϕ(x) =

{
1 in B3/4

0 outside B4/5.

Let Uij = ui(uj − (uj)1) where (uj)r = (uj)Br = v|Brv|−1
∫
Br
uj . Notice that −△p =

∂i∂jUij . Then, by Lemma 11.1, we have

ϕp = (−△)−1(−△)ϕp =
1

4π|x|
∗ ((−△)ϕp) =

1

4π|x|
∗ (−ϕ△p− p△ϕ− 2∇ϕ · ∇p)

=
1

4π|x|
∗ (ϕ∂i∂jUij − p△ϕ− 2∇ϕ · ∇p)

=
1

4π|x|
∗ (∂i∂j(ϕUij)− ∂i (Uij∂jϕ)− ∂j(Uij∂iϕ) + Uij∂j∂iϕ− p△ϕ− 2∇ · (∇ϕp) + 2p△ϕ)

= ∂i
1

4π|x|
∗ (∂j(ϕUij)− 2Uij∂iϕ− 2p∂jϕ) +

1

4π|x|
∗ (Uij∂j∂iϕ+ p△ϕ)

= − xi
4π|x|3

∗ (∂j(ϕUij)− 2Uij∂iϕ− 2p∂jϕ) +
1

4π|x|
∗ (Uij∂j∂iϕ+ p△ϕ)

Like in Lemma 14.9 we conclude

ϕp = − 1

4π
P.V.

(
δij
|x|3

− 3xixj
|x|5

)
∗ (ϕUij) +

xi
4π|x|3

∗ (2Uij∂iϕ+ 2p∂jϕ) +
1

4π|x|
∗ (Uij∂j∂iϕ+ p△ϕ) .

We have p = ϕp in Qθ. We write

p1 = − 1

4π
P.V.

((
δij
|x|3

− 3xixj
|x|5

))
∗ (ϕUij).
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Then

∥p1∥
L

3
2 (Bθ)

≤ C
∑
i,j

∥ϕUij∥
L

3
2 (R3)

≤ C
∑
i,j

∥ui(uj − (uj)1)∥
L

3
2 (B4/5)

≤ C ′∥u∥L2(B1)∥uj − (uj)1∥L6(B1)

≤ C∥u∥L2(B1)∥∇u∥L2(B1).

Next, we write

p2 =
xi

4π|x|3
∗ Uij∂iϕ =

1

2π

∫
3/4≤|y|≤4/5

xi − yi
4π|x− y|3

Uij∂i(y)ϕ(y).

Then, using Yang’s inequality,

∥p2∥
L

3
2 (Bθ)

≲ ∥ 1

|x|2
∥L1(1/4≤|x|≤2)∥ui(uj − (uj)1)∥

L
3
2 (B4/5)

≤ C∥u∥L2(B1)∥∇u∥L2(B1).

Similarly, for

p3 =
1

4π|x|
∗ Uij∂j∂iϕ

we have

∥p3∥
L

3
2 (Bθ)

≲ ∥ 1

|x|
∥L1(1/4≤|x|≤2)∥ui(uj − (uj)1)∥

L
3
2 (B4/5)

≤ C∥u∥L2(B1)∥∇u∥L2(B1).

For

p4 =
1

4π|x|
∗ p△ϕ

we have

∥p4∥
L

3
2 (Bθ)

≤ cθ2∥p4∥L∞(Bθ) ≲ θ2∥p∥L1(B1) ≤ Cθ2∥p∥
L

3
2 (B1)

and, similarly, for

p5 =
xi

4π|x|3
∗ 2p∂jϕ

we have

∥p5∥
L

3
2 (Bθ)

≤ Cθ2∥p∥
L

3
2 (B1)

.

Thus, we have

∥p∥
L

3
2 (Bθ)

≤ C∥u∥L2(B1)∥∇u∥L2(B1) + Cθ2∥p∥
L

3
2 (B1)
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and so

∥p∥
3
2

L
3
2 (Qθ)

≤ C

∫ 0

−θ2
∥u∥

3
2

L2(B1)
∥∇u∥

3
2

L2(B1)
dt+ Cθ3∥p∥

3
2

L
3
2 (Q1)

≤ C∥∥u∥
3
2

L2(B1)
∥L4(−θ2,0)∥∥∇u∥

3
2

L2(B1)
∥L4/3(−θ2,0) + Cθ3∥p∥

3
2

L
3
2 (Q1)

≤ C∥∥u∥L2(B1)∥
3
2

L6(−θ2,0)
∥∇u∥

3
2

L2(Q1)
+ Cθ3∥p∥

3
2

L
3
2 (Q1)

≤ Cθ2
1
6
· 3
2 ∥u∥

3
2

L∞((−θ2,0),L6(B1))
∥∇u∥

3
2

L2(Q1)
+ Cθ3∥p∥

3
2

L
3
2 (Q1)

,

that is ∫
Qθ

|p|
3
2 ≤ Cθ1/2

(
sup

−1<t<0

∫
B1

|u(t)|2
) 3

4
(∫

Q1

|∇u|2
) 3

4

+ Cθ3
∫
Qr

|p|
3
2 ,

which is (15.27) for r = 1.

A Appendix. On the Bochner integral

For this part see [3]. Let X be a Banach space.

Definition A.1 (Strong measurability). Let I be an interval. A function f : I → X is
strongly measurable if there exists a set E of measure 0 and a sequence (fn(t)) in Cc(I,X)
s.t. fn(t) → f(t) for any t ∈ I\E.

Remark A.2. Notice that when dimX < ∞ a function is measurable (in the sense that
f−1(B) is measurable for any Borel set B) if an only if it is strongly measurable in the
above sense. Indeed if f is strongly measurable in the above sense then as a point wise limit
of measurable functions f is measurable, see Theorem 1.14 p. 14 Rudin [15]. Viceversa
if f is measurable, then f is strongly measurable in the above sense, see the Corollary to
Lusin’s Theorem in Rudin [15] p. 54.

Example A.3. Consider {xj}nj=1 in X and {Aj}nj=1 measurable sets in I with |Aj | <∞ and
with Aj ∩Ak = ∅ for j ̸= k. Then we claim that the simple function

f(t) :=

n∑
j=1

xjχAj (t) : I → X (A.1)

is measurable. Indeed, see Rudin [15] p. 54, there are sequences {φj,k}k∈N in C0
c (I,R) with

φj,k(t)
k→∞→ χAj (t) a.e. and hence

C0
c (I,R) ∋ fk(t) :=

n∑
j=1

xjφj,k(t)
k→∞→ f(t) a.e. in I.
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Proposition A.4. If (fn) is a sequence of strongly measurable functions from I to X
convergent a.e. to a f : I → X, then f is strongly measurable.

Proof. There is an E with |E| = 0 s.t. fn(t)
n→∞→ f(t) for any t ∈ I\E. Consider for any

n a sequence Cc(I,X) ∋ fn,k
k→∞→ fn a.e. We will suppose first that |I| < ∞. By applying

Egorov Theorem to {∥fn,k−fn∥}k∈N there is En ⊂ I with |En| ≤ 2−n s.t. ∥fn,k−fn∥
k→∞→ 0

uniformly in I\En Let k(n) be s.t. ∥fn,k(n) − fn∥ < 1/n in I\En and set gn = fn,k(n). Set
F := E

⋃
(
⋂

m

⋃
n>mEn). Then |F | = 0. Indeed for any m

|F | ≤ |E|+
∞∑

n=m

|En| ≤ |E|+
∞∑

n=m

2−n m→∞→ 0.

Let t ∈ I\F . Since t ̸∈ E we have fn(t)
n→∞→ f(t). Furthermore, for n large enough we have

t ∈ I\En. Indeed

t ̸∈
⋂
m

⋃
n>m

En ⇒ ∃ m s.t. t ̸∈
⋃
n>m

En ⇒ t ̸∈ En ∀ n > m.

Then ∥gn(t)− fn(t)∥ < 1/n and gn(t)
n→∞→ f(t). So f(t) is measurable in the case |I| <∞.

Now we consider the case |I| = ∞. We express I = ∪nIn for an increasing sequence of

intervals with |In| < ∞. Consider for any n a sequence Cc(In, X) ∋ fn,k
k→∞→ f a.e. in In.

Then by Egorov Theorem to ∥fn,k − fn∥ there is En ⊂ In with |En| ≤ 2−n s.t. fn,k
k→∞→ fn

uniformly in In\En Let k(n) be s.t. ∥fn,k(n)−fn∥ < 1/n in In\En and set gn = fn,k(n). Then
defining F like above, the remainder of the proof works exactly like for the case |I| <∞.

Example A.5. Consider a sequence {xj}j∈N in X and a sequence {Aj}j∈N of measurable
sets in I with |Aj | <∞ and with Aj ∩Ak = ∅ for j ̸= k. Then we claim

f(t) :=
∞∑
j=1

xjχAj (t) (A.2)

is measurable. Indeed if we set fn(t) :=
n∑

j=1

xjχAj (t), then we have lim
n→∞

fn(t) = f(t)

for any t, since if t ̸∈ ∪∞
j=1Aj both sides are 0, and if t ∈ An0 then for n ≥ n0 we have

fn(t) = xn0 = f(t). Hence by Proposition A.4 the function f is measurable.
When the sum in (A.2) is finite then the function f is called simple.

Example A.6. Consider a sequence {xj}j∈N in X and a sequence {Aj}j∈N of measurable
sets in I where again Aj ∩Ak = ∅ for j ̸= k but we allow |Aj | = ∞. Then

f(t) :=

∞∑
j=1

xjχAj (t) (A.3)
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is measurable. To see this consider fn(t) = χ[−n,n](t)f(t). Then

fn(t) =

∞∑
j=1

xjχAj∩[−n,n](t)

and by Example A.5 we know that each fn(t) is strongly measurable. Since fn(t) → f(t)
for any t ∈ I we conclude by Proposition A.4 that f is strongly measurable.

Another natural definition of measurability is the following one.

Definition A.7 (Weak measurability). Let I be an interval. A function f : I → X is weakly
measurable if for any x′ ∈ X ′ the function t→ ⟨x′, f(t)⟩X′X is a measurable function I → R.

Obviously, strongly measurable implies weakly measurable. Let us explore the vicev-
ersa.

Definition A.8. Let I be an interval. A function f : I → X is almost separably valuable
if there exists a 0 measure set N ⊂ I s.t. f(I\N) is separable.

The following lemma shows that strongly measurable functions are almost separably
valuable.

Lemma A.9. If f : I → X is strongly measurable with (fn(t)) a sequence in Cc(I,X) s.t.
fn(t) → f(t) for any t ∈ I\E for a 0 measure set E ⊂ I then f(I\E) is separable and there
exists a separable Banach subspace Y ⊆ X with f(I\E) ⊆ Y .

Proof. First of all fn(I ∩ Q) is a countable dense set in fn(I). So fn(I) is separable. In a
separable metric space any subspace is separable. So fn(I\E) is separable. The closed vector
space Y generated by ∪nfn(I\E) is separable. Indeed let C ⊆ ∪nfn(I\E) be a countable
set dense in ∪nfn(I\E). Let SpanQ(C) be the vector space on Q generated by C. Then
SpanQ(C) is dense in Y . For C = {x1, x2, ...} we have SpanQ(C) = ∪∞

n=1SpanQ({x1, ..., xn}).
This proves that SpanQ(C) is countable and that Y is separable.

Example A.10. Let X be a Hilbert space with an orthonormal basis {et}t∈R. Then the map
f : R → X given by f(t) = et is not strongly measurable. This follows from the fact that it
is not almost separably valuable.
On the other hand if x ∈ X then t→ ⟨f(t), x⟩ is different from 0 only on a countable subset
of R, and as such it is measurable. Hence f is weakly measurable.
Notice however that if C ⊂ [0, 1] is the standard Cantor set (which has 0 measure and has
same cardinality of R) and if {ẽt}t∈C is another basis of X, then the map

g(t) =

{
ẽt for t ∈ C and

0 otherwise

is weakly measurable (like f and for the same reasons) and is almost separably valuable.
Pettis Theorem, which we prove below, implies that g : R → X is strongly measurable.

The following lemma will be used for Pettis Theorem.
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Lemma A.11. Let X be a separable Banach space and let S′ be the unit ball of the dual
X ′. Then X ′ is separable for the weak topology σ(X ′, X), see Brezis [2] p.62, that is there
exists a sequence {x′n} in S′ s.t. for any x′ ∈ S′ there exists a subsequence {x′nk

} s.t. for
any x ∈ X we have lim

k→∞
⟨x′nk

, x⟩X′X = ⟨x′, x⟩X′X .

Proof. Let {xn} be dense in X. For any n consider

Fn : S′ → Rn defined by Fn(x
′) := (⟨x′, x1⟩X′X , ..., ⟨x′, xn⟩X′X).

Since Rn is separable, and so is Fn(S
′), there exists a sequence {x′n,k}k s.t. {Fn(x

′
n,k)}k is

dense in Fn(S
′). Obviously {x′n,k}n,k can be put into a sequence. For any x′ ∈ S′ for any n

there is a kn s.t. |⟨x′ − x′n,kn , xi⟩X′X | < 1/n for all i ≤ n. This implies that for any fixed i

we have lim
n→∞

⟨x′n,kn , xi⟩X′X = ⟨x′, xi⟩X′X . By density this holds for any x ∈ X.

Proposition A.12 (Pettis’s Theorem). Consider f : I → X. Then f is strongly measurable
if and only if it is weakly measurable and almost separable valuable.

Proof. The necessity has been already proved, so we focus on the sufficiency only. By
modifying f we can assume that f(I) is separable. By replacing X by a smaller space, we
can assume that X is separable.
Fix now x ∈ X. Then we claim that t→ ∥f(t)− x∥ is measurable. Indeed for any a > 0

{t ∈ I : ∥f(t)− x∥ ≤ a} = ∩x′∈S′{t ∈ I : |⟨x′, f(t)− x⟩X′X | ≤ a}.}

Using the fact that S′ is separable in the weak topology σ(X ′, X) and the notation in
Lemma A.11, we have

{t ∈ I : ∥f(t)− x∥ ≤ a} = ∩n∈N{t ∈ I : |⟨x′n, f(t)− x⟩X′X | ≤ a}.

Since the set in the r.h.s. is measurable, we conclude that t→ ∥f(t)−x∥ is measurable and
so our claim is correct.
Consider now n ≥ 1. Since f(I) is separable there is a sequence of balls {B(xj ,

1
n)}j≥0

whose union contains f(I). Set now{
ω
(n)
0 := {t : f(t) ∈ B(x0,

1
n)} ,

ω
(n)
j := {t : f(t) ∈ B(xj ,

1
n)}\ ∪k<j ω

(n)
k

and

fn(t) :=
∞∑
j=0

xjχω
(n)
j

(t).

Notice that ∪j≥0ω
(n)
j = I and they are pairwise disjoint and measurable. By Example A.6

we know that fn : I → X is strongly measurable. Furthermore, for any t ∈ I there is a j

s.t. t ∈ ω
(n)
j and this implies

1

n
> ∥f(t)− xj∥ = ∥f(t)− fn(t)∥.
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In other words, ∥f(t)− fn(t)∥ ≤ 1/n for any t ∈ I. Then fn(t) → f(t) for any t, and so by
Proposition A.4 the function f : I → X is strongly measurable.

Example A.13. Consider the map f : (0, 1) → L∞(0, 1) defined by t
f→ χ(0,t). This map is

not almost separable valued. Indeed t ̸= s implies ∥f(t) − f(s)∥∞ = 1. If f was almost
separable valued then there would exist a 0 measure subset E in (0, 1) and a countable set
N = {tn}n in (0, 1)\E such that for any t ∈ (0, 1)\(E ∪N ) there would exist a subsequence

nk with f(tnk
)
k→∞→ f(t) in L∞(0, 1). But this is impossible since ∥f(t)− f(tnk

)∥∞ = 1.
On the other hand f : (0, 1) → L2(0, 1) defined in the same way, is strongly measurable.
First of, since L2(0, 1) is separable, it is almost separable valued. Next for any given any
w ∈ L2(0, 1) we have

⟨f(t), w⟩L2(0,1) =

∫ t

0
w(x)dx

which is a continuous, and hence measurable, function. So f is also weakly measurable and
hence it is strongly measurable by Pettis Theorem.

Recall that in Remark A.2 we mentioned another possible notion of measurability, that
is that f : I → X could be defined as measurable if f−1(A) is a measurable set for any open
subset A ⊆ X. We have the following fact.

Proposition A.14. Consider f : I → X. Then f is strongly measurable ⇔ it almost
separably valuable and f−1(A) is a measurable set for any open subset A ⊆ X.

Proof. The ”⇐” follows from the fact that for any a open subset of R and for any x′ ∈ X
the set A = {x ∈ X : ⟨x, x′⟩X,X′ ∈ a} is open and for g(t) := ⟨f(t), x′⟩X,X′ we have
f−1(A) = g−1(a). So the latter being measurable it follows that g is measurable and
hence f is weakly measurable. Hence by Pettis Theorem we conclude that f is strongly
measurable.
We now assume that f is strongly measurable. We know from Lemma A.9 that f is almost
separably valuable. Let U be an open subset of X. Let (fn)n be a sequence in C0

c (I,X) with
fn(t)

n→∞→ f(t) a.e. outside a 0 measure set E ⊂ I. Let Ur = {x ∈ X : dist(x, U c) > r}.
Then

f−1(U)\E = (∪m≥1 ∪n≥1 ∩k≥nf
−1
k (U 1

m
))\E. (A.4)

To check this, notice that if t belongs to the left hand side , then f(t) ∈ U 1
m0

for some

m0 and, since fn(t)
n→∞→ f(t), for n large we have fk(t) ∈ U 1

m1

if k ≥ n for m1 > m0

preassigned. Viceversa if t belongs to the right hand side, then there exist n and m s.t.

fk(t) ∈ U 1
m

for all k ≥ n. Then by fk(t)
k→∞→ f(t) it follows that f(t) ∈ U 1

m
with the latter

a subset of U . This proves (A.4). Since the r.h.s. is a measurable set, this completes the
proof.
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Definition A.15 (Bochner integrability). A strongly measurable function f : I → X is
Bochner–integrable if there exists a sequence (fn(t)) in Cc(I,X) s.t.

lim
n→∞

∫
I
∥fn(t)− f(t)∥Xdt = 0. (A.5)

Notice that ∥fn(t)− f(t)∥X is measurable.

Example A.16. Consider the situation of Example A.13 of a Hilbert space X with an or-
thonormal basis {et}t∈R and the map f : R → X, which we saw is not strongly measurable
and hence is not Bochner–integrable. Notice that f is Riemann integrable in any compact
interval [a, b] with

∫ b
a f(t)dt = 0.

To see this recall that the Riemann integral is, if it exists, the limit∫ b

a
f(t)dt = lim

|△|→0

∑
Ij∈△

f(tj)|Ij | with tj ∈ Ij arbitrary

where △ varies among all possible decompositions of [a, b] and |△| = maxI∈△ |I|. We have

∥
∑
Ij∈△

etj |Ij |∥2 =
∑
j,k

⟨etj , etk⟩|Ij ||Ik| ≤ 2
∑
j

|Ij ||△| = 2|△|(b− a)
|△|→0→ 0.

Proposition A.17. Let f : I → X be Bochner–integrable. Then there exists an x ∈ X s.t.
if (fn(t)) is a sequence in Cc(I,X) satisfying (A.5) then we have

lim
n→∞

xn = x where xn :=

∫
I
fn(t)dt. (A.6)

Proof. First of all we check that xn is Cauchy. This follows immediately from (A.5) and
from

∥xn − xm∥X = ∥
∫
I
(fn(t)− fm(t))dt∥X ≤

∫
I
∥fn(t)− fm(t))∥Xdt

≤
∫
I
∥fn(t)− f(t))∥Xdt+

∫
I
∥f(t)− fm(t))∥Xdt.

Let us set x = limxn. Let (gn(t)) be another sequence in Cc(I,X) satisfying (A.5). Then
lim
∫
I gn = x by

∥
∫
I
gn(t)dt− x∥X = ∥

∫
I
(gn(t)− fn(t))dt+

∫
I
fn(t)dt− x∥X

≤
∫
I
∥gn(t)− fn(t)∥Xdt+ ∥

∫
I
fn(t)dt− x∥Xdt

≤
∫
I
∥gn(t)− f(t)∥Xdt+

∫
I
∥fn(t)− f(t)∥Xdt+ ∥

∫
I
fn(t)dt− x∥Xdt.
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Definition A.18. Let f : I → X be Bochner–integrable and let x ∈ X be the corresponding
element obtained from Proposition A.17. The we set

∫
I f(t)dt = x.

Theorem A.19 (Bochner’s Theorem). Let f : I → X be strongly measurable. Then f is
Bochner–integrable if and only if ∥f∥ is Lebesgue integrable. Furthermore, we have

∥
∫
I
f(t)dt∥ ≤

∫
I
∥f(t)∥dt. (A.7)

Proof. Let f be Bochner–integrable. Then there is a sequence (fn(t)) in Cc(I,X) satisfying
(A.5). We have ∥f∥ ≤ ∥fn∥ + ∥f − fn∥. Since both functions in the r.h.s. are Lebesgue
integrable and ∥f∥ is measurable it follows that∥f∥ is Lebesgue integrable.

Conversely let ∥f∥ be Lebesgue integrable. Then there exist a sequence (gn(t)) in
Cc(I,R) and g ∈ L1(I) s.t.

∫
I |gn(t)−∥f(t)∥|dt→ 0 and |gn(t)| ≤ g(t). In fact it is possible

to choose such a sequence so that ∥gn − gm∥L1(I) < 2−n for any n and any m ≥ n (just by
extracting an appropriate subsequence from a starting gn

4). Then if we set

SN (t) :=

N∑
n=1

|gn(t)− gn+1(t)| (A.8)

we have ∥SN∥L1(I) ≤ 1. Since {SN (t)}N∈N is increasing, the limit S(t) := limn→+∞ Sn(t)
remains defined, is finite a.e. and ∥S∥L1(I) ≤ 1. Then |gn(t)| ≤ |g1(t)| + S(t) =: g(t)
everywhere, where g ∈ L1(I). Notice that lim

n→∞
gn(t) is convergent almost everywhere (it

convergent in all points where limn→+∞ Sn(t) is convergent). By dominated convergence it
follows that this limit holds also in L1(I) and hence it is equal to ∥f∥.
Let (fn(t)) in Cc(I,X) s.t. fn(t) → f(t) a.e. (this sequence exists by the strong measura-
bility of f(t)). Set

un(t) :=
|gn(t)|

∥fn(t)∥+ 1
n

fn(t).

Notice that (un(t)) is in Cc(I,X). We have

∥un(t)∥ ≤ |gn(t)| ∥fn(t)∥
∥fn(t)∥+ 1

n

≤ |gn(t)| ≤ g(t).

We have (where the 2nd equality holds because because lim
n→∞

gn(t) = ∥f(t)∥ and lim
n→∞

∥fn(t)∥ =

∥f(t)∥ a.e.)

lim
n→∞

un(t) = lim
n→∞

|gn(t)|
∥fn(t)∥+ 1

n

fn(t) = lim
n→∞

fn(t) = f(t) a.e..

4Suppose we start with a given {gn}. Then for any 2−n there exists Nn s.t. n1, n2 > Nn implies
∥gn1 − gn2∥L1(I) < 2−n. Let now {φ(n)} be a strictly increasing sequence in N s.t. φ(n) > Nn for any n.

Then ∥gφ(n) − gφ(m)∥L1(I) < 2−n for any pair m > n. Rename gφ(n) as gn.
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Then we have

lim
n→∞

∥un(t)− f(t)∥ = 0 a.e. with ∥un(t)− f(t)∥ ≤ g(t) + ∥f(t)∥ ∈ L1(I).

By dominated convergence we conclude

lim
n→∞

∫
I
∥un(t)− f(t)∥dt = 0.

This implies that f is Bochner–integrable. Finally, we have

∥
∫
I
f(t)dt∥ = lim

n→∞
∥
∫
I
un(t)dt∥ ≤ lim

n→∞

∫
I
∥un(t)∥dt =

∫
I
∥f(t)∥dt.

Corollary A.20 (Dominated Convergence). Consider a sequence (fn(t)) of Bochner–integrable
functions I → X, g : I → R Lebesgue integrable and let f : I → X. Suppose that

∥fn(t)∥ ≤ g(t) for all n

lim
n→∞

fn(t) = f(t) for almost all t.

Then f is Bochner–integrable with
∫
I f(t) = limn

∫
I fn(t).

Proof. By Dominated Convergence in L1(I,R) we have
∫
I ∥f(t)∥ = limn

∫
I ∥fn(t)∥. By

Proposition A.4, as a pointwise limit a.e. of a sequence of strongly measurable functions, f
is strongly measurable. By Bochner’s Theorem f is Bochner–integrable. By the triangular
inequality

lim sup
n

∥
∫
I
(f(t)− fn(t))∥ ≤ lim

n

∫
I
∥f(t)− fn(t)∥ = 0

where the last inequality follows from ∥f(t) − fn(t)∥ ≤ ∥f(t)∥ + g(t) and the standard
Dominated Convergence.

Definition A.21. Let p ∈ [1,∞]. We denote by Lp(I,X) the set of equivalence classes
of strongly measurable functions f : I → X s.t. ∥f(t)∥ ∈ Lp(I,R). We set ∥f∥Lp(I,X) :=
∥∥f∥∥Lp(I,R).

Proposition A.22. (Lp(I,X), ∥ ∥Lp) is a Banach space.

Proof. The proof is similar to the case X = R , see [2].
(Case p = ∞). Let (fn) be Cauchy sequence in L∞(I,X). For any k ≥ 1 there is a Nk s.t.

∥fn − fm∥L∞(I,X) ≤
1

k
for all n,m ≥ Nk.

So there exists an Ek ⊂ I with |Ek| = 0 s.t.

∥fn(t)− fm(t)∥X ≤ 1

k
for all n,m ≥ Nk and for all for t ∈ I\Ek.
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Set E := ∪kEk. Then for any t ∈ I\E the sequence (fn(t)) is convergent. So a function
f(t) remains defined with

∥fn(t)− f(t)∥X ≤ 1

k
for all n ≥ Nk and for all for t ∈ I\E. (A.9)

By Proposition A.4 the function f is strongly measurable. By (A.9) we have f ∈ L∞(I,X)
and

∥fn − f∥L∞(I,X) ≤
1

k
for all n ≥ Nk

and so fn → f in L∞(I,X).

(Case p < ∞). Let (fn) be Cauchy sequence in Lp(I,X) and let (fnk
) be a subsequence

with
∥fnk

− fnk+1
∥Lp(I,X) ≤ 2−k.

Set now

gl(t) =
l∑

k=1

∥fnk
(t)− fnk+1

(t)∥X

Then
∥gl∥Lp(I,R) ≤ 1.

By monotone convergence we have that (gl(t))l converges a.e. to a g ∈ Lp(I,R). Further-
more, for 2 ≤ k < l

∥fnk
(t)− fnl

(t)∥X =

l−1∑
j=k

∥fnj (t)− fnj+1(t)∥X ≤ g(t)− gk−1(t).

Then a.e. the sequence (fnk
(t)) is Cauchy in X for a.e. t and so it converges for a.e. t to

some f(t). By Proposition A.4 the function f is strongly measurable. Furthermore,

∥f(t)− fnk
(t)∥X ≤ g(t).

It follows that f − fnk
∈ Lp(I,X), and so also f ∈ Lp(I,X). Finally we claim ∥f −

fnk
∥Lp(I,X) → 0. First of all we have ∥f(t)− fnk

(t)∥X → 0 for a.e. t and

∥f(t)− fnk
(t)∥pX ≤ gp(x)

by dominated convergence we obtain that ∥f − fnk
∥X → 0 in Lp(I,R). Hence fnk

→ f in
Lp(I,X).

Proposition A.23. C∞
c (I,X) is a dense subspace of Lp(I,X) for p <∞.
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Proof. We split the proof in two parts. We first show that C0
c (I,X) is a dense subspace of

Lp(I,X) for p < ∞. For p = 1 this follows from the definition of integrable functions in
Definition A.15. For 1 < p < ∞ going through the proof of Bochner’s Theorem A.19, the
functions un considered in that proof can be taken to belong to C0

c (I,X) and converge to
f in Lp(I,X).

The second part of the proof consists in showing that C∞
c (I,X) is a dense subspace of

C0
c (I,X) inside Lp(I,X) for p < ∞. Let f ∈ C0

c (I,X). We consider ρ ∈ C∞
c (R, [0, 1]) s.t.∫

ρ(x)dx = 1. Set ρϵ(x) := ϵ−1ρ(x/ϵ). Then for ϵ > 0 small enough ρϵ ∗ f ∈ C∞
c (I,X). We

extend both f and ρϵ ∗ f on R setting them 0 in R\I. In this way ρϵ ∗ f ∈ C∞
c (R, X) and

f ∈ C0
c (R, X) and it is enough to show that ρϵ ∗ f

ϵ→0+→ f in Lp(R, X)..
We have

ρϵ ∗ f(t)− f(t) =

∫
R
(f(t− ϵs)− f(s))ρ(s)dy

so that, by Minkowski inequality and for ∆(s) := ∥f(· − s)− f(·)∥Lp , we have

∥ρϵ ∗ f(t)− f(t)∥Lp ≤
∫

|ρ(s)|∆(ϵ s)ds.

Now we have lims→0∆(s) = 0 and ∆(s) ≤ 2∥f∥Lp . So, by dominated convergence we get

lim
ϵ↘0

∥ρϵ ∗ f − f∥Lp = lim
ϵ↘0

∫
|ρ(s)|∆(ϵ s)ds = 0.

So
lim
ϵ↘0

ρϵ ∗ f = f in Lp(R, X). (A.10)

Proceeding as in the previous proof, we can prove the following.

Proposition A.24. Let p ∈ [1,∞) and f ∈ Lp(R, X). Set

Thf(t) = h−1

∫ t+h

t
f(s)ds for t ∈ R and h ̸= 0.

Then Thf ∈ Lp(R, X) ∩ L∞(R, X) ∩ C0(R, X) and Thf
h→0→ f in Lp(R, X) and for almost

every t.

Definition A.25. We denote by D′(I,X) the space L(D(I,R), X).

Corollary A.26. Let f ∈ L1
loc(I,X) be such that f = 0 in D′(I,X). Then f = 0 a.e.

Proof. First of all we have
∫
J fdt = 0 for any J ⊂ I compact. Indeed, let (φn) ∈ D(I) with

0 ≤ φn ≤ 1 and φn → χJ a.e. Then∫
J
fdt = lim

n→+∞

∫
J
φnfdt = 0
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where we applied Dominated Convergence for the last equality.
Set now f(t) = f(t) in J and f(t) = 0 outside J . Then Thf = 0 for all h > 0. Then f(t) = 0
for a.e. t. So f(t) = 0 for a.e. t ∈ J . This implies f(t) = 0 for a.e. t ∈ R.

Corollary A.27. Let g ∈ L1
loc(I,X), t0 ∈ I, and f ∈ C(I,X) given by f(t) =

∫ t
t0
g(s)ds.

Then:

(1) f ′ = g in D′(I,X);

(2) f is differentiable a.e. with f ′ = g a.e.

Proof. It is not restrictive to consider the case I = R and g ∈ L1(R, X). We have

Thg(t) = h−1

∫ t+h

t
g(s)ds =

f(t+ h)− f(t)

h
.

By Proposition A.24 Thg
h→0→ g for almost every t. This yields (2).

For φ ∈ D(R) we have

⟨f ′, φ⟩ = −
∫
R
f(t)φ′(t)dt.

Furthermore

lim
h→0

φ(t+ h)− φ(t)

h
= φ′(t) in L∞(R).

So

⟨f ′, φ⟩ = − lim
h→0

∫
R
f(t)

φ(t+ h)− φ(t)

h
dt = − lim

h→0

∫
R
φ(t)

f(t− h)− f(t)

h
dt

= − lim
h→0

∫
R
φ(t)T−hg(t)dt = ⟨g, φ⟩.

Definition A.28. Let p ∈ [1,∞]. We denote by W 1,p(I,X) the space formed by the
f ∈ Lp(I,X) s.t. f ′ ∈ D(I,X) is also f ′ ∈ Lp(I,X) and we set ∥f∥W 1,p = ∥f∥Lp + ∥f ′∥Lp .

Lemma A.29. Let u, g ∈ L1(I,X) be such that

⟨u(t2), f⟩XX∗ − ⟨u(t1), f⟩XX∗ =

∫ t2

t1

⟨g(s), f⟩XX∗ ds for any f ∈ X∗.

Then ∂tu = g in D′(I,X).

Proof. We immediately obtain ⟨u(t), f⟩XX∗ ∈ AC(I) with derivative ∂t ⟨u(t), f⟩XX∗ =
⟨g(t), f⟩XX∗ . For any φ ∈ D(I) and any f ∈ X∗〈
−
∫
I
u(t)φ′(t)dt, f

〉
XX∗

= −
∫
I
⟨u(t), f⟩XX∗ φ

′(t)dt =

∫
I
⟨g(t), f⟩XX∗ φ(t)dt =

〈∫
I
g(t)φ(t)dt, f

〉
XX∗
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which yields

−
∫
I
u(t)φ′(t)dt =

∫
I
g(t)φ(t) for all φ ∈ D(I)

and so ∂tu = g in D′(I,X).
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