# MRS Magnetic Resonance Spectroscopy

In vivo biochemistry

## **Chemical shift**



www.imaios.com/en/e-Courses/e-MRI/Image-quality-and-artifacts/chemical-shift

## Chemical shift and MR spectrum



© IMAIOS 2010



www.imaios.com/en/e-Courses/e-MRI/Image-quality-and-artifacts/chemical-shift



6

2

0

proportional to the number of <sup>1</sup>H nuclei

δ<sub>ppm</sub>

8

## **Proton spectroscopy**



**Figure 1.** Typical in vivo H-1 spectrum from a steatotic liver (TR = 3 seconds, TE = 24 and 50 msec, four signals acquired,  $262 \text{ cm}^3$  volume of interest). No signal filtering before Fourier transformation and no baseline correction were applied.



The water signal has to be suppressed

## Proton spectroscopy



**Figure 1.** Typical in vivo H-1 spectrum from a steatotic liver (TR = 3 seconds, TE = 24 and 50 msec, four signals acquired, 262 cm<sup>3</sup> volume of interest). No signal filtering before Fourier transformation and no baseline correction were applied.



**Figure 2.** H-1 300-MHz spectrum of lipid extract obtained from a steatotic liver specimen. The major peaks assignable to protons in different positions on lipid molecules are (A) double bonds, (B) protons belonging to di- or triacylated glycerol and to the phosphocholine and phosphoethanolamine components of phospholipids, (C) methylene groups, (D) methyl groups, and (E) methyl signal assigned to carbon-18 of cholesterol. Acetone (\*) and tetramethylsilane (TMS) (internal standard) are also shown,

### The water signal has to be suppressed

## Water suppression



Spectrum without and with water suppression Different scaling

## <sup>1</sup>H MRS metabolites

|              |                      |                 | PROPERTIES/SIGNIFICANCE                       |
|--------------|----------------------|-----------------|-----------------------------------------------|
| ABBREVIATION | METABOLITE           | SHIFT (PPM)     | IN THE BRAIN                                  |
| Cho          | Phosphocholine       | 3.22            | Membrane turnover, cell<br>proliferation      |
| Cr           | Creatine             | 3.02 and 3.93   | Temporary store for<br>energy-rich phosphates |
| NAA          | N-acetyl-∟-aspartate | 2.01            | Presence of intact glioneu-<br>ral structures |
| Lactate      |                      | 1.33 (inverted) | Anaerobic glycolysis                          |
| Lipids       | Free fatty acids     | 1.2–1.4         | Necrosis                                      |

## **Brain spectroscopy**

The <sup>1</sup>H (or <sup>31</sup>P) nuclei in different molecules have slightly different resonance frequencies

Each peak is related to a molecules (metabolite) In vivo <sup>1</sup>H spectrum
In vivo <sup>31</sup>P spectrum



> Occipital cortex



## In vivo biochemistry



## <sup>1</sup>H spectroscopy



## <sup>1</sup>H spectroscopy



## <sup>31</sup>P spectroscopy



## <sup>31</sup>P MRS



In vivo <sup>31</sup>P spectra acquired from the human occipital lobe at (B) 4 T and (C) 7 T:

- > PE phosphoethanolamine
- PC phosphocholine
- Pi inorganic phosphate
- > GPE

glycerophosphoethanolamine

- GPC, glycerophosphocholine
- PCr phosphocreatine
- ATP adenosine triphosphate
  - NADP nicotinamide adenine dinucleotide phosphate

#### Qiao T. et al Magn Reson Imaging. 2006 24:1281-6

## muscle 31PMRS

### > Muscoli gastrocnemi normal subject



## **Signal localization** In *in vivo* MRS the signal localization is mandatory



## **Signal localization**

In in vivo MRS the signal localization is mandatory



## **Volume selection**

 The localization of the MRS signal is essential for in vivo application
 Gradients are used localized spectroscopy
 The simplest localization technique is the use of the surface coil





www.imaios.com/en/e-Courses/e-MRI/Magnetic-Resonance-Spectroscopy-MRS/single-voxel-spectroscopy

# Spectroscopic imaging (Chemical shift imaging CSI)

 ✓ CSI is an acquisition sequence that allows the acquisition of a spectrum per each voxel
 ✓ The acquisition time is large (> 10 minutes)



## Spectroscopic imaging

 ✓ CSI is an acquisition sequence that allows the acquisition of a spectrum per each voxel
 ✓ The acquisition time is large

> 10 minutes







# Spectroscopic imaging (Chemical shift imaging CSI)

Magnetic Resonance Spectroscopy



# Spectroscopic imaging (Chemical shift imaging CSI)



MR Spectrum from anaplastic oligoastrocytoma Choline / Creatine ratio map

## Quantitative data analysis

b

 $v_0$ 

h







REVIEW published: 12 March 2018 doi: 10.3389/fpsyt.2018.00076



#### Functional Magnetic Resonance Spectroscopy: The "New" MRS for Cognitive Neuroscience and Psychiatry Research

Jeffrey A. Stanley1\* and Naftali Raz2,3,4

<sup>1</sup> Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, United States, <sup>2</sup>Department of Psychology, Wayne State University, Detroit, MI, United States, <sup>3</sup>Institute of Gerontology, Wayne State University, Detroit, MI, United States, <sup>4</sup>Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany

Preliminary evidence of the ability of <sup>1</sup>H fMRS to detect changes in <u>glutamate</u> during various perceptual, motor, and cognitive tasks.

## **Applications**

Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study Peter J Lally et al for the MARBLE consortium Lancet Neurol 2019; 18: 35–45

### Summary Thalamic proton MRS measures acquired soon after birth in neonatal encephalopathy had the highest accuracy to predict neurodevelopment 2 years later.

## **Applications**

Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy:

a prospective multicentre cohort study

Lancet Neurol 2019; 18: 35-45

**Methods** 

- ✓ 3.0 Tesla scanner
- ✓ single 15×15×15 mm<sup>3</sup> voxel centred on the left thalamus
- ✓ <sup>1</sup>H MRS metabolite peak area ratios (7 min)
- 1H MRS metabolite absolute concentrations (25 min)
- ✓ diffusion weighted MRI (DW MRI; 7 min)