MRS Magnetic Resonance Spectroscopy

In vivo biochemistry

Chemical shift

www.imaios.com/en/e-Courses/e-MRI/Image-quality-and-artifacts/chemic

Chemical shift and MR spectrum

Fourier **Transform**

Received Signal **Image**

www.imaios.com/en/e-Courses/e-MRI/Image-quality-and-artifacts/chemic

proportional to the number of 1H nuclei

Proton spectroscopy

Figure 1. Typical in vivo H-1 spectrum from a steatotic liver (TR = 3 seconds, TE = 24 and 50 msec, four signals acquired, 262 cm³ volume of interest). No signal filtering before Fourier transformation and no baseline correction were applied.

 \triangleright The water signal has to be suppressed

Proton spectroscopy

Figure 1. Typical in vivo H-1 spectrum from a steatotic liver (TR = 3 seconds, TE = 24 and 50 msec, four signals acquired, 262 cm³ volume of interest). No signal filtering before Fourier transformation and no baseline correction were applied.

Figure 2. H-1 300-MHz spectrum of lipid extract obtained from a steatotic liver specimen. The major peaks assignable to protons in different positions on lipid molecules are (A) double bonds, (B) protons belonging to di- or triacylated glycerol and to the phosphocholine and phosphoethanolamine components of phospholipids, (C) methylene groups. (D) methyl groups, and (E) methyl signal assigned to carbon-18 of cholesterol. Acetone (*) and tetramethylsilane (TMS) (internal standard) are also shown.

\triangleright The water signal has to be suppressed

Water suppression

Spectrum without and with water suppression *Different scaling*

1H MRS metabolites

Brain spectroscopy

 \triangleright The ¹H (or ³¹P) nuclei in different molecules have slightly different resonance frequencies

In vivo **1H spectrum** \triangleright Each peak is related to a molecules (metabolite) *In vivo* **31P spectrum**

Decipital cortex

In vivo **biochemistry**

1H spectroscopy

1H spectroscopy

31P spectroscopy

31P MRS

In vivo $31P$ spectra acquired from the human occipital lobe at (B) 4 T and (C) 7 T:

- PE phosphoethanolamine
- PC phosphocholine
- Pi inorganic phosphate
- **GPE**

glycerophosphoethanolamine

- GPC, glycerophosphocholine
- PCr phosphocreatine
- **> ATP adenosine triphosphate**
- Ø NADP nicotinamide adenine dinucleotide phosphate

Qiao T. et al Magn Reson Imaging. 2006 24:1281-6

muscle 31PMRS

Ø **Muscoli gastrocnemi normal subject**

Signal localization In *in vivo* MRS the signal localization is mandatory

Signal localization

 \triangleright In in vivo MRS the signal localization is mandatory

Volume selection

ü**The localization of the MRS signal is essential for in vivo application** ü**Gradients are used localized spectroscopy** ü**The simplest localization technique [is the use of the surface coil](http://www.imaios.com/en/e-Courses/e-MRI/Magnetic-Resonance-Spectroscopy-MRS/single-voxel-spectroscopy)**

www.imaios.com/en/e-Courses/e-MRI/Magnetic-Resonance-Spectroscopy-MRS/single-voxel-sp

Spectroscopic imaging (Chemical shift imaging CSI)

ü**CSI is an acquisition sequence that allows the acquisition of a spectrum per each voxel** ü**The acquisition time is large (> 10 minutes)**

Spectroscopic imaging

ü**CSI is an acquisition sequence that allows the acquisition of a spectrum per each voxel v**The acquisition time is large

• **> 10 minutes**

Spectroscopic imaging (Chemical shift imaging CSI) ü**CSI is an acquisition sequence that allows the acquisition of a spectrum per each voxel** ü**The acquisition time is large (> 10 minutes)**

Spectroscopic imaging (Chemical shift imaging CSI)

Magnetic Resonance Spectroscopy

Spectroscopic imaging (Chemical shift imaging CSI)

MR Spectrum from anaplastic oligoastrocytoma Choline / Creatine ratio map

Quantitative data analysis

REVIEW published: 12 March 2018 doi: 10.3389/fpsvt.2018.00076

Functional Magnetic Resonance Spectroscopy: The "New" MRS for Cognitive Neuroscience and Psychiatry Research

Jeffrey A. Stanley^{1*} and Naftali Raz^{2,3,4}

¹Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, United States, ²Department of Psychology, Wayne State University, Detroit, MI, United States, ³Institute of Gerontology, Wayne State University, Detroit, MI, United States, ⁴Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany

Preliminary evidence of the ability of 1H fMRS to detect changes in glutamate during various perceptual, motor, and cognitive tasks.

Applications

Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study *Peter J Lally et al for the MARBLE consortium Lancet Neurol 2019; 18: 35–45*

Summary Thalamic proton MRS measures acquired soon after birth in neonatal encephalopathy had the highest accuracy to predict neurodevelopment 2 years later.

Applications

Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy:

a prospective multicentre cohort study

Lancet Neurol 2019; 18: 35–45

Methods

- ü **3.0 Tesla scanner**
- \checkmark single 15 \times 15 \times 15 mm³ voxel centred on the **left thalamus**
- ü **1H MRS metabolite peak area ratios (7 min)**
- ü **1H MRS metabolite absolute concentrations (25 min)**
- ü **diffusion weighted MRI (DW MRI; 7 min)**