MRS Magnetic Resonance Spectroscopy

In vivo biochemistry

Chemical shift

Chemical shift and MR spectrum

Fourier Transform

Received Signal

www.imaios.com/en/e-Courses/e-MRI/Image-quality-and-artifacts/chemical-shift

¹H NMR spectra

- ✓ Peaks pattern is footprint of molecules
- ✓ Peak area is proportional to the number of ¹H nuclei

Proton spectroscopy

Figure 1. Typical in vivo H-1 spectrum from a steatotic liver (TR = 3 seconds, TE = 24 and 50 msec, four signals acquired, 262 cm³ volume of interest). No signal filtering before Fourier transformation and no baseline correction were applied.

The water signal has to be suppressed

Proton spectroscopy

Figure 1. Typical in vivo H-1 spectrum from a steatotic liver (TR = 3 seconds, TE = 24 and 50 msec, four signals acquired, 262 cm³ volume of interest). No signal filtering before Fourier transformation and no baseline correction were applied.

Figure 2. H-1 300-MHz spectrum of lipid extract obtained from a steatotic liver specimen. The major peaks assignable to protons in different positions on lipid molecules are (A) double bonds, (B) protons belonging to di- or triacylated glycerol and to the phosphocholine and phosphoethanolamine components of phospholipids, (C) methylene groups, (D) methyl groups, and (E) methyl signal assigned to carbon-18 of cholesterol. Acetone (*) and tetramethylsilane (TMS) (internal standard) are also shown.

The water signal has to be suppressed

Water suppression

Spectrum without and with water suppression Different scaling

¹H MRS metabolites

ABBREVIATION	METABOLITE	SHIFT (PPM)	PROPERTIES/SIGNIFICANCE IN THE BRAIN
Cho	Phosphocholine	3.22	Membrane turnover, cell proliferation
Cr	Creatine	3.02 and 3.93	Temporary store for energy-rich phosphates
NAA	N-acetyl-∟-aspartate	2.01	Presence of intact glioneural structures
Lactate		1.33 (inverted)	Anaerobic glycolysis
Lipids	Free fatty acids	1.2-1.4	Necrosis

Brain spectroscopy

➤ The ¹H (or ³¹P) nuclei in different molecules have slightly different resonance frequencies

Each peak is related to a molecules (metabolite)
In vivo ¹H spectrum
In vivo ³¹P spectrum

Occipital cortex

In vivo biochemistry

¹H spectroscopy

¹H spectroscopy

³¹P spectroscopy

³¹P MRS

- In vivo ³¹P spectra acquired from the human occipital lobe at (B) 4 T and (C) 7 T:
- > PE phosphoethanolamine
- > PC phosphocholine
- Pi inorganic phosphate
- GPE glycerophosphoethanolamine
- GPC, glycerophosphocholine
- PCr phosphocreatine
- ATP adenosine triphosphate
- NADP nicotinamide adenine dinucleotide phosphate

muscle 31PMRS

Muscoli gastrocnemi normal subject

Signal localization In in vivo MRS the signal localization is mandatory

Signal localization

In in vivo
MRS the
signal
localization is
mandatory

¹H MRS

Volume selection

- √The localization of the MRS signal is essential for in vivo application
- ✓ Gradients are used localized spectroscopy
- √The simplest localization technique
 is the use of the surface coil

- ✓ CSI is an acquisition sequence that allows the acquisition of a spectrum per each voxel
- √The acquisition time
 is large (> 10 minutes)

Spectroscopic imaging

- ✓ CSI is an acquisition sequence that allows the acquisition of a spectrum per each voxel
- √The acquisition time is large
 - > 10 minutes

✓ CSI is an acquisition sequence that allows the acquisition of a spectrum per each voxel
 ✓ The acquisition time is large (> 10 minutes)

MR Spectrum from anaplastic oligoastrocytoma Choline / Creatine ratio map

Quantitative data analysis

Applications

REVIEW

published: 12 March 2018 doi: 10.3389/fpsyt.2018.00076

Functional Magnetic Resonance Spectroscopy: The "New" MRS for Cognitive Neuroscience and Psychiatry Research

Jeffrey A. Stanley1* and Naftali Raz2,3,4

¹ Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, United States, ² Department of Psychology, Wayne State University, Detroit, MI, United States, ³ Institute of Gerontology, Wayne State University, Detroit, MI, United States, ⁴ Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany

Preliminary evidence of the ability of ¹H fMRS to detect changes in <u>glutamate</u> during various perceptual, motor, and cognitive tasks.

Applications

Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study

Peter J Lally et al for the MARBLE consortium

Lancet Neurol 2019; 18: 35-45

Summary

Thalamic proton MRS measures acquired soon after birth in neonatal encephalopathy had the highest accuracy to predict neurodevelopment 2 years later.

Applications

Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study

Lancet Neurol 2019; 18: 35-45

Methods

- √ 3.0 Tesla scanner
- ✓ single 15×15×15 mm³ voxel centred on the left thalamus
- √ ¹H MRS metabolite peak area ratios (7 min)
- ✓ 1H MRS metabolite absolute concentrations (25 min)
- √ diffusion weighted MRI (DW MRI; 7 min)