
Introduction to
Control Systems
Theory and applications

Enrico Regolin / Laura Nenzi

Overview (1)

•Linear Control (time domain)
•Introduction
•Dynamical Linear Systems
•Observability & Controllability
•PID Controllers
•Luenberger Observer

•Linear Control (frequency domain)
•From State-space to Transfer Function

•Classic Control Elements (Bode Diagram / Root Locus)

Overview (2)

•Optimal Control and KF Estimation
•Optimal Control (LQR)
•Model Predictive Control
•Kalman Filtering

•Control Laboratory
•Matlab/Simulink
•Kalman Filtering and Optimal Control
•Cart-pole

Control Systems History

•Water Clock
•Alexandria
(Ctesibius, 3rd century BC)

•Centrifugal Governor
•Windmills
(C. Huygeens, 17th century)
•Steam Engine
(J. Watt, 1788)

Control Systems History

•First Automatic Transmission
(Hydramatic, General Motors, 1939)

Control Systems History

•Classical control theory
formalized from circuits theory

Tacoma Bridge Collapse

https://www.youtube.com/watch?v=XggxeuFDaDU

Linear Control (time domain)

Control Systems Fundamentals

REQUIRED
•Dynamical System MODEL
•Control Input
•Reference Signal

CHALLANGES
•Missing/Noisy Information
•Physical limitations

Past history (state) influences future output

● Continuous Time vs. Discrete Time

● Autonomous vs. Non-autonomous

• Linear vs. Non-linear

Dynamical Systems (1)

Dynamical Systems (2)
● SISO vs. MIMO

● Time Invariant vs. Time Variant

● Deterministic vs. Non-Deterministic (Stochastic, noisy, etc.)

Dynamical Systems (3)
●LTI systems --- State-Space representation

Dynamical Systems (3)
● LTI systems --- State-Space representation

● Output response (continuous time)

● Output response (discrete time)

Free Response
(homogeneous
solution)

Effect of input

Stability condition (Hurwitz)

State-Space Realizations

LTI Systems Properties Discrete case

Reaching a state

“Observing” the initial state

LTI Systems Properties

Conditions for all LTI systems:

●Controllability

●Observability

Discrete case

Reaching a state

“Observing” the initial state

LTI Systems Properties
● Pair (A,B) is “Controllable”

● Pair (A,C) is “Observable”

● LTI System is a “minimal state-space realization” if it is both observable and
controllable.

● Example:

non-LTI Systems (example)
Is the inverted pendulum (cartpole) controllable?

In non-linear systems Controllability and Observability Matrices represent LOCAL properties.

non-LTI Systems (example)
Is the inverted pendulum (cartpole) controllable?

In non-linear systems Controllability and Observability Matrices represent LOCAL properties.

non-LTI Systems (example)

Linearization

Reference Tracking

21

Given a reference trajectory r(t), design u(t) such that x(t) closely follows r(t)

Control objectives:
• Reject disturbances (if there is some perturbation in state, making it get back to initial state)
• Follow reference trajectories (if we want the system to have a certain 𝒙𝒓𝒆𝒇)
• Make system follow some other “desired behavior”

Open-loop or feed-forward control

u Control action does not depend on plant output

u Cheaper, no sensors required.
u Quality of control generally poor without human

intervention

Open-loop vs. Closed-loop control

22

Plant Controller
𝐢(𝑡) 𝐮(𝑡) 𝐲(𝑡)

Plant Controller
𝐢(𝑡) 𝐮(𝑡) 𝐲(𝑡)

∑
Feed-back control

u Controller adjusts controllable inputs in
response to observed outputs

u Can respond better to variations in disturbances

u Performance depends on how well outputs can
be sensed, and how quickly controller can track
changes in output

Feed-back

Proportional Controller

23

𝐱(𝑡)
�̇� = 𝐴𝐱 + 𝐵𝐮𝐮 = 𝐾$(𝐫 − 𝐱)

𝐫(𝑡) 𝐮(𝑡)
∑

+
−

Controller Plant

u Common objective: make plant state track the reference signal 𝐫(𝑡)

u 𝑒 = 𝑟 − 𝑥 is the error signal

u Closed-loop dynamics: �̇� = 𝐴𝐱 + 𝐵𝐾! 𝐫 − 𝐱 = 𝐴 − 𝐵𝐾! 𝐱 + 𝐵𝐾!𝐫

u pick 𝐾! s.t. the composite system is asymptotically stable, i.e. pick 𝐾! such that eigenvalues of 𝐴 − 𝐵𝐾
have negative real-parts

reference signal
gain

u eigs 𝐴 are values of λ that satisfy the equation det(𝐴 − 𝜆𝐼) = 0
u Note eigs 𝐴 = 6, 1 ⇒ unstable plant!

u Let 𝐾 = 𝑘" 𝑘# . Then, 𝐴 − 𝐵𝐾 = 4 − 2𝑘" 6 − 2𝑘#
1 − 𝑘" 3 − 𝑘#

u eigs 𝐴 − 𝐵𝐾 satisfy equation 𝜆# + 2𝑘" + 𝑘# − 7 𝜆 + 6 − 2𝑘# = 0
� two distinct solutions 𝜆", 𝜆# if (𝜆 − 𝜆") (𝜆 − 𝜆#) = 𝜆# + −𝜆" − 𝜆# 𝜆 + 𝜆"𝜆#
� That means 2𝑘" + 𝑘# − 7 = −𝜆" − 𝜆# and 6 − 2𝑘# = 𝜆"𝜆#
� E.g. 𝜆" = −1 and 𝜆# = −2 gives 𝑘" = 4, 𝑘# = 2. Thus controller with 𝐾 = 4 2 stabilizes the plant!

Designing a pole placement controller

24

𝐱(𝑡)
�̇� = 4 6

1 3 𝐱 + 2
1 𝐮𝐮 = 𝐾(𝐫 − 𝐱)

𝐫(𝑡) 𝐮(𝑡)
∑

+
−

Controller Plant

Proportional Controller

25

y(𝑡)�̇� = 𝐴𝐱 + 𝐵𝐮
𝒚 = 𝐶𝐱 + 𝐷𝐮𝐮 = 𝐾$(𝐫 − 𝐲)

𝐫(𝑡) 𝐮(𝑡)
∑

+
−

Controller Plant

reference signal
gain

Proportional Integral Derivative (PID) controllers

𝐲(𝑡)
�̇� = 𝐴𝐱 + 𝐵𝐮
𝐲 = 𝐶𝐱 + 𝐷𝐮

𝐫(𝑡) 𝐮(t)
∑

+
−

Controller

Plant

𝐾!𝐞(t)

𝐾$C
%

&
𝐞 𝜏 𝑑𝜏

𝐾'
𝑑𝐞(𝑡)
𝑑𝑡

∑
+
+

+𝐞(𝑡)

eigs 𝐴 are values of λ that satisfy the equation det(𝐴 − 𝜆𝐼) = 0
Note eigs 𝐴 = 6, 1 ⇒ unstable plant!

Measuring control performance

Overshoot: The difference between the maximum value of the system
output and the desired reference value.

𝐫 = 1

Measuring control performance

𝐫 = 1

Rise time: The time difference between the initial time when the reference
signal changes and the time at which the output signal crosses the desired
reference value.

Measuring control performance

𝐫 = 1

Steady-state error: The difference between the steady-state value of
the output signal and the value of the reference signal.

Measuring control performance

𝐫 = 1

Settling time: The time difference between the initial time when the
reference signal changes and the time at which the output signal reaches
its steady-state value.

𝐊𝐏 = 50 𝐊𝐏 = 500

Measuring control performance

P-only controller
�Compute error signal 𝐞 = 𝐫 − 𝒚
�Proportional term 𝐾9𝐞:

�𝐾F proportional gain;
�Feedback correction proportional to error

�Cons:
�If 𝐾F is small, error can be large! [undercompensation]
�If 𝐾F is large,

�system may oscillate (i.e. unstable) [overcompensation]
�may not converge to set-point fast enough

�P-controller always has steady state error or offset error

Compute error signal 𝐞 = 𝐫 − 𝐲
Integral term: 𝐾! ∫"

𝐞 𝜏 𝑑𝜏
• 𝐾! integral gain;
• Feedback action proportional to

cumulative error over time
• If a small error persists, it will add up over time

and push the system towards eliminating this
error): eliminates offset/steady-state error

Disadvantages:
• Integral action by itself can increase instability
• Integrator term can accumulate error and suggest

corrections that are not feasible for the actuators (integrator windup)
• Real systems “saturate” the integrator beyond a certain value

PI-controller

Integrator windup

PI-controller

Compute error signal 𝐞 = 𝐫 − 𝐲
Derivative term 𝐾$�̇�:

• 𝐾" derivative gain;
• Feedback proportional to how fast

the error is increasing/decreasing

Purpose:
• “Predictive” term, can reduce overshoot:

if error is decreasing slowly, feedback is slower
• Can improve tolerance to disturbances

Disadvantages:
• Still cannot eliminate steady-state error
• High frequency disturbances can get amplified

PD-controller

PID-controller

• May often use only PI or PD control
• Many heuristics to tune PID controllers, i.e., find values of 𝐾$, 𝐾:, 𝐾;
• Several recipes to tune, usually rely on designer expertise
• E.g. Ziegler-Nichols method: increase 𝐾$ till system starts oscillating with

period 𝑇 (say till 𝐾$ = 𝐾∗), then set 𝐾$ = 0.6𝐾∗, 𝐾: =
=.?@∗

A , 𝐾; =
B
CD𝐾

∗𝑇
• Matlab/Simulink has PID controller blocks + PID auto-tuning capabilities
• Work well with linear systems or for small perturbations,
• For non-linear systems use “gain-scheduling”

• (i.e. using different 𝐾!, 𝐾$, 𝐾' gains in different operating regimes)

PID controller in practice

08/11/2023

Gain Scheduling Example

Controller

Plant

Sensor/Observer

Calibration Routine Example

K_p = f_p (state, param_set)
K_i = f_i (state, param_set)
K_d = f_d (state, param_set)

loss = g(stability, risetime, overshoot, etc.)

while not (end condition):

loss = run_system (param_set)
optimization_step(param_set)

Used for NONLINEAR / unknown systems

Observation
R

R

• Problem:Control
⁃ design with

(partially) unknown state

• Solution:
⁃ Luenberger Observer

Obs

Luenberger Observer

●State-space representation

●

●Observer Error satisfies:

●Required: Observability, Controllability

●Pole Placement

Control design
parameters

Overall system is stable
iff both observer and
controller are stable

Example - DC Motor

State-space
representation

b = 0.1 # friction coefficient (Nm/(rad/sec))
I = 0.01 # mechanical inertia (Kg*m^2)
k = 0.01 # motor torque constant (Nm/A)
R = 1 # armature resistance (Ohm)
L = 0.5 # armature inductance (H)

Linear Control (frequency domain)

Signals Theory – Frequency Analysis
• Control Theory applications precede digital computing

• Classic control theory was developed for analog electronics applications

• Signals x(t) can be expressed as function of frequency X(f) without loss of information
(Fourier series, Fourier Transform, Laplace Transform)

• Classical LTI Systems Control Theory is frequency-domain based

• Modern tools and notation are influenced by historic development
of theory

Signals Theory – Frequency Analysis
• Control Theory applications precede digital computing

• Classic control theory was developed for analog electronics applications

• Signals x(t) can be expressed as function of frequency X(f) without loss of information
(Fourier series, Fourier Transform, Laplace Transform)

• Classical LTI Systems Control Theory is frequency-domain based

• Modern tools and notation are influenced by historic development
of theory

• Classic Control Theory Approach (derived from Circuits Theory)

• Motivation: complexity in using explicit form for in State-Space representation:

• Laplace Transform of a signal :

• Output of L-transform is a rational function with real coefficients

• Laplace Transform property:

LTI Systems in the Frequency Domain

LTI Systems in the Frequency Domain

• Intuition behind the Laplace Transform of a signal

• Imaginary components of complex numbers are always accompanied by conjugate, as
complex numbers are defined as square roots of negative numbers, e.g.

• Choose an elementary input

• If is real, is an exponential

• If is imaginary then the elementary has to be considered with its conjugate:

(in this case u(t) is “half” sinusoidal signal)

• Laplace transform is equivalent to finding the complex representation of a signal for each moment t :

LTI Systems in the Frequency Domain

• Intuition behind the Laplace Transform of a system

• H(s) is the L-transform “impulse response” of a system (response to ideal input, Dirac or Kronecker delta) and
it is called Transfer Function

• Output response to input u(t) is the convolution with impulse response h(t)

• H(s) represents the natural “modes” of system S = {A,B,C,D}

• Denominator is

• H(s) is represented with zeros/poles on the complex plane

Frequency-domain controller design

• G(s) poles:

LTI Systems in the Frequency Domain

R(s) G(s)

FeedForward Path
- Bode Plot
- Nyquist Plot

Poles allocation of
FeedBack system
- Root Locus

W(s)

From Transfer Function to State-Space
• Controllable canonical form

DC Motor Example (ss → tf)

Classic Control System Design: Root Locus

• how do close-loop dynamics change with K?

• Additional material
https://www.youtube.com/watch?v=eTVddYCeiKI

Modern Control Theory:

Optimal Control, MPC

08/11/2023

Summary

• Optimal Control / LQR

• MPC

• Robust Control via SM Generation

(Nonlinear) Optimal Control

•Minimization of cost function over time interval

•Find solution

LQR Control (finite time, discrete)

•Solution

LQR Control (finite time, discrete)

•Solution
•

–Depends on final time T

LQR Control (finite time, discrete)

•Solution

–Depends on final time T

08/11/2023

LQR Control ()nite time, discrete)

• Solution

– Does not depend on initial condition!

08/11/2023

LQR Control (in)nite time, discrete)

• Solution

ARE

08/11/2023

Summary

• Optimal Control / LQR

• MPC

• Robust Control via SM Generation

Model Predictive Control

●Main idea: Use a dynamical model of the plant (inside the controller) to
predict the plant’s future evolution, and optimize the control signal over
possible futures

●Image from: https://tinyurl.com/yaej43x5

Why MPC?

•Optimal control with constraints (input, output and states)
•ideal for MIMO (Multi Input Multi Output) systems
•linear and nonlinear models

•RECEDING HORIZON PRINCIPLE

08/11/2023

Receding
Horizon
Principle

• Closed Loop solution (no
constraints, LQR)

• Open Loop solution
(constraints)

Linear MPC (1)

Linear MPC (2)

(Non-)Linear MPC

•Linear formulation:

•Nonlinear formulation:

08/11/2023

Issues with MPC

• Feasibility

• Stability Con=icting Requirements

• Computation (several solutions depending on needs)

• Robustness formulation: system a?ected by process and measurement noise

Constraints
tightening

Kalman Filtering

What is state estimation?

• Given a “black box” component, we can try to use a linear or nonlinear
system to model it (maybe based on physics, or data-driven)

• Model may posit that the plant has internal states, but we typically have
access only to the outputs of the model (whatever we can measure using a
sensor)

• May need internal states to implement controller: how do we estimate
them?

• State estimation: Problem of determining internal states of the plant

Deterministic vs. Noisy case

Typically sensor measurements are noisy (manufacturing imperfections, environment
uncertainty, errors introduced in signal processing, etc.)
In the absence of noise, the model is deterministic: for the same input you always
get the same output

Can use a simpler form of state
estimator called an observer
(e.g. a Luenberger observer)

In the presence of noise, we use a state estimator, such as a Kalman Filter

Kalman Filter is one of the most fundamental algorithm that you will see in
autonomous systems, robotics, computer graphics, …

u For random variable 𝑤, 𝔼 𝑤 : expected value of 𝑤, also known as mean
u Suppose 𝔼[𝑥] = 𝜇 : then var(w) : variance of 𝑤, is 𝔼 𝑤 − 𝜇 G

u For random variables 𝑥 and 𝑦, cov 𝑥, 𝑦 : covariance of 𝑥 and 𝑦
� cov 𝑥, 𝑦 = 𝔼 (𝑥 − 𝔼(𝑥)(𝑦 − 𝔼 𝑦

u For random vector 𝐱, 𝔼 𝐱 is a vector
u For random vectors, 𝐱 ∈ ℝH and 𝐲 ∈ ℝI , cross-covariance matrix is 𝑚×𝑛

matrix: cov 𝐱, 𝐲 = 𝔼 𝐱 − 𝔼 𝐱 𝐲 − 𝔼 𝐲 J

u 𝑤 ∼ 𝑁 𝜇, 𝜎G : 𝑤 is a normally distributed variable with mean 𝜇 and
variance 𝜎

Random variables and statistics refresher

82

u Using radar and a camera to estimate the distance to the lead car:
� Measurement is never free of noise
� Actual distance: 𝑥
� Measurement with radar: 𝑧" = 𝑥 + 𝑣" (𝑣" ∼ 𝑁 𝜇", 𝜎"# is radar noise)
� With camera: 𝑧# = 𝑥 + 𝑣# (𝑣# ∼ 𝑁(𝜇#, 𝜎##) is camera noise)
� How do you combine the two estimates?

u Use a weighted average of the two estimates, prioritize more likely
measurement

� Q𝜇 = ⁄(*! +!") - ⁄(*" +"")
⁄(" +!")- ⁄(" +"")

= 𝑘𝑧" + 1 − 𝑘 𝑧#, where 𝑘 = +""

+!"-+""

� Q𝜎# = +!"+""

+!"-+""

u Observe: uncertainty reduced, and mean is closer to measurement with
lower uncertainty

Data fusion example

83

𝜇" = 2, 𝜎"" = 0.5
𝜇# = 1, 𝜎#" = 1

𝜇# 𝜇"

�̂� = 1.67, 𝜎"" = 0.33

�̂�

u Instead of estimating one quantity, we want to estimate 𝑛 quantities, then:
u Actual value is some vector 𝐱
u Measurement noise for 𝑖RS sensor is 𝑣T ∼ 𝑁 𝛍T , ΣT , where 𝛍T is the mean

vector, and ΣT is the covariance matrix
u Λ = ΣUV is the information matrix
u For the two-sensor case:

� 1𝐱 = Λ= + Λ? L=(Λ=𝐳= + Λ?𝐳?), and 6Σ = Λ= + Λ? L=

Multi-variate sensor fusion

84

u What if we have one sensor and making repeated measurements of a
moving object?

u Measurement differences are not all because of sensor noise, some of it is
because of object motion

u Kalman filter is a tool that can include a motion model (or in general a
dynamical model) to account for changes in internal state of the system

u Combines idea of prediction using the system dynamics with correction
using weighted average (Bayesian inference)

Motion makes things interesting

85

u We assume that the plant (whose state we are trying to estimate) is a
stochastic discrete dynamical process with the following dynamics:

𝐱W = 𝐴𝐱WUV + 𝐵𝐮W +𝐰W (Process Model)
𝒚W = 𝐻𝐱W + 𝐯W (Measurement Model)

Stochastic Difference Equation Models

86

𝐱$, 𝐱$%# State at time 𝑘,𝑘 − 1
𝐮$ Input at time 𝑘
𝐰$ Random vector representing noise in the plant, 𝐰 ∼ 𝑁(𝟎, 𝑄$)
𝐯$ Random vector representing sensor noise, 𝐯 ∼ 𝑁(𝟎, 𝑅$)
𝐳$ Output at time 𝑘

𝑛 Number of states

𝑚 Number of inputs

𝑝 Number of outputs

𝐴 𝑛×𝑛 matrix

𝐵 𝑛×𝑚 matrix

𝐻 𝑝×𝑛 matrix

Kalman Filter

Step I: Prediction

• We assume an estimate of 𝐱 at time 𝑘 − 1, fusing information
obtained by measurements till time 𝑘 − 1: this is denoted M𝐱WUV|WUV
• We also assume that the error between the estimate M𝐱WUV|WUV and

the actual 𝐱WUV has 0 mean, and covariance 𝑃WUV|WUV
• Now, we use these values and the state dynamics to predict the value

of 𝐱W
• Because we are using measurements only up to time 𝑘 − 1, we can

denote this predicted value as M𝐱W|WUV, and compute it as follows:
M𝐱W|WUV ≔ 𝐴M𝐱WUV|WUV + 𝐵𝐮W

Step I: Prediction

• Thus, the state and error covariance prediction are:

𝑃W|WUV = cov 𝐱W − M𝐱W|WUV = cov 𝐴𝐱WUV + 𝐵𝐮W +𝑤W − 𝐴M𝐱WUV|WUV − 𝐵𝐮W
= 𝐴cov 𝐱WUV − M𝐱WUV|WUV 𝐴Y + 𝑐𝑜𝑣(𝑤W)
= 𝐴𝑃WUV|WUV𝐴Y + 𝑄W

!𝐱+|+-. ≔ 𝐴!𝐱+-.|+-. + 𝐵𝐮+
𝑃+|+-. ≔ 𝐴𝑃+-.|+-.𝐴/ + 𝑄+

Kalman Filter

Step II: Correction

• This is where we basically do data fusion between new measurement
and old prediction to obtain new estimate
• Note that data fusion is not straightforward like before because we

don’t really observe/measure 𝐱W directly, but we get measurement
𝒚W, for an observable output!
• Idea remains similar: Do a weighted average of the prediction M𝐱W|WUV

and new information
• We integrate new information by using the difference between the

predicted output and the observation

Step II: Correction

• Predicted output: 0𝒚% = 𝐻% 3𝐱%|%'(
• We denote the error in predicted output as the innovation

𝐳% ≔ 𝐲% −𝐻% 3𝐱%|%'(
• Covariance of innovation

𝑆% = co𝑣 𝐳% = 𝑐𝑜𝑣(𝐻%𝐱% + 𝐯% −𝐻% 3𝐱%|%'() = 𝑅% +𝐻%𝑃%|%'(𝐻%)

• Then to do data fusion is given by:
0𝒙%|% ≔ 0𝒙%|%'(+ 𝐾%𝑧%

• Where, 𝐾% = 𝑃%|%'(𝐻%)𝑆%'(is the (optimal) Kalman gain. It minimizes the
least square error
• Finally, the updated error covariance estimate is given by:

𝑃%|% ≔ 𝑃%|%'(𝐼 − 𝐾%𝐻%

Innovation 𝐳! ≔ 𝐲! − 𝐻! &𝐱!|!#$
Innovation Covariance 𝑆! ≔ 𝑅! + 𝐻!𝑃!|!#$𝐻!%

Optimal Kalman Gain 𝐾! ≔ 𝑃!|!#$𝐻!%𝑆!#$

State estimate at time k -𝒙!|! ≔ -𝒙!|!#$ +𝐾! 𝐳!

Covariance estimate at time k 𝑃!|! ≔ 𝑃!|!#$ 𝐼 − 𝐾!𝐻!

Step II: Correction

Kalman Filter

u Let’s take a simple one-dimensional example

u Kalman filter prediction equations become:

� 1𝑥X|XL= ≔ 𝑎1𝑥XL=|XL= + 𝑏𝑢 ; 𝜎X|XL=? ≔ 𝑎?𝜎XL=|XL=? + =𝜎Z
?

u Also, the correction equations become:
� Innovation: 𝑧X ≔ 𝑦X − 1𝑥X|XL=, S[= 𝜎\? + 𝜎X|XL=?

� Optimal gain: 𝑘 = A𝜎X|XL=? (𝜎\? + 𝜎X|XL=?),
� Updated state estimate: 1𝑥X|X ≔ 1𝑥X|XL= + 𝑘(𝑦X − 1𝑥X|XL=)
� I.e. updated state estimate: 1𝑥X|X ≔ 1− 𝑘 1𝑥X|XL=+ 𝑘𝑦X (Weighted average!)

one-dimensional example

prior uncertainty
in estimate

uncertainty
in process

prior uncertainty
in estimate

Extended Kalman Filter

• We skipped derivations of equations of the Kalman filter, but a fundamental
property assumed is that the process model and measurement model are both
linear.

• Under linear models and Gaussian process/measurement noise, a Kalman filter is
an optimal state estimator (minimizes mean square error between estimate and
actual state)

• In an EKF, state transitions and observations need not be linear functions of the
state, but can be any differentiable functions

• I.e., the process and measurement models are as follows:
𝐱X = 𝑓 𝑥XL=, 𝑢X +𝑤X
𝑦X = ℎ 𝑥X + 𝑣X

• Functions 𝑓 and ℎ can be used directly to compute state-prediction,
and predicted measurement, but cannot be directly used to update
covariances
• So, we instead use the Jacobian of the dynamics at the predicted

state
• This linearizes the non-linear dynamics around the current estimate
• Prediction updates:

EKF updates

!𝐱+|+-. ≔ 𝑓(!𝐱+-.|+-., 𝐮+)
𝑃+|+-. ≔ 𝐹+𝑃+-.|+-.𝐹+/ + 𝑄+

𝐹! ≔ 1
𝜕𝑓
𝜕𝐱 𝐱'(𝐱*|*+,,𝐮'𝐮*

• Correction updates:

EKF updates
𝐻! ≔ 1

𝜕ℎ
𝜕𝐱 𝐱'(𝐱*|*+,

Innovation 𝐳! ≔ 𝐲! − ℎ(&𝐱!|!#$)
Innovation Covariance 𝑆! ≔ 𝑅! + 𝐻!𝑃!|!#$𝐻!%

Near-Optimal Kalman Gain 𝐾! ≔ 𝑃!|!#$𝐻!%𝑆!#$

A posteriori state estimate -𝒙!|! ≔ -𝒙!|!#$ + 𝐾!𝐲!
A posteriori error covariance estimate 𝑃!|! ≔ 𝑃!|!#$ 𝐼 − 𝐾!𝐻!

Simulink Example - Cartpole

• Full-state estimation (Luenberger, Kalman)
• Optimal Control

𝑦 = [𝑝, 𝜃]

