Introduction to

-1}

Control Systems

Theory and applications

Enrico Regolin / Laura Nenzi

Bode plot, @ =1, Z=0.19

40 T
) |
- r e u Yy
2 Controller > Plant
5 .
Ym
&
s Sensors <
b
-
o

107 10° 10
@ (rad/sec)

e
P mdiref fuelsys * = G| % | @) Targetlink Main Cialog: mdlref fuelsys
‘ Edit sgrar DSMP Targetlink el GICRE B B Y a
| mdref_folsys | i Code Generaticnd | Smuizon | RTOS| Took | Optons | Advanced || Docus
& ’. r":"c‘_‘.:!‘i'yi » v
|
& USPACE Tar guiLink examphe
e 2] MOOEL_REFERENCIO —Code penerstion unts -Code a1
o mdiee_fuelsys Globel &
fuelratecontrolles (SIL, ID « 2) Log o
o Wl e F - = - e e Lo . v el e = =, 7 ~ | &= & FuelCalculation (ID =) Looging
n |SAcalysng & Dagnoitc 7 Matial Semtinkc € EGPS ETMtmedsa 10 Tracng # r_SensceCorrection (ID = b) -
[_ - AldlowCalculation Enetle
Mesturemenrt Cursor oo Mo Une ¥ Coce ge
L - o - edetinedCodeGenenationUnit (ID = CGU_A Sande
on_Motor Torgue - —
eq_Motor_Torgue o c Cade ge
Us_A_S s3e ass > Generi
g| Enal
nine
ey
L tnatata suditame. fns anda. - Cles
00 sevmr B Code Coverage Level = < B Code Coverage Level = L
wriggred Sutefio exampie Subsystem: '1_Sen?chmectnon' Subsys:em “fuelratecontrolier” Buid 51 M
[current simulation: 85 71% of branches reached current simulation: 54 55% of branches reached
[T_AAP.L AP} r]| overall simulations: 85.71% of branches reached | || over all simulations: 54.55% of branches reached Acthvane SL
— I | — 000)
% - \ 3 1) o | |
» u Code Coverage Level M| n Code Coverage Level =)
Ready . - Besate
Subsystem: “r_AiflowCalculation® Subsystem: “FueiCalculation” P —
» D » dSPACE » Tamgetlink » Demos » m Targetld | current simulation: 72 22% of branches reached current simulation: 64.71% of branches reached
)
- i over all simulations: 72.22% of branches reached over all simulations: 64.71% of branches reached -
R O | aaa—)
SO | —
T HA 11 -0.7408]
dSPACE 2 [1 -0.7408]
Discroto-Timeintogrator fuel_mode throttie{ostimated) [1000
2 ~ 3 v v 33100e+03

et o
3 1A%0
3 A%
» %

o
1 - Deloukt Sesson 1080
3 1085 Progamme Sesson §

ECU Merthe.shon F

Deveopment

e Nt

Daa

e

fail_see

Overview (1)

*Linear Control (time domain)
*Introduction

*Dynamical Linear Systems
*Observability & Controllability

*PID Controllers

eLuenberger Observer

Linear Control (frequency domain)
*From State-space to Transfer Function

*Classic Control Elements (Bode Diagram / Root Locus)

Overview (2)

*Optimal Control and KF Estimation
*Optimal Control (LQR)

*Model Predictive Control

*Kalman Filtering

*Control Laboratory

*Matlab/Simulink
*Kalman Filtering and Optimal Control
eCart-pole

_’
M —F)

[T 7777777777 777777 77777777777

Control Systems History

*\Water Clock

*Alexandria
(Ctesibius, 3™ century BC)

*Centrifugal Governor

*Windmills
(C. Huygeens, 17t century)

*Steam Engine
(J. Watt, 1788)

s

ZARN,

RN
i

I
Rl

Control Systems History

*First Automatic Transmission
(Hydramatic, General Motors, 1939)

Control Systems History

*Classical control theory
formalized from circuits theory

4
3 1 9) PR2
ll [
45.0nF 1 3
R4 —
45.0nF
100Q2

Tacoma Bridge Collapse

(=]
o

Stage -1 Uncompensated Bode Plot

Gm =4.68 dB (at Infinite Hz) , Pm =-49.2 deg (at 205 kHz)
v T T TEOTT T L3 WYY..IE T L3 (f.{t:‘ v T ..K..E T TTErTTT

(4]
o

TTTTTE T 13

RHP zero, 16.2 kHz

Magnitude (dB)
— N w
o o o

H
o

o

ESR zero, 284 kHz

Double pole, 4.63 kHz

360
315

T

D 270
g

o 225}
(7]

Maximum phase delay|due to RHP zero

©
& 180

135}~

90k -

reref r s » reeeef + r rreeerd r _r »rrreck PR 2 3

10

10 10 10° 10 10
Frequency (Hz)

https://www.youtube.com/watch?v=XggxeuFDaDU

Linear Control (time domain)

Control Systems Fundamentals

REQUIRED

*Dynamical System MODEL
*Control Input

*Reference Signal

CHALLANGES
*Missing/Noisy Information

*Physical limitations

Set
pomt +
r(r)

Error
err)

Controlles

l s
i {
7
| 6 17
9
.
}*/
H _,fu _l
_.I =
L, . W
Controller Process
output variable
u(r) yit)
——p» Process >
Feedback |«

Dynamical Systems (1)
Past history (state) influences future output

. Continuous Time VS. Discrete Time

&= f(zx), te]l0,o0) v(k+1)= f(z(k)), k=0,1,2,...
. Autonomous VS. Non-autonomous

i = f(x) = f(x,u)
 Linear VS. Non-linear

r1 = —2T9 T] = —X1T2

: 0.4

ro = 0.5921 + 29 + 0.4u io = 0.52% + sin(xs) + —

u

Dynamical Systems (2)

. SISO VS. MIMO
r=Ax+b-u r = Ax + Bu
. Time Invariant VS. Time Variant
z = f(z,u) 2(t) = fx(t), u(t),t)
& = Az + Bu 2(t) = A(®)x(t) + B(t)u(t)
. Deterministic VS. Non-Deterministic (Stochastic, noisy, etc.)
PR R vk +1)= -2+ v)z(k)* — 2(k) + u(k)
y = 0.52 y(k) = 0.5z(k) + 7

v~ N(u,o),n~U(0,1)

Dynamical Systems (3)

LTI systems --- State-Space representation X (O) = Tp, T € R"™

a?(t) = A:C(t) 4+ Bu(t) Ag = eAAT ZIZ(]-C -+ 1) = AdCIZ(k) -+ Bdu(k)
y(t) = Cx(t) + Du(t) y(k) = Cx(k) + Du(k)

Dynamical Systems (3)

LTI systems --- State-Space representation I (O) = Tp, T € R"™
x(t) = A:C(t) 4+ Bu(t) Ag = eAAT ZIZ(I{? -+ 1) = Adllf(k) -+ Bdu(k)
By = A"1(eA2T —1)B
y(t) = Cx(t) + Dul(t) y(k) = Ca(k) + Du(k)

i i Stability condition (Hurwitz)
Output response (continuous time) (1) = cat

a <0 a>0

real(eig(A)) < 0

t
y(t) =|Ce?taoH C’/ e~ Bu(1)dr H Du(t)
0

Free Response _
(homogeneous Effect of input

solution) CI?(]C) = CLk
Output response (discretektir{le) la| < 1 la] > 1
y(k) = CAfzo + C Y AL~ Bau(i) + Du(k) eig(Ag)| < 1

1=0

State-Space Realizations

Similarity Transformations

@ The choice of a state-space model for a given system is not unique.

@ For example, let T be an invertible matrix, and consider a coordinate
transpormation x = TX, i.e., X = T 1x. This is called a similarity
transformation.

@ The standard state-space model can be written as

X = Ax+Bu, _ Tx = ATX+ Bu,

y = &+ Du. y = CTx+ Du.
le.,

X = (T'AT)%+ (T 'B)u= A%+ Bu

y = (CT)%+ Du= Cx+ Du.

@ You can check that the time response is exactly the same for the two models
(A,B,C,D) and (A, B, C,D)!

LTl Systems Properties Discrete case
r(k+1) = Az(k) + Bu(k)
y(k) = Ca(k)

Reaching a state

Ug,U1,...U

N—-1
&2 o
“Observing” the initial state
YN, YN—-1,---Y0

——

LTl Systems Properties

Conditions for all LTI systems:

Controllability < rank(C) =n

C=|B,AB,A’B,..., A" 'B]

.Observability — TCLTL]C(O) =N
S
CA
O = C A?
I CAn—l]

Discrete case
r(k+1) = Az(k) + Bu(k)
y(k) = Cu(k)

Reaching a state

Uugp,U1,...U

N—-1
&2 o
“Observing” the initial state
YN, YN—-1,---Y0

——

LTl Systems Properties

Pair (A,B) is “Controllable”

Pair (A,C) is “Observable”

controllable.

Example:
SO:{A(%B)O}?
B=[0 0 1]
0 1 O]
Ag= |1 1 0
0 0 1

T

Sli{Al,B,C}
C=[1 0
0 1

A1 =10 0
_1 —1

& rank(C) =n
& rank(O) =n

LTI System S : { A, B, C'} is a “minimal state-space realization” if it is both observable and

OI

o = O

Co =

_ O O

= O O

rank(Cy) =1

C1 =

_ O O

rank(Cy)

o = O

3

—_ O O

AW N =

1
Og = 1|0
1
rank(Op)
1
O =10
0

rank(O1)

—_—_ O
o O O

_9

| © = ©
— o O

non-LTl Systems (example)

s the inverted pendulum (cartpole) controllable?

. u+ml6? sin 6—m g cos 6 sin 6
) p = M +m sin 62
g sin 0 —cos 0p
[
\

Y
|

In non-linear systems Controllability and Observability Matrices represent LOCAL properties.

non-LTl Systems (example)

s the inverted pendulum (cartpole) controllable?

. u+ml6? sin 6—m g cos 6 sin 6
) p = M +m sin 62
9’ __ g sinf—cos0p
o [

In non-linear systems Controllability and Observability Matrices represent LOCAL properties.

T = f(x,u),
z = Ax + Bu
_ Of(z,u)

A_ ox
B — Of(x,u)

ou

eq.point xq, ug

|lz=20,u=u0

|zt=x0,u=u0

r = [p, p, 0, H}T

g_ 1

ou {0’ (M + m(1 — cos?(6))’

— cos(6)

0 [(M +m(1 — cos?(0))

non-LTl Systems (example)

Linearization

T = f(x,u), eq.point xq,ug
r = Ax + Bu

Of(z,u)
Odxr |x=xzg,u=ug
Of (x,u)

ou |x=xq,u=ug

svRN
]

xr +

Reference Tracking

X = AX + Bu

Controller Plant

Given a reference trajectory r(t), design u(t) such that x(t) closely follows r(t)

Control objectives:
* Reject disturbances (if there is some perturbation in state, making it get back to initial state)

« Follow reference trajectories (if we want the system to have a certain Xy, f)
« Make system follow some other “desired behavior”

Open-loop vs. Closed-loop control

Open-loop or feed-forward control
Control action does not depend on plant output
Cheaper, no sensors required.

Quality of control generally poor without human
intervention

i(t)
—>

u(t)
Controller p—

Plant

y(t)

Feed-back control

Controller adjusts controllable inputs in
response to observed outputs

Can respond better to variations in disturbances

Performance depends on how well outputs can
be sensed, and how quickly controller can track
changes in output

i(t)

u(t)
Controller pb—»

Plant

y(t)

Feed-back

Proportional Controller

reference signal

() / u(t) X(t)
? —»u = K(r —Xx) —»| x = Ax+ Bu |—1—>
- Controller Plant

Common objective: make plant state track the reference signal r(t)
e = r — x is the error signal
Closed-loop dynamics: X = AX + BKp(r —X) = (A — BKp)Xx + BKpr

pick Kp s.t. the composite system is asymptotically stable, i.e. pick Kp such that eigenvalues of (A — BK)
have negative real-parts

Designing a pole placement controller

r(t) u(t) L6 , x(t)
—|u = — »pl x = >
? u=K(r-—x) X (1 3)X+(1)u
- Controller Plant

eigs(A) are values of A that satisfy the equation det(A — AI) = 0
Note eigs(4) = 6,1 = unstable plant!

let K = (k; k). Then, A— BK = (4 — 2k 6= Zkz)

1—-k, 33—k,

eigs(A — BK) satisfy equation A2 + (2k; + k, — 7)A + (6 — 2ky) =0
two distinct solutions 11,4, if (A —21;) (A1 —21,) = 22 +(=1; — 1)1+ 444,
That means 2k{ + ko, —7=—A1; — A, and 6 — 2k, = A1,
E.g. Ay = —1and 1, = —2 gives k;y = 4,k, = 2. Thus controller with K = (4 2) stabilizes the plant!

Proportional Controller

reference signal

T 7
e O ang LETRCES)

u(t)

Controller

. y(t)
X = AX + Bu
y =(Cx+ Du
Plant

Proportional Integral Derivative (PID) controllers

eigs(A) are values of A that satisfy the equation det(A — Al) = 0
Note eigs(4) = 6,1 = unstable plant!

Controller

Kpe(t)

t
K,jo e(t)dr

de(t)
P dt

u(t

t
X = AxXx + Bu Y(i
y = (CxX+ Du
Plant

Measuring control performance

Step Response with Proportional Control
12 T T T T T T T T

o
o
|

Overshoot: The difference between the maximum value of the system
output and the desired reference value.

Rotational velocity (rad/s)
o o
~ (o]
|

o
(N}

i | | 1 i | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (seconds) (seconds)

Measuring control performance

1.2

Step Response with Proportional Control

T | 1 [I I [

ot
oo

Rotational velocity (rad/s)
o o
~ (o]

O
(N}

Rise time: The time difference between the initial time when the reference
signal changes and the time at which the output signal crosses the desired

reference value.

l |] |

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds) (seconds)

Measuring control performance

Step Response with Proportional Control
12 T T T T T T T T T

o
o
|

Steady-state error: The difference between the steady-state value of
the output signal and the value of the reference signal.

Rotational velocity (rad/s)
o o s
~ (o]
|

o
(N}

i | | 1 i | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (seconds) (seconds)

Measuring control performance

Step Response with Proportional Control
12 T T T T T T T T

o
o

Settling time: The time difference between the initial time when the
reference signal changes and the time at which the output signal reaches

its steady-state value.

Rotational velocity (rad/s)
o o
~ (o]
|

O
N
I

| l | | | | |)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds) (seconds)

Measuring control performance

Step Response with Proportional Control Step Response with Proportional Control
17 T T T T T T T T T 1.6 T T T T T T T T T
09 7
_____ [\, 1.4 ”
o0 08| ' —
(]
g 35 12
© 07~ 1 g
= &=
%0'6 éﬂ 11
o 3]
© 05 1 o
> O 08
— >
© 04 —
c ©
Ke) CC) 0.6 |
et L d
..(E 0.3 =
o) ©
C o2 O 04|
o
0.1 =
0.2
O ‘ 1 ! ! L 1 1 | 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 3 | | | | | | 1 | \
Time (seconds) (seconds) 0 05 1 15 2 25 3 35 4 45

Time (seconds) (seconds)

KP =50 KP =500

P-only controller

Compute error signale =r —y
Proportional term K e:
K, proportional gain;
Feedback correction proportional to error
Cons:
If K, is small, error can be large! [undercompensation]
If K, is large,

system may oscillate (i.e. unstable) [overcompensation]
may not converge to set-point fast enough

P-controller always has steady state error or offset error

Pl-controller

Compute error signale =r—y Step Response with Proportional Control

1.4

t
Integral term: K; [e(z)dt
* K, integral gain; g
* Feedback action proportional to 8
cumulative error over time 2
* If a small error persists, it will add up over time -3
and push the system towards eliminating this s |
error): eliminates offset/steady-state error =
®)
5 o4
o
o
D|Sadva ntages: % 0.15 , 1.5 2 2.5 3 3.5 4 45 5

.)) i . Time (seconds) (seconds)
* Integral action by itself can increase instability

* Integrator term can accumulate error and suggest
corrections that are not feasible for the actuators (integrator windup)

* Real systems “saturate” the integrator beyond a certain value

Pl-controller

Integrator windup

PD-controller

Compute error signale =r —y

Derivative term K e:
* K, derivative gain;

* Feedback proportional to how fast
the error is increasing/decreasing

Purpose:

* “Predictive” term, can reduce overshoot:
if error is decreasing slowly, feedback is slower

e Can improve tolerance to disturbances

Disadvantages:
 Still cannot eliminate steady-state error
* High frequency disturbances can get amplified

0.4

Rotational velocity (rad/s)

Step Response with Proportional Control

0.5

1

1.‘5 é 2.9 é 3.5
Time (seconds) (seconds)

4

4.5

5

PID-controller

Step Response with Proportional Control

1.2 T T T T T T T T

1 e e e - . R
)
<
©
4y}
&= 08}
O
O
() 0.6 H
>
©
C
._g 0.4
S
(@)
oc

0.2
O | I | | ! | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (seconds) (seconds)

PID controller in practice

May often use only Pl or PD control
Many heuristics to tune PID controllers, i.e., find values of Kp, K;, Kp
Several recipes to tune, usually rely on designer expertise

E.g. Ziegler-Nichols method: increase Kp till system starts oscillating with

1.2K* 3

period T (say till Kp = K™), then set Kp = 0.6K™, K; = - ,Kp = 4—OK*T

Matlab/Simulink has PID controller blocks + PID auto-tuning capabilities

Work well with linear systems or for small perturbations,

For non-linear systems use “gain-scheduling”
* (i.e. using different Kp, K;, Kp gains in different operating regimes)

Gain Scheduling Example

Calibration Routine Example

Used for NONLINEAR / unknown systems

K_p =f_p (state, param_set)
K_i=f_i(state, param_set)
K d=f _d (state, param_set)
Sensor/Observer loss = g(stability, risetime, overshoot, etc.)
€T P L : .
J while not (end condition):
™ loss = run_system (param_set)
: optimization_step(param_set)
» ->| Kpe(t) l
. y(t)
K,j;) e(7)dt »
de(t)
D at

Controller

Observation

Problem:Control

design with
(partially) unknown state

Solution: ﬂiL) e(t) u(t)
- Luenberger Observer A

()

r(t) e(t) u(t) = Ax + Bu
= Cx
x(t) =?
|
Tz = Ax + Bu
= Cx
Obs

Luenberger Observer

eState-space representation X ~ ~
'pA pB x:Aaz+Bu—|—@y—y)
® I = AT+ Dbu R R
Yy = Cx Y= Cx Control design
_ > arameters
u=Ewes —) P
eObserver Error satisfies: I (A — LC)@

eRequired: Observability, Controllability

Overall system is stable
iff both observer and
controller are stable

e Pole Placement

K : eig(A — BK) — {)\Cly .- -7)\cn}
L : ez’g(AT — LC) = {>\01, . °7>‘0n}

Example - DC Motor

Torque k
Resistor B Inductor L / oraue Bt

Displacement ¢

n Current ¢
' ‘/8 |) . . = .
Voltage C) Back EMF k6 b =0.1 # friction coefficient (Nm/(rad/sec))
- . ' _ | = 0.01 # mechanical inertia (Kg*rm”"2)
Damping resistance b k = 0.01 # motor torque constant (Nm/A)
Inertial resistance I § R=1 #armature resistance (Ohm)

L = 0.5 # armature inductance (H)

State-space

| representation —b/] k 0
V. = Ri+ Ldz(t) k6, t = Ax + Bu A= [—k?L —R} B = {1}

:U:{H.”} u =V C=[1 0

Linear Control (frequency domain)

Signals Theory — Frequency Analysis

Control Theory applications precede digital computing

Classic control theory was developed for analog electronics applications

Signals x(t) can be expressed as function of frequency X(f) without loss of information

(Fourier series, Fourier Transform, Laplace Transform)

f(0) F(w)
| F
N
! = = 27
/2 t/2 6_{7 4_T7 2T

Classical LTI Systems Control Theory is frequency-domain based

Modern tools and notation are influenced by historic development
of theory

r(t)
— K
Controller
r(t) num(s)
R(s) = den(s)

Controller

u(t) x(t)
—»| X = AX + Bu |—»
Plant
u(t) num(s) x(t)
Gls) = den(s) —

Plant

Signals Theory — Frequency Analysis

Control Theory applications precede digital computing

Classic control theory was developed for analog electronics applications

Signals x(t) can be expressed as function of frequency X(f) without loss of information

(Fourier series, Fourier Transform, Laplace Transform)

Classical LTI Systems Control Theory is frequency-domain based

Modern tools and notation are influenced by historic development
of theory

r(t)
— K
Controller
r(t) num(s)
R(s) = den(s)

Controller

u(t) x(t)
—»| X = AX + Bu |—»
Plant
u(t) num(s) x(t)
Gls) = den(s) —

Plant

LTI Systems in the Frequency Domain

* Classic Control Theory Approach (derived from Circuits Theory)

* Output of L-transform is a rational function with real coefficients (G/(g) =

* Motivation: complexity in using explicit form for CE(t) in State-Space representation:

t
y(t) = Celay —I—C/ e1=7) Bu(1)dr + Duf(t)
0

* Laplace Transform of a signal CIJ(

X(s) = L{z(t)} = /)e~*tdt s=o0+jwelC
s(s? +1)
deg(num(s)) < deg(den(s)) s9 4252 —s—1

* Laplace Transform property:

H(s) = L{h(t)} XN — (s) (4) ooajT o
X(s) = L{x(t)} L7H{H(s)X(s)} = (h*x)(?) /_OO (T)h(t — 7)d

LTI Systems in the Frequency Domain

Intuition behind the Laplace Transform of a signal

* Imaginary components of complex numbers are always accompanied by conjugate, as
complex numbers are defined as square roots of negative numbers, e.g. v/—1 = £j

« Choose an elementary input u(t) — 5t s e C

?

e |f 8§ isreal, u(t) is an exponential
 |If § isimaginary then the elementary has to be considered with its conjugate:
w(t) +u*(t) = &7 + 7% = 2 cos(wt)
(in this case u(t) is “half” sinusoidal signal)
st

Im
A .
z=xt1y
] .
r/ |
\¢
: R
0|\ o | X » Re
r\ |
_y _______ I_ .
Z=Xx—1y

* Laplace transform is equivalent to finding the complex representation ¢ of a signal for each moment t :

u(t) = e cos(wt)

LTI Systems in the Frequency Domain

Intuition behind the Laplace Transform of a system

* H(s)is the L-transform “impulse response” of a system (response to ideal input, Dirac or Kronecker delta) and
it is called Transfer Function

* QOutput response to input u(t) is the convolution with impulse response h(t)

* H(s) represents the natural “modes” of system S = {A,B,C,D}

H(s)=C(sI —A)™'B+D= rumis)
den(s) , Jo
* Denominator is den(S) = d@t(Sl — A) Fls)=10s—_ (5t Ms+2) s-plane

. . 4)(s+5)(s+8
* H(s)is represented with zeros/poles on the complex plane sEhsrBerl)

co ¢

)
(OB
o~
Q

LTI Systems in the Frequency Domain

Frequency-domain controller design

* ((s) poles:

po=-+1, prao=—-1=x7

Poles allocation of
FeedBack system
- Root Locus

‘) =TT rRiaE)"
_ R(s)G(s)
y(t) = 17 R(s)G(s) r(t)

FeedForward Path
- Bode Plot
- Nyquist Plot

From Transfer Function to State-Space

 Controllable canonical form

bn—lsn_l + bn—ZSn_Q + -+ bO

G(s) = ;
s +ap_18" "+ -4+ ag
0 1 0 0 0
0 0 1 .- 0 0 |
A= : : B=|: C(S[—A)_ B
0 0 0 1 0
—ag —aj —Qp—1 1

DC Motor Example (ss — tf)

Resistor R Inductor L / Tl — b /] k O
2820 / Displacement 6 A —_— k L B E — 1
+ Current ¢ i T / T R
Voltage V, Back EMF k6
- \\ Damping resistance bf C [1 O:|
Inertial resistance I f

ato = ceraym =[Gy G

i 1 0] F—Z/}L% s+kb/1} m B k

(s+b/I)(s+ R)+ Kk?/L (s+b/I)(s+ R)+ Kk?/L

Classic Control System Design: Root Locus

Pole-Zero Map

* how doclose-loop dynamics change with K? %
—20(s —2)(s+5

@:] : 1 32 : 2)
(s +4)(s £10)(s? + 25 + 5)

-10 -8 -6 -4 -2 0 2
Roal Avic [ecarnndce '1\
—_— > > , .
R K L(S) Y Root Locus &, {=]{"M & Q (3
40 /
7\ o 30
. y
20

* Additional material {
https://www.youtube.com/watch?v=eTVddYCeiKI|

d
. K*(\

Imaginary Axis (secon
Lod By K

Real Axis (seconds‘l)

Modern Control Theory:

Optimal Control, MPC

 Optimal Control / LOQR

« MPC

(Nonlinear) Optimal Control

T = f(x,u,t)
reR" ueR™
x(ty) = xo
*Minimization of cost function J [()] over time interval [tq, t1]

Tu®] = S(alt),t) + /t ' L(wu, D)t

N

Final State Rating ~~ ~
Integral Cost

x
*Find solution T .= [}
U

LQR Control (finite time, discrete)

r(k+1)=Ax(k) + Bu(k), z€R",uecR™
J=xz(T)Qx(T) + i[w(k)’@x(k) + u(k)' Ru(k)], Q,R >0

*Solution

LQR Control (finite time, discrete)

r(k+1)=Ax(k) + Bu(k), z e€R",uecR™
J=xz(T)Qx(T) + i[w(k)’@x(k) +u(k)' Ru(k)], Q,R>0
*Solution

X(1,)

u(k) = —K(k)z(k) 5.‘“.’

-Depends on final time T

YT

‘e‘l t032 e3

LQR Control (finite time, discrete)

= Ax(k) + Bu(k), x€R",ueR™
\l\) J:¢(A,B,Q,R,Q?Q,’U,O,...,UT_l)

J = x(T)’Q\a:(T) + i[x(k:)'@x(k) + u(k)' Ru(k)], Q,R >0

k=0

*Solution

u(k) = —K(k)x(k)

-Depends on final time T

K(k)=(R+ B'P(k+1)B)"Y(B'P(k+1)A)
P(k—1)=AP(k)A— (A'P(k)B)(R+ B'P(k)B) ' (B'P(k)A) + Q

LQR Control (finite time, discrete)
: Axz(k) + Bu(k), zeR",ueR™
T) J = 6(A, B, Q, R, X, uo, - .., ur_1)

J = x(ﬂ%(ﬂ + i[m(k)’Qx(k) +u(k)'Ru(k)], Q,R>0
k=0 _
* Solution

u(k) = —K(k)z(k)

- Does not depend on initial condition!

K(k)=(R+ B'P(k+1)B)""(B'P(k+1)A) T~

P(k—1)=AP(k)A— (A'P(k)B)(R+ B'P(k)B) Y (B'P(k)A) + Q

LQR Control (infinite time, discrete)

r(k+1) = Ax(k) + Bu(k), ze€R" ueR™

7 =S ek Qz(k) + ulk) Ru(k)], Q.R>0
* Solution
w(k) = —Kx(k) =

x(1,)
K = (R+ B'PB)"'(B'PA) \

P=APA— (APB)R+BPB)"'BPA)+Q ARE =

T oV S

* Optimal Control / LQR
« MPC

Model Predictive Control

-Main idea: Use a dynamical model of the plant (inside the controller) to
predict the plant’s future evolution, and optimize the control signal over
possible futures

ast A future : past |
e , optimal - POt
@«——— optimization at time step 1 ——»i prediction
target

control

r(t) Model- |u(t) y(t)
—> based »| Plant
Optimizer
Sensor readings
future optimal
[— I prediction

output at
time (+/ |

|

|

. |

I |

output at : | |
time ¢ I |
: |

|

|

|

|

|

|

% optimum control sequence i
‘A 1 | 1 | ; >

|

t t+l . . 41
«—— predictive horizon ———

JImage from: https://tinyurl.com/yaej43x5

t+1

receding

~

~

\/

Sk _ca . ap 1+1
¢—— optimization at time step 7 target
contro!

% optimum control sequence .
g 1 1 1]

Why MPC?

*Optimal control with constraints (input, output and states)
sideal for MIMO (Multi Input Multi Output) systems

*linear and nonlinear models

*RECEDING HORIZON PRINCIPLE

” At any time instant k£, based on the available process information, solve the
optimization problem with respect to the future control sequence [u(k), ..., u(k+
N —1)] and apply only its first element u°(k). Then, at next time instant k+1, a
new optimization problem is solved, based on the process information available
at time k + 1, along the prediction horizon [k + 1,k + N|.” (Camacho)

AY,.
r— (2£(0),yx(0))

Receding
Horizon

Principle

* Closed Loop solution (no
constraints, LQR)

° Open Loop Solution Tii;’ ,-zxjv(iu)rl' _—
(ConStraintS) —lrodl(t(ltnjc(t ory

® Predicted coordinates XY}
{ ; Sensor coordinates XY,

(z3(0), yx (0

N—-1

J(z(F) Z lz(k +0)lg + [lulk +)lI7) + llz(k + N[5

Linear MPC (1)

r(k+1) = Az(k) + Bu(k),

1—1

reR" ueR™

o(k+1i) = A'z(k) +) A7 Bu(k +j),

7=0

X (k) = Ax(k) + BU(k) =

u(k +1)

u(k—l—N—Q)

u(k+N—1)

1> 0
Axr =0
A
A2
A=|
AN—l
AN

Linear MPC (2)

v(k+1) = Az(k) + Bu(k),

1—1
o(k+1i) = A'z(k) +) A7 Bu(k +j),

=0

X (k) = Az(k) + BU (k)

[B 0 0
AB B 0

o sy i

_AN—IB AN_2B AN—SB

1 >0

0 0]
0 0

0
AB B |

reR" ueR™

(Non-)Linear MPC

s = [z, u, Aul*
N

Jupe =Y (lz@) — 2* (D)8 + [Ju(i) — ()] |F + ||Au(i) — Au*(i)][3)
i=1

eLinear formulation: minimize JMPC(S)

S
subject to A¢ys = beg,
Az’neqs < bineq

*Nonlinear formulation: ...
minimize Jypo(x,u)
T, U

subject to
v(k+1) = f(z(k),u(k)),
h(z(k),u(k)) <0

Issues with MPC

Feasibility
Stability
Computation

Conflicting Requirements

(several solutions depending on needs)

Robustness formulation: system affected by process and measurement noise

Constraints
tightening

Margin
y retained
A :
/N
max \—— Plan
Constraints
TTmc
k+1 k+2 k+3 k+4

Margin Margin
y returned retained
A H H
AN
max Plan
\\ Constraints
~ (
5 : T'ime
k+1 k+2 k+3 k+4

Kalman Filtering

What is state estimation?

* Given a “black box” component, we can try to use a linear or nonlinear
system to model it (maybe based on physics, or data-driven)

* Model may posit that the plant has internal states, but we typically have
access only to the outputs of the model (whatever we can measure using a
sensor)

* May need internal states to implement controller: how do we estimate
them?

« State estimation: Problem of determining internal states of the plant

Deterministic vs. Noisy case

Typically sensor measurements are noisy (manufacturing imperfections, environment
uncertainty, errors introduced in signal processing, etc.)

In the absence of noise, the model is deterministic: for the same input you always
get the same output

: « & — AR + Bu+ Ly -9)
Can use a simpler form of state ac = y-y
estimator called an observer y=Cx+Du ée=(A—-LC)e

.g. a Luenberger rver
(e.g. a Luenberger observer) Cu(e) = —Kig RO,
In the presence of noise, we use a state estimator, such as a Kalman Filter

Kalman Filter is one of the most fundamental algorithm that you will see in
autonomous systems, robotics, computer graphics, ...

Random variables and statistics refresher

For random variable w, E[w] : expected value of w, also known as mean
Suppose E[x] = u : then var(w) : variance of w, is E[(w — u)?]
For random variables x and y, cov(x, y): covariance of x and y

cov(x,y) = E[(x — E()(y — E(y)]
For random vector X, [E|x]is a vector
For random vectors, X € R™ and y € R", cross-covariance matrix is mXn
matrix: cov(x,y) = E[(x — E[x])(y — E[yD"]
w ~ N(u,d?) : wis a normally distributed variable with mean u and
variance o

Data fusion example

Using radar and a camera to estimate the distance to the lead car:
Measurement is never free of noise
Actual distance: x
Measurement with radar: z; = x + v, (v; ~ N(uy, o) is radar noise)
With camera: z, = x + v, (v, ~ N(luy, 0%) is camera noise)
How do you combine the two estimates?

Use a weighted average of the two estimates, prioritize more likely

measurement
~ _ (z1/07) +(z2/05) _ I _ 0}
i = JoDr /ot kz; + (1 — k)z,, where k = 702

2 2
~ oio
0’2=-12 /

u =10 =1
U, = 2,04 =0.5

i=1.6707=0.33

o2+02)
Observe: uncertainty reduced, and mean is closer to measurement with
lower uncertainty

:
.

Multi-variate sensor fusion

Instead of estimating one quantity, we want to estimate n quantities, then:

Actual value is some vector x

Measurement noise for i*! sensor is v; ~ N(n;, Z;), where p; is the mean
vector, and X; is the covariance matrix

A = Y7 1is the information matrix

For the two-sensor case:
X = (Al + Az)_l(Alzl + A2Z2), and 2 = (Al + Az)_l

Motion makes things interesting

What if we have one sensor and making repeated measurements of a
moving object?

Measurement differences are not all because of sensor noise, some of it is
because of object motion

Kalman filter is a tool that can include a motion model (or in general a
dynamical model) to account for changes in internal state of the system

Combines idea of prediction using the system dynamics with correction
using weighted average (Bayesian inference)

Stochastic Difference Equation Models

We assume that the plant (whose state we are trying to estimate) is a
stochastic discrete dynamical process with the following dynamics:

X, = AXy_; + Buy + wy, (Process Model)
yi. = HX;, + v, (Measurement Model)

Xpe, X1 State at time k,k — 1 n Number of states
uy Input at time k m Number of inputs
Wi Random vector representing noise in the plant, w ~ N (0, Q) p Number of outputs
Vi Random vector representing sensor noise, v ~ N(0, Ry) 4 nxn mat”’.‘
Z) Output at time k 5 Z::rlitr:(x

Kalman Filter

mucvmow cavaa.\m (d 3

Kk pKl uT(“t k- \“T "‘ij

YOF

A Gredictiom

>
N (’(k{k-\ g(m\ r\r"’"\k\Q‘H«) Ny, Red @
(Wokion Ma,,m) Estivde otk / (Cbserookon medeldl D

‘XK-A%‘:‘_\ +‘&Uk_-\—‘€t ‘! 8K=“‘ %y + ‘f{_\.
Ne®yD

B e
~ A N N
l?zk\k'\SAK{-‘\K—‘ +Que I‘ka’ Wy e @gk" “Kotk\ K~\§

s -A Papa A+ Cai= (1-KeH)P

}((;t:-qm ,Pk-l,k-IB
Egincye e -\

Step |: Prediction

* We assume an estimate of X at time k — 1, fusing information
obtained by measurements till time k — 1: this is denoted X _1x—1

* We also assume that the error between the estimate X;,_;x_1 and
the actual X, _; has 0 mean, and covariance Py_1 k-1

* Now, we use these values and the state dynamics to predict the value
of). ¢ %

* Because we are using measurements only up to time k — 1, we can
denote this predicted value as X |,—1, and compute it as follows:

Xpik—1 = AXg_qk-1 + Buy

Step |: Prediction

Pk|k—1 = COV(Xk — ﬁk|k—1) = COV(AXk_l + Buk + Wy — Aﬁk—1|k—1 — Buk)
= Acov(xk_1 —)?k_1|k_1)AT + cov(wy,)
= APy _q1jj-14" + Qx

* Thus, the state and error covariance prediction are:

Xilk—1 = AXp_qjk—1 + Buy
Prik—1 = APy_qx—14" + Qy

Kalman Filter

mucvmow cavaa.\m (d 3

Kk pKl uT(“t k- \“T "‘ij

YOF

A Gredictiom

>
N (’(k{k-\ g(m\ r\r"’"\k\Q‘H«) Ny, Red @
(Wokion Ma,,m) Estivde otk / (Cbserookon medeldl D

‘XK-A%‘:‘_\ +‘&Uk_-\—‘€t ‘! 8K=“‘ %y + ‘f{_\.
Ne®yD

B e
~ A N N
l?zk\k'\SAK{-‘\K—‘ +Que I‘ka’ Wy e @gk" “Kotk\ K~\§

s -A Papa A+ Cai= (1-KeH)P

}((;t:-qm ,Pk-l,k-IB
Egincye e -\

Step Il: Correction

* This is where we basically do data fusion between new measurement
and old prediction to obtain new estimate

* Note that data fusion is not straightforward like before because we

don’t really observe/measure x; directly, but we get measurement
Y, for an observable output!

* Idea remains similar: Do a weighted average of the prediction X x_;
and new information

* We integrate new information by using the difference between the
predicted output and the observation

Step Il: Correction

* Predicted output: ¥ = Hy Xy k-1
* We denote the error in predicted output as the innovation
Z, =Yk — Hi Xy k-1
e Covariance of innovation
Sk — COV (Zk) — COV(Hka + Vi, — Hkﬁk“(—l) — Rk + HkPk|k—1Hl’161
* Then to do data fusion is given by:
Xk = Xik-1 T KiZy,

* Where, K, = Pk|k_1HZSk_1 is the (optimal) Kalman gain. It minimizes the
least square error

* Finally, the updated error covariance estimate is given by:
Pk = Pyjk—1I — Ky Hy)

Step Il: Correction

Innovation

Innovation Covariance
Optimal Kalman Gain

State estimate at time k

Covariance estimate at time k

Z; = Yi — HiXy k-1
Sk = Ry + HyPyjie—1Hy
Ky = Preje—1Hy Sic

Xi|k = Xkk—1 TKi Zg

Pk = Prje—1(U — Ky Hy)

Kalman Filter

mucvmow cavaa.\m (d 3

Kk pKl uT(“t k- \“T "‘ij

YOF

A Gredictiom

>
N (’(k{k-\ g(m\ r\r"’"\k\Q‘H«) Ny, Red @
(Wokion Ma,,m) Estivde otk / (Cbserookon medeldl D

‘XK-A%‘:‘_\ +‘&Uk_-\—‘€t ‘! 8K=“‘ %y + ‘f{_\.
Ne®yD

B e
~ A N N
l?zk\k'\SAK{-‘\K—‘ +Que I‘ka’ Wy e @gk" “Kotk\ K~\§

s -A Papa A+ Cai= (1-KeH)P

}((;t:-qm ,Pk-l,k-IB
Egincye e -\

one-dimensional example

Let’s take a simple one-dimensional example
Kalman filter prediction equations become:

5 N . 2 22 2
Xk|k-1 = AXg—1jk-1 + bu ; Oklk—1 = A"Of_1jk-1 T Og

N) W
Y

prior uncertainty ~ uncertainty
Also, the correction equations become: n estimate 1 PTOEESS
Innovation: z = yr — Xgk—1, Sk = o + 0,3”{_1
Optimal gain: k = 0j),—1/(0F + 0j1—1),
Updated state estimate: Xk = Xgjx—1 + K(Vx — Xkjk—1)
l.e. updated state estimate: Xy, := (1 — k) Xy k-1 + kyi (Weighted average!)

Extended Kalman Filter

* We skipped derivations of equations of the Kalman filter, but a fundamental
property assumed is that the process model and measurement model are both
linear.

Under linear models and Gaussian process/measurement noise, a Kalman filter is
an optimal state estimator (minimizes mean square error between estimate and
actual state)

In an EKF, state transitions and observations need not be linear functions of the
state, but can be any differentiable functions

l.e., the process and measurement models are as follows:
X = f(Xp—1, Ug) + Wi
Vi = h(xg) + vy

EKF updates

* Functions f

and h can be used directly to compute state-prediction,

and predicted measurement, but cannot be directly used to update
covariances

* So, we instead use the Jacobian of the dynamics at the predicted

state

* This linearizes the non-linear dynamics around the current estimate
* Prediction updates:

Xk
Py,

k—1 = f(ﬁk—1|k—1»“k)
k—1 = FxPr_1-1Fx + Q

Fk:

_9

T ox

X=Xp|k—1,U=Ug

EKF updates

 Correction updates:

Innovation

Innovation Covariance
Near-Optimal Kalman Gain

A posteriori state estimate

A posteriori error covariance estimate

~ 0h

Hk :—a_x

X=

Xi|k—1

Z, =Yy, — h(Xg
Sk p— Rk + HkPk

k—1)
T
k—1Hy

Ky = Pyji—1Hi Sic

Xk = Xgjk—1 T K ¥k

Peik = Prpe—1U

— K Hy)

Simulink Example - Cartpole

(.. u+ml6? sinf—m g cosfOsinb

) p = M +m sin 62 AT
9’ __ gsin Hl—cos 0p T = [p, p, 0, 9}
\

e Full-state estimation (Luenberger, Kalman)
* Optimal Control

