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Signal energy & power



Signal Energy and Power

• The terms signal energy and signal power are used to characterize a
continuous-time or discrete-time signal.

• They are not actually energy and power measurements, even though the energy
and power signal definitions are inspired by expressions used to evaluate energy or
power of electrical signals.

• Indeed, the definition of signal energy and power refers to any signal, including
signals that take on complex values.
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Energy and power for continuous-time signals

• Consider a generic deterministic continuous-time signal x(t)
• Let’s define

• instantaneous power
P (t) = |x(t)|2

• energy over the time period [t0 , t1]

E (t0 , t1) =

∫ t1

t0

|x(t)|2 d t

• average power over the time period [t0 , t1]

P (t0 , t1) =
1

t1 − t0

∫ t1

t0

|x(t)|2 d t

Analogy
Consider a current signal i(t) flowing through a transmission line represented by
resistance R = 1Ω. Evaluate the energy loss in the line, the instantaneous and average
power loss in the line and compare the results with the definitions above.
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Energy and power for continuous-time signals (cont.)

• Extending the time period, let’s define
• energy of a deterministic signal x(t)

E∞ =

∫ +∞

−∞
|x(t)|2 d t

• power of a deterministic signal x(t)

P∞ = lim
T→∞

1
2T

∫ +T

−T

|x(t)|2 d t

Energy and power for a continuous-time deterministic signal
• the deterministic continuous-time signal x(t) is called an energy signal if
0 < E∞ < ∞

• the deterministic continuous-time signal x(t) is called a
power signal if 0 < P∞ < ∞
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Energy and power for discrete-time signals

• Consider a generic discrete-time deterministic signal {x(k)}
• Let’s define

• instantaneous power
P (k) = |x(k)|2

• energy over the time period [k0 , k1]

E (k0 , k1) =

k1∑
k=k0

|x(k)|2

• average power over the time period [k0 , k1]

P (k0 , k1) =
1

k1 − k0 + 1

k1∑
k=k0

|x(k)|2
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Energy and power for discrete-time signals (cont.)

Analogously to the continuous-time case, let’s define

• energy of a discrete-time signal x(k)

E∞ =

+∞∑
−∞

|x(k)|2

• power of a discrete-time signal x(k)

P∞ = lim
N→∞

1
2N + 1

+N∑
−N

|x(k)|2

Energy and power for a discrete-time deterministic signal
• the discrete-time signal x(k) is called an energy signal if 0 < E∞ < ∞
• the discrete-time signal x(k) is called a power signal if 0 < P∞ < ∞
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Energy and power for stationary stochastic processes

• Consider now a discrete-time stationary stochastic process (in weak sense). Let’s
define

• instantaneous power
P (k) = E

[
|x(k)|2

]
• power of a stationary (in weak sense) stochastic process x(k)

P∞ = E

{
lim

N→∞

1
2N + 1

+N∑
−N

|x(k)|2
}

= E
{
|x(k)|2

}

Energy and power for a discrete-time stationary (in weak sense) stochastic process
• E∞ → ∞
• P∞ = var(x) + (E [x(k)])

2
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Signal Energy and Power

Remarks
• The power for an energy signal is zero

E∞ < ∞ =⇒ P∞ = 0

• The energy for a power signal is infinite

P∞ < ∞ =⇒ E∞ → ∞

• Some signals are neither energy nor power signals.
• A signal can’t be both an energy signal and a power signal.
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Examples

• Pure deterministic signals

x(k) = A , k = 1 , 2 , . . . =⇒ E∞ → ∞ , P∞ = A2

v(k) = Ae−k , k = 1 , 2 , . . . =⇒ E∞ =
+∞∑
k=1

A2 e−2k , P∞ = 0

• Pure stochastic signal

η(k) = WN
(
0 , λ2

)
=⇒ E∞ → ∞ , P∞ = λ2
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Spectral representation of
stationary stochastic processes



Description of stationary stochastic processes

• We described a zero-mean stationary process v(t) by the correlation function:

γ(τ) = E[v(t)v(t+ τ)]

• However, it is of customary importance to devise a frequency-based description of
stationary stochastic processes

• Consider the ideal conceptual scheme:

var [v(t)] = λ2

Average power of the process
var [ṽ(t)] = λ̃2

Power contribution in the
frequency-interval [ω1 , ω2]
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Spectral power density (spectrum)

• Thus, we introduce the spectral power density (spectrum) as the Fourier transform
of the correlation function:

Γ(ω) = F{γ(τ)} =

+∞∑
τ=−∞

γ(τ)e−jωτ (⋆)

In order the Fourier transform (⋆) to converge, it is necessary that γ(τ) → 0 as
τ → ∞ “quickly enough”, that is:

+∞∑
τ=−∞

|γ(τ)| < ∞
Γ(ω) exists ∀ω

Γ(ω) is continuous
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Spectral power density (spectrum) (cont.)

• Consider the discrete-time periodic sequence:

This sequence is characterized by the maximum possible frequency of variation
(sign-change at every time-instant).
The smallest period is T = 2 and hence the maximum frequency is 1/2 .
Consequently the maximum angular frequency is 2π

T
= π .

Γ is evaluated between −π and π
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Properties

• Γ(ω) ∈ R
In fact γ(τ) = γ(−τ) (correlation function is even)

e−jω(−τ)γ(−τ) + e−jωτγ(τ) = γ(τ)
[
ejωτ + e−jωτ

]
∈ R

• Γ(ω) is even, that is Γ(ω) = Γ(−ω)

• Γ(ω) ≥ 0
• Γ(ω) is periodic of period 2π

• γ(τ) =
1
2π

∫ π

−π

Γ(ω)ejωτdω
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Properties (cont.)

• Thus:

var[v(t)] = γ(0) = 1
2π

∫ π

−π

Γ(ω)dω

Area “below” Γ(ω) in [−π , π] is proportional to the process power and hence to its
“variability”.

Area below Γ(ω) in [−ω2 , −ω1] and
[ω1 , ω2] represents the distribution of
the “process variability” in the angular
frequency range [ω1 , ω2] .
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Example

v(·) ∼ WN(0, λ2)

γ(τ) =

{
λ2, τ = 0
0, τ ̸= 0

Γ(ω) =

+∞∑
τ=−∞

γ(τ)e−jωτ = λ2 , ∀ω ∈ [−π, π]

γ(0) = 1
2π

∫ π

−π

Γ(ω)dω =
1
2πλ

2 × 2π = λ2

Then, in a white process, all angular frequencies contribute in the same way to the
overall “process variability”
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Dynamic representations of stationary stochastic processes

• The representations seen up to now are static: the process is considered in its
entirety (sequence of infinite r.v. from −∞ to +∞ ).

• These representations, though correct, are not useful for the solution of the
prediction problem.

• We need to devise dynamic representations in which it is possible to relate the
future evolution of the process with its past.

• Special care has to be exercised
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Example 1

Consider a r.v. v and define the process v(t) = v

v(t, s) = v(s) (all realizations have constant behavior)

By observing v(t, s) at some time-instant the uncertainty disappears in the sense that
the value that the process will take on in the future will not change.

Only a priori uncertainty:
BEFORE the “observation” of the process.
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Example 2

v(·) ∼ WN(0, λ2)

Opposite situation with respect to Example 1: the observation of past values of the
process does not help in predicting future values (past and future are not correlated).

The best prediction is the expected value (= 0 )
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Dynamic representations of stochastic processes (cont.)

• The two opposite (and kind of “extreme”) examples show that, in the context of the
solution of the prediction problem, a more peculiar description of the stochastic
process is needed.

• Define a vector space G and assume to represent the r.v. v(t), v(t− 1), v(t− 2), . . . as
vectors in G .

• Define
• Ht[v] Subspace of the past with respect to t hyper-plane

generated by vectors associated with observations
v(t), v(t− 1), v(t− 2), . . .

• H̃t[v] =
∩
t

Ht[v] Subspace of the “remote” past
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Dynamic representations of stochastic processes (cont.)

•Ĥt[v] = Ht[v] \ H̃t[v] such that Ĥt[v] ⊥ H̃t[v] Orthogonal
complement

Hence, the vectors in Ĥt[v] are orthogonal to all vectors in H̃t[v]

• ṽ(t) projection of v(t) on H̃t[v] Purely deterministic component

• v̂(t) projection of v(t) on Ĥt[v] Purely non-deterministic
component

Wold decomposition

ṽ(t) ⊥ v̂(t)

Once v is decomposed on the two components ṽ , v̂ , only the purely non-deterministic
component is useful for solving the prediction problem as the purely deterministic
component is perfectly predictable from the past.
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Dynamic representations of stochastic processes (cont.)

• Then, from now on, let us refer to dynamic representation of purely
non-deterministic processes

• Consider the hyper-plane Ĥt[v] and consider a basis of orthogonal vectors having
the same norm

η(t), η(t− 1), η(t− 2), . . .
• Such basis is chosen in such a way that:

• η(t− 1), η(t− 2), η(t− 3), . . . basis for Ĥt−1[v]

• η(t− 2), η(t− 3), η(t− 4), . . . basis for Ĥt−2[v]

• . . .

vectors η(t), η(t− 1), η(t− 2), . . . correspond to r.v. mutually uncorrelated with the
same norm

η(·) is a white process
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Dynamic representations of stochastic processes (cont.)

• Project v(t) on η(t), η(t− 1), η(t− 2), . . .
• w(0), w(1), w(2), . . . projections components
• Write the projection v̂(t) as

v̂(t) = w(0)η(t) + w(1)η(t− 1) + · · ·

=

t∑
i=−∞

w(t− i)η(i) convolution of w(·) , η(·)

time-invariance
Hence:

W (z) = Z[w(t)] =

∞∑
i=0

w(i)z−i

where w(t) is the impulse response of the system
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Dynamic representations of stochastic processes (cont.)

Therefore
The purely non deterministic component of a stationary stochastic process can be
seen as the output of a discrete-time dynamic systems driven by a white input process.

Remark
W (z) is not necessarily a rational function of polynomials in z .
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Analysis of dynamic systems
driven by input stationary
stochastic processes



Properties of LTI discrete-time systems

• Consider a linear time-invariant dynamic system with W (z) as transfer function:

where
W (z) =

γ0zn + γ1zn−1 + · · · γn
α0zn + α1zn−1 + · · ·αn

• Hence

α0y(t) + α1y(t− 1) + · · ·+ αny(t− n) =

= γ0u(t) + γ1u(t− 1) + · · ·+ γnu(t− n)
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Properties of LTI discrete-time systems (cont.)

• Recall that, if all poles of W (z) are located strictly inside the unit circle and if

u(t) = A sin

(2π
T̄

t+ β

)
, t = 0, 1, . . .

then a sinusoidal regime takes place after transient

y(t) ≃ A
∣∣∣ W (ejω̄)

∣∣∣ sin(2π
T̄

t+ β + arg
[
W (ejω̄)

])
Evaluation of W (z)

on the unit circle
where

ω̄ =
2π
T̄
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Properties of LTI discrete-time systems (cont.)

• Due to linearity, it follows that

y(t) = yF (t) + yL(t)

Forced response
(zero initial conditions)

Free response
(zero input)

• Then

yF (t) =
t∑

j=−t0

w(t− j)u(j)

where w(t) is the impulse response of the system
• Due to the assumed asymptotic stability, we have

lim
t0→−∞

yL(t) = 0

hence

lim
t0→−∞

y(t) =

t∑
j=−∞

w(t− j)u(j)
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Properties of LTI discrete-time systems (cont.)

Then
If all poles of W (z) are located strictly inside the unit circle, irrespective of the initial
conditions, for t0 → −∞ we have

y(t) =

t∑
j=−∞

w(t− j)u(j) =

+∞∑
i=0

w(i)u(t− i)

Convolution formula
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A stochastic process as input of an LTI system

• Now, assume that u(·) is a stochastic process with zero expected value (that is
E(u) = 0 )

• Thus

E[y(t)] = E

[ ∞∑
i=0

w(i)u(t− i)

]

=

∞∑
i=0

w(i) E [u(t− i)]

=

∞∑
i=0

w(i) E [u(t)]

= 0

stationary
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A stochastic process as input of an LTI system (cont.)

• As we established that y (·) has zero expected value the covariance functions
coincide with the correlation functions.

• Consider input and output values at different time instant t1 and t2:

y(t2) =
∞∑
i=0

w(i)u(t2 − i)

u(t1)y(t2) =
∞∑
i=0

w(i)u(t1)u(t2 − i)

y(t1)y(t2) =
∞∑
i=0

w(i)y(t1)u(t2 − i)
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A stochastic process as input of an LTI system (cont.)

• Hence, evaluating the expected values

E [u(t1)y(t2)] =
∞∑
i=0

w(i) E [u(t1)u(t2 − i)]

γuy(t1, t2) =
∞∑
i=0

w(i)γuu(t1, t2 − i)

E [y(t1)y(t2)] =
∞∑
i=0

w(i) E [y(t1)u(t2 − i)]

γyy(t1, t2) =
∞∑
i=0

w(i)γyu(t1, t2 − i)
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A stochastic process as input of an LTI system (cont.)

• As we assumed that the process u(·) is stationary, we obtain:

γuy(τ) =
∞∑
i=0

w(i)γuu(τ − i)

γyy(τ) =

∞∑
i=0

w(i)γyu(τ − i)

• Then, the correlation function between the input and output processes is the
convolution of the impulse response with the auto-correlation function of the input.

• Analogously, the auto-correlation function of the output process is given by the
convolution of the impulse response with the input-output correlation function.
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Correlation functions and complex spectra

• Now, introduce the two-sided Z transform of all the possible correlation functions:

Φuu(z) =
+∞∑

τ=−∞
γuu(τ)z

−τ

Φyy(z) =

+∞∑
τ=−∞

γyy(τ)z
−τ

Φuy(z) =

+∞∑
τ=−∞

γuy(τ)z
−τ

Φyu(z) =

+∞∑
τ=−∞

γyu(τ)z
−τ
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Correlation functions and complex spectra (cont.)

• Recalling the definitions of spectral power density, we have:

Γuu(ω) = Φuu(z)|z=ejω = Φuu

(
ejω
)

Γyy(ω) = Φyy(z)|z=ejω = Φyy

(
ejω
)

where Φuu(z) and Φyy(z) take on the name of complex spectra of the input and the
output.
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Properties

• Γuu(ω), Γyy(ω) ∈ R
• though in general Γuy(ω), Γyu(ω) ∈ C

• γuy(τ) = γyu(−τ)

Φyu(z) = Φuy(z
−1)

Γyu(ω) = Γ∗
uy(ω)
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Properties (cont.)

• Moreover

γuy(τ) =

∞∑
i=0

w(i)γuu(τ − i)

γyy(τ) =

∞∑
i=0

w(i)γyu(τ − i)

Φuy(z) = W (z)Φuu(z)

Φyy(z) = W (z)Φyu(z)

But
Φyu(z) = Φuy(z

−1) = W (z−1)Φuu(z
−1)

Φyy(z) = W (z)W (z−1)Φuu(z
−1)

Φyy(z) = W (z)W (z−1)Φuu(z)

This is a very important result: we are able to compute the complex spectrum of
the output process of a LTI asymptotically stable system driven by a stationary
input process.
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Properties (cont.)

• Going back to the frequency domain:

Γyy(ω) = Φyy(e
jω) = W (ejω)W (e−jω)Φuu(e

jω)

= W (ejω)W (e−jω)Γuu(ω)

Γyy(ω) =
∣∣W (ejω)

∣∣2 Γuu(ω)

This is a very important result as well: we relate spectral power densities with the
frequency response.
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Stationary processes with rational spectra

More common stationary processes with rational spectra
• White noise
• Moving average process (MA)
• Auto-regressive process (AR)
• Auto-regressive and Moving average process (ARMA)

Common characteristic: as we will see, these processes are generated from a filtered
white process.
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Analysis of dynamic systems
driven by input stationary
stochastic processes

White noise



White noise

v(·) ∼ WN(0, λ2)

γ(τ) =

{
λ2, τ = 0
0, τ ̸= 0

Γ(ω) =

+∞∑
τ=−∞

γ(τ)e−jωτ

= γ(0) = λ2

As can be seen from the correlation function, in a white process the values of the
process in different time-instants do not have any mutual relation, that is, the
knowledge of v(t) is of no help to estimate v(t̄) , t̄ ̸= t .
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White Noise Process – Correlation Function and Spectrum from Data

Matlab live script
Given a realization of a white noise stationary stochastic process, the
autocorrelation function and the spectrum can be estimated from the
data. A Matlab live script illustrate how to perform the estimation.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture8,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L8_WhiteNoise_CorrelationFunction_Spectrum . mlx ' ) ;

• Explore the live script and run it.
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Analysis of dynamic systems
driven by input stationary
stochastic processes

Moving average process (MA)



MA process

• Given a white process η(·) ∼ WN(0, λ2)
• A MA process of order n (denoted as MA(n) ) is the process

v(t) = c0η(t) + c1η(t− 1) + c2η(t− 2) + · · ·+ cnη(t− n)

• Hence v(t) is a linear combination (average) of the values taken on by the white
process in the time-window from t− n to t . When t increases, this time-window
shifts (moving).
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Example 1

• Consider the process MA(1) :

v(t) = c0η(t) + c1η(t− 1)

• Expected value:
E[v(t)] = E[c0η(t) + c1η(t− 1)]

= c0 E[η(t)] + c1 E[η(t− 1)] = 0
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Example 1 (cont.)

• Correlation function (= covariance due to the zero expected value):
γ(t1, t2) = E[v(t1)v(t2)]

A priori could be
non-stationary

• t1 = t2 = t

γ(t, t) = E
{
v(t)2

}
= E

{
[c0η(t) + c1η(t− 1)]2

}
= c20 E

{
η(t)2

}
+ c21 E

{
η(t− 1)2

}
+ 2c0c1 E {η(t)η(t− 1)}

=
(
c20 + c21

)
λ2

λ2 0
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Example 1 (cont.)

• Correlation function (cont.)
• t2 = t1 ± 1

γ(t, t± 1) = E {v(t)v(t± 1)}

= E {[c0η(t) + c1η(t− 1)] [c0η(t± 1) + c1η(t− 1± 1)]}

0

= c20 E {η(t)η(t± 1)} + c21 E {η(t− 1)η(t− 1± 1)}

0 λ2

+ c0c1 E {η(t)η(t− 1± 1)} + c0c1 E {η(t− 1)η(t± 1)}

λ2 0

= c0c1λ
2 = γ(t, t± 1)

t2 = t1 − 1 t2 = t1 − 1

t2 = t1 + 1
t2 = t1 + 1

DIA@UniTS – 267MI –Fall 2023 TP GF – L8–p43



Example 1 (cont.)

• Correlation function (cont.)
• t2 = t1 ± 2

γ(t, t± 2) = E {v(t)v(t± 2)} = 0
• In general:

γ(t, t± k) = E {v(t)v(t± k)} = 0 , k ≥ 2

• Note that γ (t1 , t2) actually is always only a function of t2 − t1 and hence the
process MA(1) is stationary.
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Example 1 (cont.)

• Thus:

MA(1) :



γ(0) =
(
c20 + c21

)
λ2

γ(1) = c0c1λ
2

γ(k) = 0, ∀ k > 1
Two possible cases:

tendency not to change sign
in consecutive time-instants

tendency to change sign
in consecutive time-instants
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Example 2

• Consider the process MA(2) :

v(t) = c0η(t) + c1η(t− 1) + c2η(t− 2)

• Expected value:

E[v(t)] = E[c0η(t) + c1η(t− 1) + c2η(t− 2)]

= c0 E[η(t)] + c1 E[η(t− 1)] + c2 E[η(t− 2)] = 0
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Example 2 (cont.)

• Correlation function (= covariance due to the zero expected value):
By a simple algebra analogous to the previous case, we have:

γ(t, t) =
(
c20 + c21 + c22

)
λ2

γ(t, t± 1) = (c0c1 + c1c2)λ
2

γ(t, t± 2) = (c0c2)λ
2

γ(t, t± k) = 0 , ∀k > 2

• Here again we notice that γ(t1 , t2) is always only a function of t2 − t1 and hence the
process MA(2) is stationary.
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MA(n) process

• In general, for a process MA(n) we can prove that:

MA(n) : γ(τ) =


0 if |τ | > n

(
c0c|τ | + c1c|τ |+1 + · · ·+ cn−|τ |cn

)
λ2 if n ≥ |τ | ≥ 0

• The stationarity should not be surprising: the process is just a linear combination
of values taken on by a stationary process.

• Clearly:

var [v(t)] = γ(0) =
(
c20 + c21 + · · ·+ c2n

)
λ2
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MA(n) process (cont.)

• Let us consider the general expression of a process MA(n):

v(t) = c0η(t) + c1η(t− 1) + c2η(t− 2) + · · ·+ cnη(t− n)

• By using the unity delay operator z−1 we have:

v(t) = c0η(t) + c1z
−1η(t) + c2z

−2η(t) + · · ·+ cnz
−nη(t)

=
(
c0 + c1z

−1 + c2z
−2 + · · ·+ cnz

−n
)
η(t)

= C(z)η(t)

where we set
C(z) = c0 + c1z

−1 + c2z
−2 + · · ·+ cnz

−n

• Then, the transfer function turns out to be

W (z) =
c0zn + c1zn−1 + c2zn−2 + · · ·+ cn

zn

which is asymptotically stable (n poles in the origin).
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Important remark

• In general, stationary processes are characterized via the expected value and the
covariance function

• In the case of the process MA(n) the expected value is zero and the covariance
function is given by

MA(n) : γ(τ) =


0 if |τ | > n

(
c0c|τ | + c1c|τ |+1 + · · ·+ cn−|τ |cn

)
λ2 if n ≥ |τ | ≥ 0

The process is fully characterized
by the parameters
c0, c1, . . . , cn, λ

2
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Important remark (cont.)

• However: the characterization by the parameters c0, c1, . . . , cn, λ2 is redundant.
In fact: let

c̃0 = αc0, c̃1 = αc1, . . . , c̃n = αcn

and consider the process

ṽ(t) = c̃0η̃(t) + c̃1η̃(t− 1) + · · ·+ c̃nη̃(t− n)

where η̃(·) ∼ WN(0, λ̃2).
If

λ̃2 =
λ2

α2
=⇒ γ̃(τ) = γ(τ)

and hence the two processes v(t) ṽ(t) are not distinguishable.
• The redundancy is eliminated assigning one of the parameters. The typical choice
is c0 = 1 and then the process MA(n) is written as

v(t) = η(t) + c1η(t− 1) + · · ·+ cnη(t− n)
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Example 1 (continued)

MA(1) : v(t) = η(t) + c η(t− 1)

MA(1) :



γ(0) =
(
1+ c2

)
λ2

γ(1) = c λ2

γ(k) = 0, ∀ k > 1
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Example 1 (cont.)

• Let us determine the spectrum:
a)

Γ(ω) =
+∞∑

τ=−∞
γ(τ)e−jωτ = γ(0) + γ(1)e−jω + γ(−1)ejω

= γ(0) + γ(1)
(
e−jω + ejω

)
= γ(0) + 2γ(1) cosω

=
(
1+ c2

)
λ2 + 2cλ2 cosω

=
(
1+ c2 + 2c cosω

)
λ2
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Example 1 (cont.)

• b)

v(t) = η(t) + c η(t− 1) =⇒ W (z) = (1+ cz−1)

Φ(z) = W (z)W (z−1)λ2 = (1+ cz−1)(1+ cz)λ2

=
[
1+ c2 + c

(
z−1 + z

)]
λ2

But Γ(ω) = Φ
(
ejω
)

Γ(ω) =
[
1+ c2 + c

(
ejω + e−jω

)]
λ2

=
(
1+ c2 + 2c cosω

)
λ2
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Example 1 (cont.)

• c)

v(t) = η(t) + c η(t− 1) =⇒
W (z) = (1+ cz−1)

=
z + c

z

But Γvv(ω) =
∣∣W (ejω)

∣∣2 Γηη(ω)

Γ(ω) =

∣∣ejω + c
∣∣2

|ejω|2
λ2 =

|cosω + j sinω + c|2

1 λ2

=
[
(cosω + c)

2
+ (sinω)2

]
λ2

=
[
(cosω)2 + c2 + 2c cosω + (sinω)2

]
λ2

=
(
1+ c2 + 2c cosω

)
λ2
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Example 1 (cont.)

• if c = 1
2 The “variability” of the process is concentrated at lower frequencies
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Example 1 (cont.)

• if c = −12 The “variability” of the process is concentrated at higher frequencies
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MA(1) Process – Correlation Function and Spectrum from Data

Matlab live script
Given a realization of a MA(1) stationary stochastic process, the
autocorrelation function and the spectrum can be estimated from the
data. A Matlab live script illustrates how to perform the estimation.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture8,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L8_MA_Processes_AutocorrelationFunction_Spectrum . mlx ' ) ;

• Explore the live script and run it.
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Process MA(∞)

• It is a mathematical abstraction of great conceptual importance that will be used in
the sequel

• Consider η(·) ∼ WN(0, λ2)

v(t) =

∞∑
i=0

ci η(t− i) where c0 = 1 (⋆)

• In order (⋆) to represent a well-defined stationary process it is necessary that

var [v(t)] =

( ∞∑
i=0

c2i

)
λ2 < ∞

• It is possible to prove that
∞∑
i=0

c2i < ∞ =⇒ γ(τ) < ∞ , ∀ τ
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Analysis of dynamic systems
driven by input stationary
stochastic processes

Auto-regressive process (AR)



AR process

• Given the white process η(·) ∼ WN(0, λ2)
• The AR process of order n (denoted with AR(n) ) is defined as

v(t) = a1v(t− 1) + a2v(t− 2) + · · ·+ anv(t− n) + η(t)

• Hence v(t) is a linear combination of the values taken on by v(t) itself in the
time-window from t− n to t− 1 plus a white process.
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Example: process AR(1)

• Consider the process AR(1) :
v(t) = a v(t− 1) + η(t)

v(t) = a v(t− 1) + η(t)

= a [a v(t− 2) + η(t− 1)] + η(t)

= a2 v(t− 2) + a η(t− 1) + η(t)

= a3 v(t− 3) + a2η(t− 2)
+a η(t− 1) + η(t)

= · · ·

DIA@UniTS – 267MI –Fall 2023 TP GF – L8–p61



Process AR(1) (cont.)

• Then, in general, for a process AR(1) we can write:
v(t) = a v(t− 1) + η(t)

v(t) =

t−1∑
i=t0

at−1−i η(i+ 1) + at−t0 v(t0) (⋆)

• (⋆) is consistent with standard linear systems theory according to which the output
response can be decomposed in free response (depending only on initial
conditions) and forced response (depending only on the input)

• Define
v̂(t) = lim

t0→−∞
v(t)

• if |a| < 1 v̂(t) =

t−1∑
i=−∞

at−1−i η(i+ 1) =
∞∑
j=0

aj η(t− j)
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Process AR(1) (cont.)

• But:

|a| < 1
∞∑
j=0

(
aj
)2

< ∞

v̂(t) =

∞∑
j=0

aj η(t− j)

Stationary process MA(∞)

The process v̂(t) (stationary of type MA(∞) ) is
the steady-state solution of the equation of the AR(1)
process. Such solution is unique in the context of
stationary processes.
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Analysis of the process v̂(t)

• Expected value
v(t) = a v(t− 1) + η(t)

E[v(t)] = a E[v(t− 1)] + E[η(t)]

The process
is stationary v̄ = av̄ v̄ = 0

• Variance
E
{
[v(t)]2

}
= E

{
a2 [v(t− 1)]2 + [η(t)]2 + 2a v(t− 1)η(t)

}
= E

{
a2 [v(t− 1)]2

}
+ E

{
[η(t)]2

}
+ 2a E [v(t− 1)η(t)]

= a2E
{
[v(t)]2

}
+ E

{
[η(t)]2

}
= 0

(1− a2) E
{
[v(t)]2

}
= λ2

E
{
[v(t)]2

}
=

λ2

(1− a2)
(|a| < 1)
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Analysis of the process v̂(t) (cont.)

• Correlation function
• Consider τ ≥ 0 ( γ(τ) is even).
• At steady-state the process is MA(∞) and hence we can use the general formula

γ(τ) = λ2
∞∑
i=0

cici+τ = λ2
∞∑
i=0

ai ai+τ = λ2 aτ
∞∑
i=0

a2i

= λ2 aτ 1
(1− a2)

(|a| < 1)
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Analysis of the process v̂(t) (cont.)

• An alternative algebraic technique to determine the correlation function is:
v(t) = a v(t− 1) + η(t)

v(t)v(t− τ) = a v(t− 1)v(t− τ) + η(t)v(t− τ)

E [v(t)v(t− τ)] = a E [v(t− 1)v(t− τ)] + E [η(t)v(t− τ)]

{
λ2 τ = 0
0 τ > 0

Hence:

• τ > 0 =⇒ γ(τ) = a γ(τ − 1) =⇒ γ(τ) = aτ γ(0)

γ(0) = 1
a
γ(1)

• γ(0) = a γ(−1) + λ2 = a γ(1) + λ2

γ(1)
a

= a γ(1) + λ2 =⇒ γ(1) = a

1− a2
λ2

γ(τ) = λ2 aτ 1
(1− a2)

τ ≥ 0
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Process AR(1) (cont.)

• AR(1) : v(t) = a v(t− 1) + η(t)

γ(τ) = λ2 aτ
1

(1− a2)
τ ≥ 0

• Compared to the case of MA processes, the correlation function vanishes
asymptotically (and hence a AR process is “slower” than a MA process).
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Process AR(1) (cont.)

• Let us determine the spectrum:

v(t) = a v(t− 1) + η(t) =⇒ W (z) =
1

1− az−1
=

z

z − a

But Γvv(ω) =
∣∣W (ejω)

∣∣2 Γηη(ω)

Γ(ω) =

∣∣ejω∣∣2
|ejω − a|2

λ2 =
1

|cosω + j sinω − a|2
λ2

=
λ2[

(cosω − a)
2
+ (sinω)2

]
=

λ2

[(cosω)2 + a2 − 2a cosω + (sinω)2]

=
λ2

(1+ a2 − 2a cosω)
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Process AR(1) (cont.)

• a =
1
2 The “variability” of the process is more concentrated at low-frequencies

and the process is “slower” than the “analogous” MA
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Process AR(1) (cont.)

• a = −12 The “variability” of the process is more concentrated at high frequency
and the frequency distribution is very different from the “analogous” MA
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AR(1) Process – Correlation Function and Spectrum from Data

Matlab live script
Given a realization of an AR(1) stationary stochastic process, the
autocorrelation function and the spectrum can be estimated from the
data. A Matlab live script illustrates how to perform the estimation.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture8,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L8_AR_1_Processes_AutocorrelationFunction_Spectrum . mlx ' ) ;

• Explore the live script and run it.
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Example: process AR(2)

• Consider the process AR(2)
v(t) = a1 v(t− 1) + a2 v(t− 2) + η(t)

v(t)v(t− τ) =a1 v(t− 1)v(t− τ)

+a2 v(t− 2)v(t− τ) + η(t)v(t− τ)

Hence:

γ(τ) = E [v(t)v(t− τ)]

= a1 E [v(t− 1)v(t− τ)]

+ a2 E [v(t− 2)v(t− τ)] + E [η(t)v(t− τ)]{
λ2 τ = 0
0 τ > 0

• Then
• τ > 0 =⇒ γ(τ) = a1 γ(τ − 1) + a2 γ(τ − 2)
• γ(0) = a1 γ(−1) + a2 γ(−2) + λ2 = a1 γ(1) + a2 γ(2) + λ2
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Yule-Walker equations

• The useful equations are:

γ(2) = a1 γ(1) + a2 γ(0)
γ(1) = a1 γ(0) + a2 γ(1)
γ(0) = a1 γ(1) + a2 γ(2) + λ2

• These equations can be organized in matrix form: a2 a1 −1
a1 a2 − 1 0
1 −a1 −a2


 γ(0)

γ(1)
γ(2)

 =

 0
0
λ2

 (⋆)

• Then, for given a1 , a2 , λ
2 it is possible to compute γ(0) γ(1) , γ(2) and afterwards

proceed in a recursive way.
• Equations (⋆) are the well-known Yule-Walker equations and can be written for any
generic AR process.

DIA@UniTS – 267MI –Fall 2023 TP GF – L8–p73



AR(2) Process – Correlation Function and Spectrum from Data

Matlab live script
Given a realization of an AR(2) stationary stochastic process, the
autocorrelation function and the spectrum can be estimated from the
data. A Matlab live script illustrates how to perform the estimation.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture8,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L8_AR_2_Process_AutocorrelationFunction_Spectrum . mlx ' ) ;

• Explore the live script and run it.
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AR(2) Process – The Yule-Walker equations
Matlab live script
Given the description of an AR(2) stationary stochastic process, the
Yule–Walker equations allow to determine the values of the
autocorrelation function. A Matlab live script propose an exercise on
this topic.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture8,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L8_AR_2_Process_YuleWalkerEquations . mlx ' ) ;

• Explore the live script and solve the proposed exercise.
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Analysis in case of non-zero mean white noise

• Consider the process

v(t) = a v(t− 1) + η(t) with η(·) ∼ WN(η̄, λ2)

E[v(t)] = a E[v(t− 1)] + E[η(t)]

= a E[v(t− 1)] + η̄

• Recalling that |a| < 1 and setting E [v(t)] = v̄

v̄ = a v̄ + η̄ =⇒ v̄ =
η̄

1− a

• Notice that
W (z) =

z

z − a

v̄ = W (1) η̄

Static gain
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Analysis in case of non-zero mean white noise (cont.)

• Let us determine the covariance function:

γ(τ) = E {[v(t)− v̄][v(t− τ)− v̄]}

• Introduce the process

ṽ(t) = v(t)− v̄ =⇒ v(t) = ṽ(t) + v̄

and hence
γ(τ) = E {[v(t)− v̄][v(t− τ)− v̄]}

= E
{
[ṽ(t) + v̄ − v̄ ][ṽ(t− τ) + v̄ − v̄ ]

}

The correlation function of the zero-mean process ṽ(t)
coincides with the covariance of the original process.
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AR(1) Process – The Case of Non-zero Mean White Noise

Matlab live script
Given a realization of a MA(1) stationary stochastic process, the
autocorrelation function and the spectrum can be estimated from the
data. A Matlab live script illustrates how to perform the estimation.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture8,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( 'L8_AR_1_Process_NOZeroMean . mlx ' ) ;

• Explore the live script and run it.
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In general:

• Consider the process
AR(n) : v(t) = a1 v(t− 1) + · · ·+ anv(t− n) + η(t)

A(z)v(t) = η(t) with A(z) = 1− a1z
−1 − · · · − anz

−n

W (z) =
1

A(z)
=

1
1− a1z−1 − · · · − anz−n

=
zn

zn − a1zn−1 − · · · − an
• If the roots of A(z) (i.e., the poles of W (z) ) are all strictly located inside the
unit-circle, then in steady-state we obtain a stationary process equivalent to a
process MA(∞) .
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Analysis of dynamic systems
driven by input stationary
stochastic processes

Auto-regressive and Moving average
process (ARMA)



ARMA processes

• Given a white process η(·) ∼ WN(0, λ2)
• An ARMA process of order na , nc (and denoted ARMA(na , nc) ) is given by

v(t) =a1v(t− 1) + a2v(t− 2) + · · ·+ anv(t− n)

+ η(t) + c1η(t− 1) + c2η(t− 2) + · · ·+ cnη(t− n)

A(z)v(t) = C(z)η(t) with
A(z) =1− a1z

−1 − · · · − ana
z−na

C(z) =1+ c1z
−1 + · · ·+ cnc

z−nc

W (z) =
C(z)

A(z)
=
1+ c1z−1 + · · ·+ cnc

z−nc

1− a1z−1 − · · · − ana
z−na

If n = max(na, nc) maximum input/output delay

W (z) =
zn + c1zn−1 + · · ·+ cnc

zn−nc

zn − a1zn−1 − · · · − ana
zn−na
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ARMA processes (cont.)

• If the stability condition is satisfied (all roots of A(z) are strictly inside the unity
circle) then in steady-state we obtain a stationary process equivalent to a process
MA(∞)

W (z) =
C(z)

A(z)
= w0 + w1z

−1 + · · ·+ wiz
−i + · · ·

where h(t) = wt , t = 0, 1, . . . is the impulse response of the dynamic system

• If the stability condition is satisfied
∞∑
j=0

(wj)
2
< ∞

process variance of MA(∞) is finite
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Remarks

• With reference to a generic stationary stochastic process:

Difference-equation ⇐⇒ Process model
Stationary solution of difference-equation ⇐⇒ Process

• In general:

Stochastic 
Processes

Stationary Stochastic 
Processes

ARMA Processes
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Example

• Consider the process ARMA(1, 1)

v(t) =
1
2 v(t− 1) + η(t) +

1
3η(t− 1) , η(·) ∼ WN(0, 1)

(
1− 1

2z
−1
)
v(t) =

(
1+ 1

3z
−1
)
η(t)

v(t) =
1+ 1

3z
−1

1− 1
2z

−1 η(t) =
z + 1

3
z − 1

2
η(t)

• Let us determine the spectrum:

Γ(ω) =
∣∣W (ejω)

∣∣2 λ2 = ∣∣ejω + 1
3
∣∣2∣∣ejω − 1
2
∣∣2 =

∣∣cosω + j sinω + 1
3
∣∣2∣∣cosω + j sinω − 1
2
∣∣2

=
(cosω)2 + 1

9 +
2
3 cosω + (sinω)2

(cosω)2 + 1
4 − cosω + (sinω)2

=
10
9 + 2

3 cosω
5
4 − cosω
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Example (cont.)
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ARMA(1, 1) Process – Correlation Function and Spectrum from Data

Matlab live script
Given a realization of a ARMA(1, 1) stationary stochastic process, the
autocorrelation function and the spectrum can be estimated from the
data. A Matlab live script illustrates how to perform the estimation.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture8,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L8_ARMA1_1_Autocorrelation_Spectrum . mlx ' ) ;

• Explore the live script and run it.
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Analysis of dynamic systems
driven by input stationary
stochastic processes

Spectral factorization



Spectral factorization

• A few families of stationary stochastic process with rational spectra have been
described. The prediction problem will be addressed in the context of these
families.

• However: some further discussions are necessary on the representation of st.
processes with rational spectra.

• Consider

with η(·) ∼ WN(0, λ2) and W (z) =
N(z)

D(z)
rational
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Spectral factorization (cont.)

Fundamental question:
Does W̃ (z) exist such that, for a suitable input process, η̃(·) ∼ WN(0, λ̃2) we have

γvv(τ) = γṽṽ(τ) , ∀ τ that is Γ(ω) = Γ̃(ω) , ∀ω

In qualitative terms, does another transfer function exist yielding the same correlation
function/spectrum?

• The question is important: in case of existence of such other transfer function
W̃ (z) , this would imply the existence of more than one rational representation of
the same stochastic process

• Trying to estimate a transfer function (for example, a predictor) on the basis of
experimental data would be a ill-posed problem
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Spectral factorization (cont.)

• Then, let us try to understand the mutual relation between transfer functions of
equivalent representations of the same process.

• More details are needed on the representation of processes with rational spectra.
• Recall that Φ(z) = W (z)W

(
z−1
)
λ2 where Φ(z) is the complex spectrum

Spectral factorization problem
Given a complex spectrum Φ(z) , determine all pairs

[
W (z), λ2

]
such that

W (z)W
(
z−1
)
λ2 = Φ(z)
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Spectral factorization (cont.)

• Let us now analyze the ways to modify W (z) without modifying Φ(z)

(a) α ·W (z) with α ̸= 0 =⇒ Φ(z) = αW (z)αW (z−1)λ̃2

Choosing λ̃2 =
λ2

α2
we have that the pairs

[
W (z), λ2

]
and

[
αW (z),

λ2

α2

]
with α ̸= 0

have the same Φ(z)

This result is not surprising: the variance of a stationary process can be changed
either by acting on the static gain of the transfer function and on the variance of
the input process.
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Spectral factorization (cont.)

(b) z−k W (z) with k ̸= 0
Φ(z) = z−kW (z)zkW (z−1)λ2 = W (z)W (z−1)λ2

The pairs
[
W (z), λ2

]
and

[
z−k W (z), λ2

]
have the same Φ(z)

Also this result is not surprising: multiplying by z−k means considering realizations
delayed by time-steps and this clearly does not alter the probabilistic features of the
stochastic process.

DIA@UniTS – 267MI –Fall 2023 TP GF – L8–p90



Spectral factorization (cont.)

(c) trivial case
(z + a)n

(z + a)n
W (z) with a ∈ C, n ≥ 1

The pairs
[
W (z), λ2

]
and

[
(z + a)n

(z + a)n
W (z), λ2

]

have the same Φ(z)
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Spectral factorization (cont.)

(c) non-trivial case 1
a

z + a

z +
1
a

W (z) with a ∈ C

T (z)T (z−1) = ϱ
z + a

z +
1
a

ϱ
z−1 + a

z−1 +
1
a

= ϱ2
(z + a)(z−1 + a)

(z +
1
a
)(z−1 +

1
a
)

= ϱ2
1+ a2 + a(z + z−1)

1+ 1
a2

+
1
a
(z + z−1)

= ϱ2 a2
1+ a2 + a(z + z−1)

1+ a2 + a(z + z−1)
= ϱ2 a2

Choosing ϱ =
1
a

the pairs
[
W (z), λ2

]
and

1
a

z + a

z +
1
a

W (z), λ2

 have the same Φ(z)
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An “all-pass” filter

• Then, if T (z) = 1
a

z + a

z +
1
a

in the sense that the spectra of v(t) and of ṽ(t) coincide.

Therefore, canceling a pole (zero) with a reciprocal
zero (pole) leaves the spectrum unchanged (except
for a possible multiplicative constant)
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Spectral factorization (cont.)

• The problem we are addressing is the one of guaranteeing the uniqueness of the
representation of the stationary stochastic process that is, that there exists a
unique transfer function W (z) for which the process can be represented as the
output of a linear system with transfer function W (z) and a white process as input.

• Clearly, there are many ways to constrain the representation to be unique. The ways
we are considering are the ones that will be useful in the context of the solution of
the prediction problem.
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Spectral factorization (cont.)

• With reference to cases (a), (b), (c) previously addressed:
• given W (z) =

N(z)

D(z)

• (a): it is sufficient to set some parameter. We impose that N(z) and D(z) are monic
polynomials

• (b): we impose that N(z) and D(z) have the degree a-priori set (for example, the same
degree)

• (c): we impose that N(z) and D(z) are co-prime and that all zeros and poles are inside
the unit circle
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Spectral Factorization theorem

Spectral factorization theorem
Given a process with rational spectrum Φ(z) , there exists one and only one
representation of the process as the output of a linear system driven by a white
process and with transfer function W (z) =

N(z)

D(z)
if the following conditions are

imposed on W (z) :

• N(z) and D(z) monic, co-prime and of the same degree
• all roots of N(z) (zeros of W (z) ) have | · | ≤ 1
• all roots of D(z) (poles of W (z) ) have | · | < 1
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The Spectral Factorization Theorem

Matlab live script
Given the spectrum Φ(z) of a stationary stochastic process, a Matlab
live script illustrates how to perform the spectral factorization.

Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture8,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L8_Spect ra lFactor i za t ion . mlx ' ) ;

• Explore the live script and run it.
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The Spectral Factorization Theorem: an Exercise
Matlab live script
Given the spectrum Φ(z) of a stationary stochastic process, perform the
spectral factorization.
A Matlab live script propose an exercise on solving the spectral
factorization problem using MATLAB.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture8,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L8_HandsON_SpectralFact . mlx ' ) ;

• Explore the live script and solve the spectral factorization problem.
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