
Gut microbiome–brain interactions
Decades passed before the principles of 
microbial pathogenesis took root after 
Louis Pasteur originally proposed a 
bacterial aetiology for infectious disease 
in the 1850s. Similarly, the pursuit of 
mechanistic evidence explaining the 
connections between intestinal bacteria and 
neurological disease has taken a century 
of research since hypothesized by Elie 
Metchnikoff and others in the early 1900s. 
The gut microbiota comprises bacteria 
and other microorganisms, including 
viruses, fungi, protists and archaea, that 
permanently or transiently inhabit the 
lower gastrointestinal tract, especially the 
small intestine and colon1. The colon, in 
particular, is densely populated and teeming 
with dynamic metabolic activity, with a 
constant bidirectional flux of molecules 
between the microorganism and the host 
that extends beyond the gut into the entire 
body2,3. This chemical ‘factory’ can affect the 
maternal environment during pregnancy 
and prenatally exposes the fetus to signals 
of microbial influence4. After birth, the 
gut microbiota is quickly established and 

can then be further transmitted throughout  
the brain.

Evidence that the gut microbiota 
influences brain development and function 
began to emerge with studies comparing 
conventionally colonized mice (also called 
specific pathogen-​free mice) against mice 
in drastically altered microbial states, 
such as the complete absence of microbial 
exposure (germ-​free mice). Additional 
insights were gained by using controlled 
introduction of a certain microorganism 
or community (gnotobiotic mice), or 
by treating conventional mice with 
broad-​spectrum antibiotic cocktails that 
depleted their microbiome. Germ-​free and 
antibiotic-​treated animals exhibit altered 
levels of neurotrophic factors such as 
brain-​derived neurotropic factor (BDNF) 
as well as abnormal neuropeptide and 
neurotransmitter levels8–13, all of which can, 
in turn, affect crucial neurodevelopmental 
processes such as neurogenesis, 
synaptogenesis and synaptic maturation and 
pruning, and neural activity8,9,14–17. Gross 
morphology and volume of the brain also 
differs between specific pathogen-​free and 
germ-​free mice, especially in the amygdala, 
hippocampus and thalamus regions18,19, 
with morphological changes observed 
at the cellular level in various cell types, 
including neurons, oligodendrocytes and 
microglia, in both germ-​free and antibiotic 
conditions12,18,20,21. Microbial exposure 
also alters the host neurological status and 
leads to changes in signalling pathways. 
For instance, the hypothalamic–pituitary–
adrenal axis is dysregulated in germ-​free 
and antibiotic-​treated mice14, which results 
in an exaggerated glucocorticoid response. 
These hypothalamic–pituitary–adrenal 
axis changes are associated with some 
behavioural patterns in testing paradigms 
that model social activity22–24, anxiety9,25,26, 
cognitive function and depressive25,27 
behaviours10,11,24,28–30.

Gut microbial communities differ 
between individuals with certain health 
issues and healthy controls31. An imbalance 
in the gut microbial community is associated 
with various neurological and psychological 
disorders, although establishing which of 
these associations are causal relationships 
remains under investigation32–38 (Fig. 1). 
Recent work has shown that an altered 

the community then stabilizes within the 
first 2 years of life1, leading to lifelong and 
intimate crosstalk between the host and their 
microbial co-​inhabitants. The level of 
diversity and the specific members of the 
microbiota can differ greatly between 
individuals and can shift within an 
individual depending on age, genetics, 
health status, diet and lifestyle5.

The gastrointestinal tract contains 
many diverse cell types in close proximity 
and is exposed on the luminal side to an 
external environment containing the dietary 
components and the gut microbiota. Within 
the gut tissue exist about 70% of the body’s 
immune cells constantly sampling microbial 
components and maintaining homeostasis6, 
along with dense innervation along the gut 
by neurons that are housed entirely within 
intestinal tissue (108 intrinsic neurons7) 
as well as neurons connecting the gut to 
the spinal cord and brain. The vagus nerve, 
a principle neuronal connection between 
the gut and the brain, comprises a bundle 
of neurons that send and receive signals 
directly between gut tissue (and other 
organs) and the brainstem. These signals 
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gut microbiota is sufficient to exacerbate 
neurological and psychological symptoms 
in some mouse models of multiple 
sclerosis39, Parkinson disease40, Alzheimer 
disease41, depression42, schizophrenia33, 
attention-​deficit hyperactivity disorder43 and, 
possibly, autism spectrum disorder (ASD)44. 
These studies are accomplished through 
the use of faecal microbial transplantation, 
whereby the faecal microbiota from human 
donors or other mouse models is used 
to colonize germ-​free mice, limiting the 
confounding variables typical to human 
studies by using well-​controlled, albeit 
reductionist, preclinical systems45. Although 
these provocative studies are exciting, 
conclusions drawn from a small number of 
human donors remain speculative unless 
they are reproduced in larger cohorts of 
patients. In addition, causal inferences from 
human–murine microbiota transfer studies 

are limited by inter-​species differences 
in both microbiology and neurobiology45. 
More established bacterial manipulations, 
such as treatment with particular bacteria 
or depletion of bacteria with antibiotics, 
have been shown to ameliorate disease 
symptoms in mouse models of ASD46,47, 
multiple sclerosis48–50, anxiety and 
depression15,51–53, cognitive defects54,55 and 
Parkinson disease40, as well as in humans 
with ASD56,57, multiple sclerosis58, anxiety 
and depression59–62. Some of the effects 
of bacterial treatments on human brain 
activity have been characterized by changes 
observed in functional magnetic resonance 
imaging63,64. Thus, emerging evidence 
suggests that neurological states may be 
impacted by gut microorganisms and their 
by-​products.

Various associations between altered 
microbiome profiles and diseases of 

the brain have been described, and the 
contribution of microbial communities or 
particular bacterial species to behaviour, 
cognition and neurodegeneration 
is continually being established65. 
Furthermore, the gut microbiome harbours 
astonishing genetic diversity, with more 
than 22 million genes sequenced from 
human gut microbial populations, and 
an immense pool of unique enzymes 
capable of producing and modifying 
a wide array of chemical structural 
groups66. We build on these foundational 
discoveries to describe and conceptualize 
how decoding of chemical messages 
that mediate the observed effects of the 
gut–brain axis provides promise in both 
understanding and treating a number 
of neurologic diseases. The following 
sections will delineate categories by 
source of the precursor (de novo bacterial, 
host or diet-​derived sources) that can 
be transformed by gut bacteria and the 
bioactive molecules that result from 
microbial metabolism (Fig. 2). Brief 
descriptions of the effects of specific 
molecules are also provided.

Production of bacterial molecules
Microorganisms produce many proteins, 
vitamins and structural components that can 
serve to benefit or negatively affect the host. 
Many of these are generated via multistep 
biosynthetic pathways otherwise absent 
in mammals67. These molecules sustain 
bacterial functions, such as signalling, 
structural components and energy sources, 
although some, such as proteinaceous toxins, 
are mainly known for their roles affecting 
host systems.

Microorganism-​associated 
molecular patterns. Microorganism-​
associated molecular patterns (MAMPs) are 
well-​conserved components of microbial 
cells, and they are acutely detected by the 
host throughout the body, including 
the brain68. MAMPs play crucial roles in 
structural integrity and basic function 
for all classes of microorganisms and are 
complex molecules comprising diverse 
chemical groups including nucleotides, 
lipids, carbohydrates and peptides69. 
The absence of MAMPs in germ-​free 
mice leads to incomplete immune and 
neurodevelopment, but their presence 
can induce acute or chronic inflammation 
associated with various neurological 
disorders if the host response to MAMPs 
remains elevated or unchecked70. Two 
principle cellular surface component 
MAMPs that appear to be sufficient to 
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Fig. 1 | Neurological disorders and models associated with shifts in gut microbiota. Top: human 
conditions and mouse models with known differences in the gut microbial community compared with 
healthy controls. Question marks show disorders with implicated but less established changes to the 
microbiota. Bottom: rodent models shown to be improved, exacerbated or caused by manipulation 
of gut microorganisms. These are divided into four categories of experimental strategy, including the 
study of germ-​free versus specific pathogen-​free mice, colonization conditions, probiotic bacteria 
administration, faecal microbial transplant or antibiotic treatment. Up or down arrows indicate a 
respective increase or decrease in listed disease or function following microbial manipulation in the 
germ-​free, probiotic or antibiotic state. Note that subtle variations in experimental methodology in 
faecal transplant studies mean that the effects shown here are likely to be an oversimplification (for 
example, transfer could be made from a donor mouse or human, from a control or symptomatic animal 
or individual and/or into a wild-​type or a disease model recipient).
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alter brain development and function are 
peptidoglycan and lipopolysaccharide (LPS). 
Peptidoglycan, a structural component of 
almost all bacterial cell walls, was recently 
shown to be translocated into the developing 
brain, affecting gene expression and social 
behaviour71. LPS, another ubiquitous surface 
molecule of Gram-​negative bacteria, has 
been detected co-​localizing with its receptor 
in rat brains72. LPS injection induces sickness 
behaviour73, cognitive impairment74 and 
acute depressive-​like behaviours in mice75 
and affects fetal brain development76,77. 
Additionally, chronic or acute exposure to 
MAMPs is used to promote disease-​related 
symptoms in models of ASD, depression, 
Parkinson disease and synucleinopathy78–80. 
These conserved microbial molecules may 
regulate mammalian behaviour through 
immune-​mediated pathways via direct 
sensing by receptors expressed in the brain 
or activation of systemic inflammation and 
cytokine production, which can lead to 
altered neurological function and neuronal 
stress or cell death81. The presence, structure 

and immunomodulatory activity of MAMPs 
vary between species of bacteria, and shifts 
in the gut community could, therefore, affect 
the level of exposure and response of the 
host to particular MAMPs, which in turn 
can influence downstream health status and 
behaviour.

Toxins. Proteinaceous toxins produced 
by some bacteria exert negative effects on 
the host nervous system. These toxins are 
often similar in general structure, with 
multiple subunits that activate cell-​surface 
or intracellular receptors, and can be 
produced by opportunistic pathogens that 
may reside in the commensal community 
for long periods of time without causing 
overt disease in the gut or the brain82. 
Several species of Clostridia are known to 
produce many toxins, such as lethal toxin, 
toxin B, epsilon toxin and enterotoxin, 
that can reach the brain through the 
systemic circulation, disrupt and cross 
the blood–brain barrier (BBB), inhibit 
neurotransmitter release and/or decrease 

neuron viability in targets ranging from the 
gut to the hippocampus82–86. Staphylococcus 
spp. and Bacillus spp. produce toxins, 
staphylococcal enterotoxins and cereulide, 
that stimulate the vagus nerve, sending 
signals to the brain and inducing 
vomiting and sickness behaviour87–89. 
Other species, such as Salmonella spp. 
and Escherichia spp., produce a class of 
proteins called amyloids, which aggregate 
in the intestine and may spread to the 
brain with a prion-​like disease pattern 
and may contribute to neurodegeneration, 
such as in Parkinson disease and 
Alzheimer disease90–93.

Transformation of host metabolites
Constant metabolic flux is sustained across 
the intestinal epithelial barrier as nutrients 
are absorbed and waste is secreted. The 
microbiota is exposed to and chemically 
interacts with many host molecules. The two 
classes of host-​derived metabolites with the 
most evidence for gut–brain interactions are 
bile acids and steroid hormones.
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Fig. 2 | Gut bacterial metabolites. The modification of various substrates by the gut microbiota is shown broken down into three categories (left) of de novo 
bacterial, host-​derived or dietary molecules. These substrates (metabolic input, shown in blue) are metabolized by many chemical processes by the 
microbiota (general examples are shown in white boxes). Many of the resulting metabolites have been shown to affect the brain (shown in red).
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Bile acids. Primary bile acids are products 
of host cholesterol metabolism that play a 
major role in fat digestion and signalling in 
energy metabolism, even in the brain94–97. 
Circulating bile acids can cross the BBB 
and may act directly on their receptors in 
the brain, or have a more indirect effect 
by activating gut receptors, leading to the 
release of signals such as fibroblast growth 
factor and glucagon-​like peptide 1, which 
can influence neuronal activity in multiple 
brain regions or the vagus nerve98. The most 
common primary bile acids are cholic acid 
and chenodeoxycholic acid, and these are 
often conjugated with the amino acid glycine 
or taurine99. Many gut bacterial species 
help maintain cholesterol homeostasis by 
modifying primary bile acids into secondary 
bile acids through dehydroxylation by 
dehydratase enzymes, deconjugation 
of the amino acid groups with bile salt 
hydrolases and further degradation with 
other enzymatic machinery99,100. Bacterial 
modification changes the signalling of bile 
acids on membrane and nuclear receptors, 
and alters their solubility and circulation94. 
Regulation of the presence and clearance 
of bile acids is involved in proper brain 
function, as defects in these pathways 
lead to many neurological phenotypes in 
mice and humans, such as demyelination, 
motor dysfunction, neuroinflammation, 
seizures and learning impairment96,101–112. 
Bacterial influences on bile acid conjugation 
and levels may be influencing these brain 
phenotypes. For instance, alterations in 
bacterial-​associated bile acid levels have 
been observed in human and mouse model 
studies of Parkinson disease113, Alzheimer 
disease114,115, multiple sclerosis116,117, alcohol 
dependency118 and ASD119, and bile acids 
are known to affect the hypothalamic–
pituitary–adrenal axis111,112,120. In fact, all 
secondary bile acids produced by bacteria 
are detected in the brain of patients with 
Alzheimer disease, and increased ratios of 
secondary bile acids are correlated with their 
cognitive impairment and changes in brain 
imaging114,115. Some bile acids are even used 
as potential treatments for neurological 
issues such as amyotrophic lateral sclerosis 
and stroke108,121,122. The presence of bacteria 
in the gut changes host-​wide bile acid 
levels, and community changes in the 
gut microbiota influence the levels and 
properties of bile acids123–129. These changes 
could be advantageous or detrimental. 
The most mechanistic link known between 
microbial metabolism of bile acids and 
potential neurological function may be that 
levels of deoxycholic acid directly increased 
by the microbiota are sufficient to induce 

production of the major neurotransmitter, 
serotonin, in gut enterochromaffin cells130. 
Gut serotonin levels may affect brain 
function in ways that are yet unknown, 
as hippocampal levels of serotonin are 
affected by the microbiota in mice, but 
any possible further links between gut and 
brain serotonin levels are not clear8. Cause 
and effect relationships between microbial 
manipulation of bile acids and brain 
function remain to be clearly defined.

Steroid hormones. Steroid hormone 
signalling is crucial for proper brain 
structure development, cognition, memory, 
decision-​making and sexual behaviours, 
as well as playing a role in protection 
from social isolation and depression-​like 
phenotypes131–137. Up to 15% of some of these 
hormones produced daily are detectable 
in the gut, as they circulate through the 
body, bringing them into contact with 
the microbiota138,139. The gut microbiota 
can influence levels of some hormones 
by shifting the ratio of active and inactive 
steroid levels through different degradation 
and activation pathways140–142. The two 
best-​studied classes for which this is the 
case are androgens and oestrogens. In 
many cases, hormones can be conjugated 
for excretion, and bacteria can remove 
the conjugation group with hydrolytic 
enzymes such as β-glucuronidases (GUSs) 
and β-glucosidases, which reactivate the 
molecule for continued circulation and 
activity143–146. Members of the microbiota can 
also convert cholesterol to androgens147,148, 
activate pro-​androgens149,150 and 
metabolize testosterone into other potent 
androgens151,152. Oestrogens are broken 
down in oxidative and reductive reactions 
in human faecal samples144,153–155. In fact, 
the term ‘estrobolome’ has been coined 
to describe the large collection of enteric 
bacterial genes capable of metabolizing 
oestrogens156. Shifts in the gut microbiota 
and steroid hormone levels are associated 
with each other in postmenopausal 
women157,158 but, although the potential 
capacity for microbial metabolism of 
host hormones is vast, direct effects on 
brain function remain largely untested. 
If microbially influenced oestrogens do have 
direct neurological effects, they are likely 
neuroprotective, as oestrogens have anti-​
inflammatory effects on microglia159, and 
lowered levels of oestrogens due to altered 
microbial communities appear to increase 
cognitive impairment and chronic 
inflammation160,161. Microorganisms may 
be sufficient for these phenotypes, as some 
steroid hormone levels can be transferred by 

microbial faecal transplant between mice162, 
but further work is required to directly link 
hormone metabolites produced by the gut 
microbiota to neurological disease.

Transformation of dietary metabolites
The composition of the gut microbiota is 
heavily dependent on the dietary input of the 
host3,163. The frequency of meals and types 
of foods influence the quantity of substrates 
metabolized by bacteria, which bacterial 
species wax and wane in abundance 
and, ultimately, the type and amount of 
downstream bacterial metabolites that are 
produced. Further, significant evidence 
shows that microbial metabolites of amino 
acids, complex plant polysaccharides and 
polyphenols exert an influence on the brain.

Amino acids. Microorganisms encode 
genetic machinery to produce many amino 
acids, some of which can contribute to 
circulating host levels164,165. However, it is 
more likely that any microbial influence 
on the CNS via amino acid levels occurs 
through modification of dietary amino 
acids by deamination and decarboxylation 
pathways. The by-​products of bacterial 
amino acid metabolism include 
ammonia, short-​chain fatty acids (SCFAs), 
simple phenols, indole derivatives, 
neurotransmitters, organic acids, gaseous 
compounds and amines. Those most likely 
to affect brain function are described below.

Gut bacteria encode multiple gene 
pathways that metabolize the aromatic 
amino acids tyrosine, phenylalanine 
and tryptophan into a large group of 
downstream products, many of which 
are neurotransmitters166,167. Tyrosine is 
metabolized to tyramine and then into 
two catecholamines, dopamine and 
noradrenaline. Tyramine in the intestine of 
germ-​free mice also induces the production 
of serotonin130. Noradrenaline is produced 
by gut bacteria12,168, but it is not well 
understood how168. However, multiple 
bacteria have been shown to synthesize 
noradrenaline up to the millimolar range 
in vitro169,170. Catecholamine production 
by the microbiota may be sufficient for 
behavioural alterations, as mice treated 
with antibiotics were more sensitive to the 
dopamine signalling and behavioural effects 
of cocaine171. Whether these neuroactive 
molecules influence the local enteric 
nervous system or can affect the brain, 
even indirectly, is an active area of study.

Tryptophan is broken down by 
the microbiota into indole derivatives 
and also tryptamine and kynurenine 
metabolites, all of which have neuroactive 
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properties172–174. Some of these seem to only 
be produced by the microbiota, as they 
are undetectable in germ-​free mice until 
bacterial colonization166,167. Many of these 
can cross the BBB, and thus circulating 
tryptophan metabolites originating in the 
gut can contribute to levels in the brain175. 
Indole derivatives such as indolepropionic 
acid have antioxidant properties, making 
this an attractive target for Alzheimer 
disease, whereas others such as indoxyl 
sulfate induce neuroinflammation in 
models of chronic kidney disease176,177. 
Kynurenine metabolites act on neuronal 
glutamate receptors and affect memory, 
anxiety-​like and stress-​like behaviours175. In 
fact, germ-​free versus specific pathogen-​free 
mice respond differentially in behavioural 
tests used to model depression-​like 
phenotypes after depletion of dietary 
tryptophan (and, thus, all tryptophan 
microbial metabolites)27.

Besides neurotransmitters, tyrosine can 
also be metabolized by the microbiota into 
other simple phenols such as 4-ethylphenol 
or p-​cresol. These metabolites are rapidly 
sulfated by the host to 4-​ethylphenyl sulfate 
(4EPS) or p-​cresyl sulfate, respectively. 
4EPS is elevated in a mouse model of 
ASD and schizophrenia, as well as in 
samples from children with ASD178, and 
was shown to be sufficient to cause an 
anxiety-​like phenotype when injected into 
wild-​type mice46. p-​Cresyl sulfate has been 
identified as a potential urinary biomarker 
for young children with ASD, and is 
correlated with altered oligodendrocyte 
markers in a mouse model of social and 
depressive-​like behaviours, although these 
findings currently remain correlative179,180.

Another amino acid affected by gut 
microorganisms is the major excitatory 
neurotransmitter glutamate, which is 
metabolized by a bacterial glutamate 
decarboxylase system to become the major 
inhibitory neurotransmitter GABA13,181,182. 
GABA can be further metabolized 
by bacteria to succinate by GABA 
aminotransferase and succinic semialdehyde 
dehydrogenase. Furthermore, metabolites 
either produced or influenced by the 
microbiota that affect the host GABA system 
have also been identified, such as γ-​glutamyl 
amino acids, whose lowered levels are the 
mediators of diet-​induced improvements  
in a mouse model of seizures183. GABA- 
producing bacteria have been shown to 
alleviate depression-​like and anxiety-​like 
behaviours in mouse models51, and a strain 
engineered to produce GABA was sufficient 
to reduce sensitivity to visceral pain in rats184. 
A GABA-​producing microbiota is negatively 

associated with depression in patients185, 
and abnormalities in the glutamate/GABA 
circuits in the brain have been hypothesized 
as key in anxiety disorders, major depressive 
disorder, bipolar disorder, schizophrenia and 
ASD186–189.

Arginine can be metabolized to four 
polyamines by the microbiota, which are 
present in all mammalian cells and play roles 
in many general processes of cell growth 
and differentiation, as well as regulating 
synaptic plasticity and memory formation 
via glutamate receptors190. These polyamines 
are generated sequentially from arginine 
to agmatine, then putrescine, followed 
by spermidine and, then, spermine191,192. 
Agmatine is a ligand for α2-​adrenergic and 
imidazoline receptors in the brain193–196. 
Dysregulation of the polyamine system 
has been implicated in mood disorders, 
depression and Alzheimer disease, and 
polyamines have been studied as preclinical 
therapeutics for depression and anxiety-​like 
behaviours, cognitive decline and drug 
dependency197–203. As most mammalian 
neurotransmitters are derived from 
amino acid precursors, we speculate that 
bacterial transformation of amino acids 
into molecules that affect behaviour 
may represent a renewed microbial 
endocrinology focus in neuroscience204 
that is worthy of further study.

Complex plant polysaccharides. Dietary 
fibre, made of complex carbohydrate 
polysaccharides, is not digested by the 

host and reaches the colon, where it is 
fermented by intestinal microorganisms 
with a diverse class of glycoside hydrolases 
and polysaccharide lyases into millimolar 
levels of SCFAs205,206. SCFAs, mainly 
butyrate, propionate and acetate, are a 
rich energy source for colonic epithelial 
cells, and the remaining pool enters the 
systemic circulation where they may 
subsequently influence neurological function 
and development, seemingly for better 
or for worse, depending on the context. 
For instance, SCFAs were sufficient to 
exacerbate motor symptoms in a germ-​free 
Parkinson disease mouse model40, but they 
improved recovery from an experimental 
stroke mouse model207. Acetate has been 
shown to cross the BBB in mice and reduce 
feeding behaviours208,209. Propionate protects 
the BBB through signalling via the G protein- 
coupled receptor (GPCR) FFAR3 (ref.210)  
and improves multiple sclerosis symptoms  
in patients211, but injections of propionate 
have also been used to induce a rodent  
model of ASD212,213. Butyrate is a potent 
inhibitor of histone deacetylases (HDACs),  
which regulate epigenetic signals of 
gene activation. As lowered histone 
acetylation is a characteristic of multiple 
neurodegenerative diseases214, the 
pharmacological use of butyrate has 
been widely explored. Some preliminary 
success for butyrate treatment has been 
seen in beneficially lowered inflammation 
in mouse models of Huntington 
disease, Parkinson disease, ischaemic 

Glossary

Bile acids
Complex lipid products of host cholesterol metabolism 
that play a major role in fat digestion and signalling in 
energy metabolism. Host bile acids (primary bile acids) 
are commonly modified by bacteria into secondary bile 
acids.

Enterochromaffin cells
Neuroendocrine cells in the gut lining that aid in 
gastrointestinal motility and produce 90% of the body’s 
serotonin in response to persistent intestinal signals.

Germ-​free mice
Mice reared in conditions completely absent of 
microbial exposure.

Gut microbiota
An intestinal community comprising bacteria and other 
microorganisms including viruses, fungi, protists and 
archaea that permanently or transiently inhabit the 
lower gastrointestinal tract, especially the small intestine 
and colon.

Microorganism-​associated molecular patterns
(MAMPs). Well-​conserved components of microbial  
cells that are acutely detected by the innate immune 
system of the host throughout the body, including  
the brain.

Polyphenols
A vast class of thousands of plant-​derived molecules 
containing at least one phenol group that are generally 
poorly absorbed by the host until being transformed  
by the gut microbiota into bioavailable and bioactive 
metabolites.

Short-​chain fatty acids
(SCFAs). Fatty acids with chains of fewer than six 
carbons that are the end product of bacterial 
fermentation of complex polysaccharides and serve  
as energy source and signalling molecule in the host.

Specific pathogen-​free mice
Mice conventionally colonized with a complete gut 
microbiota.

Steroid hormones
Circulating signalling molecules derived from cholesterol 
with an organic chemical structure consisting of four 
carbon rings and various regulatory roles in the host.

Vagus nerve
A principle neuronal connection between the gut and 
brain, comprising a bundle of neurons that sends and 
receives signals directly between gut tissue (and other 
organs) and the brainstem. These signals can then be 
further transmitted throughout the brain.
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stroke, Alzheimer disease and memory 
impairment215–224.

Polyphenols. Polyphenols comprise a 
vast class of thousands of plant-​derived 
molecules containing at least one phenol 
group, and are being extensively studied 
as therapeutics for neurological disease225. 
Most polyphenols are generally poorly 
absorbed until being transformed by the gut 
microbiota into bioavailable and bioactive 
metabolites226,227. Bacterial hydrolysis, 
acylation and/or esterification is followed by 
host modification by methylation, sulfation, 
hydroxylation or glucuronidation before 
these metabolites re-​enter the gastrointestinal 
tract or reach other peripheral tissues228,229. 
Phenolic metabolite levels are known to be 
altered in the brain after oral administration 
of parent polyphenols230–232. Specific 
bacterial metabolites of oral polyphenol 
treatment that were measured in the 
brain, such as 3-​hydroxybenzoic acid and 
3-(3′-hydroxyphenyl)propionic acid, were 
shown to be capable of inhibiting hallmark 
amyloid aggregation and slowing progression 
of Alzheimer disease pathophysiology233–235. 
Polyphenols were also protective against 
stress-​induced depression-​like behaviours 
via decreased inflammation and modulated 
synaptic plasticity through metabolites 
such as quercetin-3-​O-​glucuronide and 
malvidin-3-O-​glucoside236. One polyphenol, 
ferulic acid, is liberated into circulation 
by gut microorganisms harbouring the 
ferulic acid esterase gene237. Ferulic acid 
administration stimulates neurogenesis 
in a corticosterone-​treated depression 
mouse model, and is protective in mouse 
models of Alzheimer disease and cerebral 
ischaemia238–240. Polyphenols in treatments 
such as grape seed extract and resveratrol 
show promise in treating neuropathology 
and cognitive defects in mouse models 
of Alzheimer disease, Parkinson disease 
and tauophathies233,235,241–244, but further 
tests with pure polyphenols are needed. 
Recently, it was shown that plant-​derived 
epigallocatechin gallate can prevent motor 
symptoms induced by specific gut bacteria 
in a model of Parkinson disease245. Some 
polyphenols are phytoestrogens, which 
are metabolized by gut bacteria into 
equol and enterolactone derivatives246–249. 
Phytoestrogen metabolites can be either 
agonistic or antagonistic to oestrogen 
receptors and may have an impact on the 
neuroprotective pathways activated by classic 
oestrogen receptor ligands, although this 
structural class is large and heterogeneous, 
and direct effects on the brain remain to be 
conclusively shown250,251.

Other metabolites. Microbial GUS enzymes 
in the intestines remove glucuronide 
groups that mark metabolites for excretion 
by the host. As a result, the microbiota 
restores the original molecule and facilitates 
reuptake of the molecule back into the 
bloodstream252,253. This process has been 
shown to directly regulate levels of many of 
the exogenous and endogenous compounds 
described herein168,254–256.

The gut microbiota also generates 
vitamins B and K67,257–261, as well as unique 
lipid metabolites such as conjugated linoleic 
acids, hydroxy fatty acids and sphingolipids, 
several of which show biological activity 
in host health and disease and are known 
to be produced by particular bacterial 
species123,125–128,262–265. Owing to the need for 
vitamins B and K during brain development, 
the high lipid content of the brain and the 
importance of lipids in signalling pathways, 
future work may illuminate connections of 
microbial lipid and vitamin metabolites with 
brain function.

Research into the production and 
function of bacterial metabolites has 
established that active chemical messaging 
occurs from the gut to the brain. Other 
bacterial molecules could have as yet 
undefined neuroactive properties, 
including any of the thousands of recently 
identified (but still uncharacterized) short 
peptides from the gut microbiota266. Given 
that identifying and characterizing the 
small molecules and peptide repertoires 
produced by the microbiota is a relatively 
new endeavour, it is likely that further 
neuroactive microbial metabolites will 
continue to be discovered. Defining 

mechanisms of action may lead to various 
health applications.

Routes of microbiota‒brain signalling
Conduits of communication from 
the gut microbiota to the brain 
include activation of the vagus nerve, 
stimulation of endocrine cells (including 
enterochromaffin cells), immune-​mediated 
signalling and transport of gut-​derived 
metabolites from the circulation into the 
brain. All routes comprising the gut–brain 
axis are thought to be co-​opted by the 
microbiota to impact brain activity and 
behaviour, and signalling through any one 
of them may be intertwined with other 
routes (Fig. 3).

Vagus nerve activation. The vagus nerve 
directly links the muscular and mucosal 
layers along the gastrointestinal tract to the 
brainstem and is a well-​established signalling 
pathway affecting feeding, anxiety-​like, 
depressive-​like and social behaviours51,267,268. 
Enteric pathogens and probiotics affect 
these behaviours through activation of vagal 
neurons, which then alters downstream 
neurological activity, including altered 
BDNF, GABA and oxytocin signalling in 
the brain51,267–269. These responses are ablated 
following vagotomy, which severs the vagus 
nerve, but the specific bacterial metabolites 
mediating these effects remain largely 
unidentified. One recent study did measure 
the effects of a specific metabolite through 
vagus signalling, although additional routes 
of signalling could also be involved173. In 
this work, rats were mono-​colonized with 
either an Escherichia coli strain that converts 

Fig. 3 | Mechanistic examples of the routes of gut–brain communication. There are several differ-
ent ways in which gut microbial metabolites can influence brain function. Specific examples are shown 
of vagus nerve modulation, enterochromaffin cell modulation, direct brain exposure and immune-​
mediated communication. In the vagus nerve modulation panel, an example is shown where dietary 
tryptophan is converted to indole when mice are monocolonized by an Escherichia coli strain express-
ing the TnaA tryptophanase enzyme (TnaA + E. coli) compared with monocolonization with the control 
E. coli strain lacking TnaA, where no indole is produced. Bacterial modification of tryptophan was 
shown to result in activated vagal neurons and increased anxiety-​like and depression-​like behavioural 
phenotypes in the animals. In the enterochromaffin cell modulation panel, an example is shown where 
spore-​forming bacteria from the Clostridiaceae and Turicibacteraceae families produce various 
metabolites including secondary bile acids, amino acid metabolites and short-​chain fatty acids 
(SCFAs), which induce serotonin production by enterochromaffin cells and lead to elevated levels of 
circulating serotonin. We speculate that these serotonin levels may influence vagal nerve activity and/or  
brain levels of serotonin, denoted with a question mark in the figure. In the third panel, direct brain 
exposure via circulation, an example is shown where parent polyphenols, such as those found in grape 
seed extract, are modified by the microbiota into various phenolic metabolites that can be subse-
quently measured in the brain in association with reduced amyloid plaques and improved cognition. 
In the final panel (bottom right), immune system mediated, examples are shown where, on the left,  
a healthy diet including complex polysaccharides is fermented into SCFAs by the microbiota, which 
play important roles in G protein-​coupled receptor (GPCR) signalling, histone deacetylase (HDAC) 
inhibition and lowered systemic inflammation that lead to decreased neuroinflammation. On the right, 
unbalanced microbiota can lead to altered levels of inflammatory bacterial lipopolysaccharide (LPS), 
which can lead to elevated neuroinflammation and depression-​like behaviour via directly entering the 
brain or by inducing an elevated systemic immune response.
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dietary tryptophan into indole with the tnaA 
tryptophanase or a mutant E. coli deficient in 
indole production. Rats exposed to indole 
in the gut displayed increased anxiety-​like 
and depressive-​like behaviours and activated 
vagal neurons173.

Enterochromaffin cell stimulation. 
Enterochromaffin cells are endocrine 
cells in the gut lining that produce and 
secrete 90% of the body’s serotonin in 
response to persistent intestinal signals270. 
Enterochromaffin cell production 
of serotonin impacts its circulating 
levels130,167,271,272 and has the potential to 
influence brain activity directly or indirectly. 
Improved performance in mouse models of 
depression have been shown by probiotic 
treatment with Bifidobacterium spp. in  
a study that concurrently observed an 
increase in serotonin levels in the brain  
and also increased secretion of the  
serotonin precursor in enterochromaffin 
cells in vitro. However, no mechanistic 
connection between bacterial treatment, 
potential serotonin regulation and 
depressive-​like phenotypes has been 
proved273. Colonic enterochromaffin cells  
do express receptors for, and respond to, 
various microbial metabolites, including 
MAMPs, SCFAs, aromatic amino acid 
metabolites and secondary bile acids274–278. 
One bacterial subset recently identified  
to greatly promote serotonin biosynthesis 
from enterochromaffin cells are spore-​
forming bacteria such as Clostridia spp.  
A collection of metabolites made by  
these bacteria in vivo were shown to  
be sufficient for serotonin-​induction  
activity in vitro, including α-tocopherol, 
butyrate, cholate, deoxycholate,  
p-​aminobenzoate, propionate and  
tyramine130. A subset was individually tested 
with temporal intestinal administration 
as well, and deoxycholate, α-tocopherol, 
p-aminobenzoate and tyramine were each 
sufficient to induce production of serotonin 
by enterochromaffin cells130. Interestingly, 
recent work showed that oral administration 
of a selective serotonin reuptake inhibitor, 
which increases bioavailability of gut 
serotonin and is used to treat depression, 
may be dependent on vagus nerve activation 
for its improvement of depressive-​like 
behaviour in mice279. This supports the 
possibility that enterochromaffin cell 
production of serotonin has the potential 
to relay signals beyond the gut and 
reach the brain, possibly by intersecting 
with other known routes of gut–brain 
signalling in both developmental and 
acute contexts.

Immune-​mediated signalling. The gut 
microbiota provides cues for the maturation 
of the neuroimmune system, and a loss of  
these cues during development results 
in lifelong dysfunction of this system280. 
However, chronic exposure to inflammation 
driven by shifts in gut microbiota and 
increased intestinal permeability may 
also factor into various neurological 
diseases70. Bacterial metabolites that 
serve as MAMPs, such as LPS, have been 
used to activate the immune system in 
models of ASD and schizophrenia, and 
also induce depression-​like symptoms in 
mice75,76,281. Other gut metabolites likely 
dampen chronic inflammation. SCFAs, for 
example, interact closely with the immune 
system through activation of GPCRs and 
inhibition of HDAC activity. A high-​fibre 
diet, leading to higher levels of SCFAs, 
results in lower levels of circulating pro-​
inflammatory cytokines282,283. Activation of 
GPCRs (FFA2 and GPR109a) by SCFAs 
can inhibit inflammatory signalling 
pathways, and HDAC inhibition by 
SCFAs, especially butyrate, leads to 
lowered inflammation in vivo117,284–286. 
These examples likely represent initial 
discoveries into the potential impacts of 
microbial molecules on neuroimmune 
signalling.

Direct transfer of metabolites to the brain. 
Many microbial metabolites produced in 
the gut can pass into systemic circulation 
at varying levels and rates. One example is 
the polyphenolic metabolite group, where 
recent studies have shown that parent 
polyphenols are virtually undetectable in 
the bloodstream or urine, but that bacterial 
metabolites produced from polyphenol 
precursors enter circulation at levels 
sufficient to exert biological effects287,288. 
In fact, the brain appears to be a major 
target for some polyphenolic microbial 
metabolites289,290. Although in vivo evidence 
remains lacking, in vitro cultures have 
shown that polyphenol metabolites are 
able to cross BBB model systems and exert 
protective effects on neuronal cultures, 
mostly through a decrease in inflammatory 
responses291,292. Furthermore, derivatives 
of oral polyphenolic treatment were 
measured in the blood and brain of rats 
and were found to decrease aggregation 
of neurotoxic aggregates and promote 
neuroplasticity231,233,293.

Although gut–brain connections are well 
established, clear mechanistic details of the 
bacterial molecules working through each 
conduit are still limited. Understanding how 
the microbiome signals from the gut to the 

brain may provide insights into rational drug 
discovery platforms directed to targets in the 
gastrointestinal tract, which may overcome 
current challenges in the delivery of drugs 
to targets in the brain.

Cell-​specific effects in the brain
Studies continue to build on the 
foundational understanding of the gut–brain 
axis to explore which cells in the brain are 
affected directly or indirectly by specific 
bacterial metabolites. Much work is needed 
to systematically demonstrate that these 
chemical messengers derived from gut 
bacteria influence the development or 
function of specific brain cells. Here, we 
summarize the current evidence that gut 
microbial metabolites may affect cells in 
the brain (Fig. 4).

Neurons. As the primary signalling cell of 
the brain controlling behaviour, neurons 
may, in essence, be the ultimate target 
affected by every metabolite described 
in this Perspective. All unidentified 
metabolites exerting the effects of bacterial 
communities that influence the vagus 
nerve probably activate neurons. More 
specifically, neurotoxins provide a stark 
example of bacterial molecules affecting 
neurons. Some neurotoxins are produced 
by commensal members of the microbiota 
and exert local or CNS effects to dysregulate 
or kill neurons82,83,87–89. The microbiota 
also produces or induces the production 
of neurotransmitters and their precursors, 
including serotonin, adrenaline, GABA, 
histamine, acetylcholine, glutamate and 
dopamine, which could dramatically affect 
the balance of excitatory and inhibitory 
neurotransmission in enteric, vagal, 
peripheral and central neurons294. Neurons 
also express pattern recognition receptors, 
and activation of these receptors has been 
shown to regulate neuronal differentiation, 
proliferation and axon generation as well 
as neuroinflammation. Some of this is 
likely due to host ligands, but MAMPs 
such as peptidoglycan are also detected in 
the brain and could be activating receptors 
such as TLR2, PGLYRP2 or NOD1, 
which are expressed in neurons, through 
similar mechanisms71,295–297. Neurons 
are also influenced by SCFAs, as acetate 
enters the brain and activates neurons in 
the hypothalamus208,209. Finally, in vitro 
screens identified neuroactive molecules 
produced by gut microorganisms, such 
as quorum sensing molecules, that affect 
the viability, morphology, differentiation 
and inflammatory responses of neurons298. 
Although the latter need to be validated 
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in vivo, they illustrate the possibility of a  
vast amount of interface between neurons 
and microbial metabolites.

Astrocytes. Astrocytes provide support 
to other cells and repair damage in the 
brain. Metabolites, including specific 
oligosaccharides and polyphenols, 
SCFAs and tryptophan metabolites, can 
affect astrocyte function. Tryptophan 
metabolites modulate the aryl hydrocarbon 
receptor in astrocytes and affect their 
activity by decreasing their inflammatory 
state and altering their interaction with 
microglia299–302. Polyphenolic metabolites 
and pure SCFAs such as butyrate have 
in vitro effects on astrocytes, and have been 
shown to decrease neuroinflammation 
and oxidation303–305. The SCFA acetate is 
used as an energy source by these cells 
in the brain209. Oligosaccharides and 
polyphenols such as those from the plant 
Morinda officinalis, which are metabolized 
by bacteria into SCFAs and other lipid 
derivatives, have been shown to have 
protective effects in Alzheimer disease 
through astrocyte function306. Astrocytes 
also express G protein-​coupled bile acid 
receptor 1 (TGR5), which can be activated 
by bile acids with a resulting decrease in 

neuroinflammation, and may be relevant to 
hepatic encephalopathy96.

Oligodendrocytes. Oligodendrocytes 
produce the myelin that insulates neuronal 
axons, with dynamic crosstalk between the 
two cell types even throughout adulthood. 
Metabolite effects on oligodendrocyte 
proliferation, differentiation and function 
could have widespread effects on 
neurological health. In the mouse model 
of the demyelinating disease multiple 
sclerosis, therapeutic gut microbiota 
manipulations have been successful and are 
accompanied by changes in metabolomic 
profiles associated with alleviated disease 
symptoms50,307–312. There is some evidence 
that improvements may be due to a decrease  
in inflammatory LPS levels, an increase in 
SCFAs and an altered profile of bile 
acids, although whether direct activity 
on oligodendrocytes occurs or whether 
they indirectly benefit from lowered 
inflammation has not been elucidated129,308. 
In vitro, the bacterial phenolic metabolite 
p-​cresol may directly impair oligodendrocyte 
maturation and myelin production180. 
Another class of molecules known to 
affect oligodendrocyte differentiation 
and myelination are oestrogenic 

molecules313–317. Microorganisms do modify 
many oestrogenic metabolites156, but a 
conclusive link between in vivo microbial 
production of these metabolites and 
oligodendrocytes has not yet been proved.

Endothelial cells. Blood vessels are lined 
with endothelial cells, which are the major 
cell type responsible for maintenance of 
the BBB that largely determines molecular 
entry into the brain318. Modulation of BBB 
permeability by microbial metabolites could 
greatly alter uptake of drugs, host molecules 
and other gut metabolites, but concrete 
examples of this mechanism remain elusive. 
For example, bacterial metabolites such as 
LPS from some bacterial species increase 
permeability in vivo in a dose and bacterial 
strain-​dependent manner319, and germ-​free 
mice appear to have a leakier BBB than 
conventional mice320. LPS stimulation of 
endothelial cells can also lead to cerebral 
cavernous malformations, which in turn 
lead to seizures and strokes321. SCFAs 
have been shown to decrease permeability 
of the BBB through activating SCFA 
receptors expressed in endothelial cells and 
concurrent increases in expression of tight 
junction proteins that seal these cells into a 
successful barrier210,320.
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Microglia. The primary immune cells in 
the brain are known as microglia, and 
as such are responsible for much of the 
damage associated with neuroinflammation 
in diseases such as Parkinson disease and 
Alzheimer disease322. It is not surprising, 
then, that pro-​inflammatory signals from 
MAMPs induce mature and cytokine-​
producing microglia whereas the generally 
anti-​inflammatory cues from polyphenolic, 
SCFA and bile acid metabolites work via 
microglia to lower oxidative stress in the 
brain286,323–325. However, the effects of some 
of these signals on microglia are complex, 
as SCFAs, and probably other microbial 
signals, exacerbate symptoms in a germ-​
free mouse model of Parkinson disease40. 
Another recent work discovered that 
microbial tryptophan metabolites such as 
indoxyl-3-​sulfate control the activation of 
microglia, which in turn alter the behaviour 
of astrocytes300.

Although examples of cell-​specific 
effects by the microbiome are both sparse 
and superficially described to date, these 
foundational studies represent critical 
steps in uncovering the underlying 
neuronal circuits, brain regions and 
systems-​level connections of the gut 
microbiome–brain axis.

Perspectives
The gut microbiota, the gastrointestinal 
tract and the brain have historically been 
studied independently, but a growing 
appreciation for their interconnectedness 
may lead to transformative advances 
in biomedicine. Identifying and 
characterizing causal or contributing 
roles for particular microorganisms and 
microbial communities should be a primary 
focus of gut microbiome–brain research. 
However, the current state of the field 
remains largely correlative with descriptions 
of gut metabolite profiles in the context of 
neurologic states, whereas specific examples 
for effects by gut-​derived molecules on brain 
cells, brain activity and behaviour are limited 
to a handful of studies. Additional progress 
is also needed to further understand 
the physical pathways employed by the 
microbiome in mediating communication 
between the gut and the brain. The various 
routes of direct and indirect chemical 
signalling are not mutually exclusive, and 
some metabolites potentially exert effects 
on multiple conduits to the brain.

As specific effects of microbial molecular 
messages and their gut–brain signalling 
routes continue to be uncovered, the 
potential increases for development of 
novel therapeutic principles and modalities. 

Continued, rigorous distinction between the 
correlative and causative links connecting 
gut metabolites to the brain may lead the way 
for new hypotheses for disease aetiology and 
treatment. For example, dietary interventions 
to shift the microbial community in favour 
of bacteria capable of producing beneficial 
chemical signals, or away from those 
generating pathogenic compounds, can be 
envisioned. Understanding of the microbial 
molecules crucial for health could allow 
the deployment of specific probiotics for 
specific maladies, based on empiric evidence 
that is lacking in current commercially 
available probiotic strains. Importantly, 
a deeper understanding of the mechanistic 
underpinnings for gut–brain connections 
in neurological diseases could lead to a 
world with targeted therapeutics directed at 
microbial effectors. Drugs could selectively 
inhibit production of harmful metabolites by 
targeting specific bacterial enzymes, which 
are evolutionarily divergent from human 
enzymes, thus increasing the available 
therapeutics while decreasing off-​target 
effects. Further, microbial metabolites 
themselves may be therapeutically 
administered. The merger of microbiome 
and neuroscience research offers the 
possibility of understanding the basic 
‘wiring’ and functions of the gut–brain axis, 
and also provides potential opportunities 
for near-​term, actionable advances in 
human health.
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