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Infections during pregnancy can be associated with 
devastating consequences to the pregnant mother and 
developing fetus. Vertical transmission, defined as 
infection of the fetus from the maternal host, is a major 
cause of morbidity and mortality in pregnancy. In some 
cases, bacterial, viral and parasitic infections induce 
dire outcomes in the fetus. The sequelae of infections 
in pregnancy include teratogenic effects, which cause 
congenital anomalies; growth restriction, stillbirth, mis­
carriage and neonatal death; prematurity; and maternal 
morbidity (Fig. 1). Vertical transmission of pathogens 
across the maternal–fetal interface can cause fetal infec­
tion, which can disrupt organogenesis and is associated 
with congenital anomalies of every major organ system 
(Table 1). Congenital anomalies are present in ~3% of 
live births and the proportion attributable to infection 
is poorly characterized1–3.

Pregnancy loss through miscarriage or stillbirth 
(defined as intrauterine fetal death after 20 weeks) can 
also be caused by infection. Approximately 10–30% of 
all stillbirths have an infectious aetiology4–7, although 
the low rates of diagnostic testing for infections in pre­
gnancy might result in an underestimation of this value. 
The rate of pregnancy loss is variable with gestational 
age at infection and by specific pathogen. For example, 
infection with Treponema pallidum causes pregnancy 
loss or fetal death in up to 50% of cases8 whereas parvo­
virus B19 infection causes pregnancy loss or stillbirth in 
<3%9. The mechanisms of pregnancy loss in the setting 
of ‘TORCH’ (Toxoplasma gondii, other, rubella virus, 
cytomegalovirus, herpes simplex virus) infections can be  

pathogen mediated, placenta mediated and/or can be 
through inflammation-​induced previable delivery. 
There are also outcomes of congenital infections that 
do not manifest until after delivery. These can include 
hearing loss, developmental delays and/or blindness as  
detailed below.

Inflammation initiated by an infection of the mater­
nal host is also a known cause of preterm labour and can 
result in previable delivery or sequelae of prematurity10 
with lifelong consequences to the neonate. Neonates 
can have sequelae from maternal infections even with 
full-​term development11, demonstrating that the fetal 
response to infection is not restricted to effects of prema­
turity. Early onset sepsis, an important cause of neonatal 
morbidity and mortality particularly in premature or low 
birthweight infants, is strongly associated with maternal 
infection12–14.

In this Review, we highlight the molecular pathogenic 
mechanisms of select pathogens that have distinct effects 
during pregnancy. The acronym TORCH was coined 
to refer to pathogens known to traverse the maternal–
fetal barrier and cause congenital disease in the fetus15.  
In addition to the traditional TORCH pathogens, we 
also describe the pathogenesis of emerging pathogens 
with important sequelae to the pregnant person, fetus  
and/or neonate.

Placental structure and defences
To understand the mechanisms of vertical transmission, 
it is crucial to understand the unique structure and func­
tion that exist at the maternal–fetal interface. The human 
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placenta is a complex organ composed primarily of spe­
cialized fetus-​derived cell types. As gestational age-​specific 
differences in placental structure and cellular composition 
have been reviewed in detail elsewhere16,17, we provide a 
concise description of human placental structure and 
development below to provide a framework to address 
mechanisms of pathogenesis. An overview of the structure 
of the maternal–fetal interface is shown in Fig. 2a.

The human placenta develops when the fetus-​derived 
trophoblasts, the main cell type that comprises the 
placenta, form the trophectoderm (Fig. 2b). The tro­
phectoderm forms a cellular barrier early in develop­
ment to prevent infection of the embryo. The process of 
placental development continues rapidly from that point 
onwards and is not fully complete until the end of the 
first trimester, undergoing a series of remarkable mor­
phological changes (reviewed in ref.18). These changes 
result in the development of chorionic villi, which form 
the primary contact between the fetus-​derived placenta 
and the maternal blood supply that will eventually bathe 
these structures.

Trophoblast stem cells give rise to cytotropho­
blasts (CTBs), the proliferative mononuclear cells of 
the placenta, and the syncytiotrophoblast (STB), a 
multinucleated contiguous cell layer that covers the 
entire surface of placental chorionic villi. During the first 
trimester, the placenta undergoes substantial morpho­
logical changes that result in the villous structure it will 
have for the remainder of pregnancy (Fig. 2b). The end  

of the first trimester also marks the crucial transition 
to a haemochorial placenta, wherein maternal blood 
directly contacts the fetus-​derived placenta. This process 
requires extravillous trophoblasts (EVTs) to remodel 
the maternal microvasculature, which will ultimately 
allow for delivery of maternal blood to the surface of 
the placental chorionic villi. This is a crucial point as we 
discuss mechanisms of microbial vertical transmission, 
which could differ markedly between the first trimester, 
when there is no direct contact between the placenta and 
maternal blood, and the later stages of pregnancy once 
the haemochorial placenta is established.

The STB is the foremost barrier against the haemo­
chorial spread of infectious agents, particularly from the 
point of the establishment of a haemochorial placenta. 
As the proliferative CTBs lie subjacent to the STB, they 
also benefit from the protection of this fused cell layer. 
Chorionic villi contain additional barriers to infection 
that reside in the villous stroma, including fetus-​derived 
macrophages (Hofbauer cells) and the fetal microvascu­
lature, which must be breached for an infectious agent to 
reach fetal blood. Recent work also suggests that mater­
nally derived immune cell types are in close proximity to 
the fetus-​derived placenta and may thus impart an addi­
tional layer of immune protection19. Thus, when consider­
ing mechanisms of microbial vertical transmission, it is  
important to remember that transmission to the fetus 
requires infection of multiple cell types and/or breach­
ing of cellular barriers, the most formidable of which is 
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Fig. 1 | Routes of transmission across the placenta and consequences of infection. a | TORCH (Toxoplasma gondii, 
other, rubella virus, cytomegalovirus, herpes simplex virus) pathogens can access the intra-​amniotic compartment 
through multiple mechanisms, including direct transplacental transmission, placental damage or disruption and/or  
fetal–maternal haemorrhage. In addition, pathogens can be transmitted by ascending the genital tract. b | Infections in 
pregnancy can affect the maternal host, fetus and/or the placenta itself. The results of infection and the inflammatory 
response have consequences at each site.
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the STB, as is discussed below. Given its central role in 
protecting the fetus, it is perhaps not surprising that the 
placenta has evolved highly efficient mechanisms of anti­
microbial defence. In the following sections, we review 
key physical and immunological mechanisms of placental 
defence from infection.

Physical defences
As described above, the STB covers the entirety of the 
chorionic villous surfaces. The STB contains upwards 
of 60 billion nuclei and has a surface area of 5 m2 in 

mid-​gestation and 11–12 m2 at full-​term20 — a single cell 
layer roughly the size of a small bedroom! The very nature 
of the fused STB provides a powerful barrier to microbial 
transmission, given that many pathogens bypass other 
cellular barriers by directly or indirectly weakening 
cell–cell junctions (reviewed in ref.21). In addition to a 
complete lack of cell junctions, the surface of the STB 
also poses a barrier to microbial attachment and inva­
sion given the presence of a dense cortical actin network 
subjacent to the brush border (Fig. 3). Thus, the shared 
physical nature of the STB provides common structural 

Table 1 | TORCH pathogens and the hallmarks of their infections

Pathogen Mode of transmission Hallmarks of congenital infection

Bacteria

Listeria monocytogenes Contaminated food Stillbirth/pregnancy loss; preterm delivery; neonatal 
sepsis

Treponema pallidum Sexual Stillbirth/pregnancy loss; low birthweight; fetal 
hepatosplenomegaly; developmental delay; saddle nose 
deformity; rhinitis; dental deformities; chorioretinitis; 
anaemia; rash; dilated bowel; skin thickening; periostitis; 
bone fractures and demineralization

Streptococcus agalactiae Commensal Neonatal sepsis

Staphylococcus aureus Commensal Neonatal sepsis

Escherichia coli Commensal Neonatal sepsis

Viruses

Cytomegalovirus Faecal–oral Chorioretinitis; low birthweight; hearing loss; 
developmental delay; anaemia/thrombocytopenia; 
rash; stillbirth/pregnancy loss; ventriculomegaly; 
microcephaly; intracerebral calcification; echogenic 
bowel/abdominal calcifications; normal

Herpes simplex virus 1 
and 2

Sexual or oral contact Neonatal meningitis; dermatological lesions; 
ventriculomegaly; microcephaly; intracerebral 
calcifications; chorioretinitis; optic atrophy; limb 
dysplasia

Varicella zoster virus Respiratory droplets IUGR; limb abnormalities

Lymphocytic 
choriomeningitis virus

Fomites (rodent based) Ventriculomegaly/hydrocephalus; developmental delay; 
motor and sensory deficits; chorioretinitis; hearing loss

Zika virus Arbovirus (Aedes species, 
sexual, blood borne)

Microcephaly; IUGR; hepatosplenomegaly; intrahepatic 
calcifications; ventriculomegaly; intracerebral 
calcifications; echogenic bowel; stillbirth/pregnancy loss

West Nile virus Arbovirus (Culex species) Chorioretinitis; meningitis/encephalitis; possible 
lissencephaly

Rift Valley fever virus Arbovirus (Aedes species, 
Culex species, Anopheles and 
Mansonia species, contact with 
contaminated animal materials)

Stillbirth/pregnancy loss; preterm delivery

Human parvovirus B19 Respiratory droplets Anaemia; hydrops; stillbirth/pregnancy loss

Parasites

Plasmodium falciparum

Plasmodium vivax

Arthropod vector (Anopheles 
species)

IUGR; preterm delivery; severe hypoglycaemia

Toxoplasma gondii Ingestion of contaminated food 
or oocytes

Ventriculomegaly; hydrocephalus; intracerebral 
calcifications; choroid plexus cysts; hydrocephalus; 
ascites; IUGR; hepatosplenomegaly

Trypanosoma cruzi Arthropod vector (Triatominae 
subfamily)

IUGR; respiratory failure; hepatosplenomegaly; 
meningitis; heart failure; hydrops; heart disease; 
megacolon

IUGR, intrauterine growth restriction; TORCH, Toxoplasma gondii, other, rubella virus, cytomegalovirus, herpes simplex virus.
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mechanisms to resist diverse microorganisms. However, 
it should be noted that the STB is not the sole cellular 
barrier present in the human placenta. The stroma of  
the placenta also contains defensive barriers, including the  
microvasculature of fetal blood vessels, which would also 
need to be breached for microorganisms to access fetal 
blood. The physical defences of the villous surface restrict 
the attachment and/or invasion of non-​viral pathogens, 
including Listeria monocytogenes and T. gondii22–24, but 
viruses appear to be capable of entering primary tropho­
blasts, suggesting that some viruses might overcome the 
physical barriers to microbial entry25–28.

Immunological defences
The decidua. The maternally facing surface of the pla­
centa is in direct contact with the decidual lining of the 
uterus, and this leukocyte-​rich layer is one of the first 

lines of immune defence at the maternal–fetal interface. 
The maternal decidua is in direct and/or indirect con­
tact with fetal membranes, placental villi and the mater­
nal circulation. The decidua can be divided based upon 
these contact sites — the decidua parietalis lines the 
uterine wall; the decidua basalis is the site of implan­
tation and villous contact; and the decidua capsularis 
encases the fetal membrane. The decidual layers contain 
cytotoxic, helper and regulatory T cells, natural killer 
(NK) cells, innate lymphoid cells, macrophages and 
neutrophils29,30. Up to 40% of all decidual immune cells 
are leukocytes in the first trimester, and a leukocyte-​
rich infiltrate is also seen in parturition30–32. The compo­
sition of decidual cell populations displays gestational 
age-specific variation and is important for tropho­
blast invasion and for maintaining and establishing 
the placental vascular bed33,34. As such, particularly in 
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Fig. 2 | Structure and cellular composition of the maternal–fetal 
interface. a | The structure of the maternal–fetal interface includes the 
maternal decidua and the fetus-​derived placenta. The maternal uterine 
microvasculature is remodelled to form spiral arteries, which deliver blood 
to chorionic villi in the intervillous space. b | The placenta undergoes a 
series of rapid morphological changes throughout gestation. In early 
pregnancy (left), the blastocyst differentiates into the embryo and  
the trophectoderm, the earliest cell type that will form the placenta. The 
invasive trophoblasts begin to invade the decidua, where the early syn
cytiotrophoblast forms and infiltrates into the endometrium. Throughout 
the first trimester (middle), chorionic villi form and remain immature  
until the later stages of this trimester. Immature villi are covered in the 

syncytiotrophoblast layer, with a contiguous layer of cytotrophoblasts lying 
below this layer. The stroma of the villi in the first trimester contains fetal 
vessels, which begin to form at ~6–8 weeks of gestation. The maternal 
microvasculature undergoes extensive remodelling during the first 
trimester, with the placenta transitioning to haemochorial at the end of this 
stage of gestation. In the second and third trimesters (right), chorionic villi 
mature and remain covered by the syncytiotrophoblast. However, unlike the 
immature villi of the first trimester, the cytotrophoblast layer becomes 
discontinuous in the later stages of gestation. At this stage, the fetal 
microvasculature is fully developed, and the villous stroma becomes 
enriched in fetus-​derived Hofbauer cells, which reduce in number closer to 
full-​term.
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the first trimester, decidual cells remain in close proxi­
mity to invading EVTs, and provide maternally derived 
immune defences at these sites (reviewed in ref.35). 
Despite its composition as an immune cell-​enriched 
site, the decidua has been suggested to be a key reser­
voir for TORCH pathogens. Use of decidual explants 
and data from pathological examinations of clinical 
specimens suggest that the decidua may be a primary 
site of replication for several TORCH pathogens includ­
ing cytomegalovirus (CMV)36, Zika virus (ZIKV)37 
and L. monocytogenes38, and could thus form a reser­
voir for pathogens at the key site of the maternal–fetal  
interface.

The interaction of the decidua with various patho­
gens in vivo is complex, as decidual leukocytes have dis­
tinct phenotypic differences from those in the peripheral 
circulation. Maternally derived decidual macrophages 
exhibit unique properties compared with other macro­
phages resident in tissue or systemically circulating 
monocytes19,30,39,40. Studies suggest that the decidual 
composition of immune cells and their interaction with 
trophoblasts may alter their susceptibility to pathogens. 
For example, decidual NK cells possess the remarkable 
ability to transfer granulysins to trophoblasts to protect 
from L. monocytogenes infection without actively kill­
ing these cells41. These and other studies highlight the 

often unique and complex strategies of antimicrobial 
protection that exist at the maternal–fetal interface.

The immune cells in the decidua are in contact with 
decidual stromal cells, which can influence immune 
cell behaviour. In particular, the immune cell-​rich 
decidua has altered activity in models of co-​culture, 
reflecting that the complex architecture of the immune 
cell network within the decidual stroma modulates 
the immune inflammatory response. For example, 
decidual stromal cell function is altered with co-​culture 
with macrophages42, dendritic cells and NK cells in 
a prostaglandin-​dependent manner43. Moreover, the 
response of decidual stromal cells to pathogen stim­
ulation is different from that of endometrial stromal 
cells44–46, suggesting that the microenvironment of 
the placenta has a role in innate immune defences. 
Decidual explants have been used to demonstrate that 
CD8+ effector memory T cells and NK cells can regu­
late decidual stromal CMV47 and herpes simplex virus 
(HSV)48 infections. These multicellular interactions are 
difficult to dissect and model but have important impli­
cations for understanding the immune landscape at the 
maternal–fetal interface as each individual component 
(for example, stromal cell regulation, hormonal micro­
environment, composition of leukocytes) might have  
a role in immune defence against infection.
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Fig. 3 | Placental defences against pathogens. Given its role as a primary 
barrier to the haematogenous spread of infectious agents, the human 
placenta has evolved disparate and non-​overlapping mechanisms of 
antimicrobial defence. These can be separated into at least three categories, 
physical defences (left), the constitutive release of antimicrobial effectors 
(middle) and/or robust innate immune response to infection (right). Physical 
defences include the lack of cell–cell junctions of the syncytiotrophoblast 
layer, preventing inflammation-​mediated damage of intercellular junctions 

that could compromise the integrity of this barrier. Additional physical 
defences include the dense cortical actin network lying sub-​apical to the 
dense brush border of the syncytiotrophoblast. Another form of defence 
involves the constitutive release of potent antimicrobial effectors such as 
antiviral microRNAs in extracellular vesicles, cytokines (for example, type III 
interferons), and antimicrobial peptides (middle). The placenta also 
responds to pathogens with potent innate immune signalling, which further 
enhances the release of antimicrobial defence substances (right).
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Chorionic villi. Fetal immune cell populations in pla­
cental development and in pregnancy-​associated 
pathologies have been reviewed elsewhere49,50; there­
fore, we limit our discussion in this section to specific 
trophoblast-​derived defensive strategies.

In addition to providing a physical defence from 
infection, it is also clear that villous trophoblasts form 
a chemical barrier to microbial vertical transmission. 
Trophoblasts have robust innate immune activity and 
secrete immunomodulators that are important for 
restricting infection (Fig. 3). In the case of viral infec­
tion, human trophoblasts constitutively release antiviral 
interferons that restrict infection in both an autocrine 
and a paracrine manner51,52, which appears to be spe­
cific for the STB. The release of interferons is a highly 
unique feature of trophoblasts as interferons are gener­
ally only induced in response to the detection of a viral 
infection. As the antiviral effectors of the interferon 
pathway, interferon-​stimulated genes (ISGs), can exert 
potent cytotoxic and pro-​inflammatory properties. 
Trophoblast-​derived interferons are exclusively those of 
the type III interferon family: IFNλ1, IFNλ2 and IFNλ3. 
In mice, type III interferons also confer protection from 
viral infections, and deletion of the receptor for these 
interferons in the placenta sensitizes the fetus to ZIKV 
infection53. The type III interferon-​mediated restriction 
of infection in mice is tightly associated with gesta­
tional age, with the greatest protection occurring after 
placentation53,54. Moreover, IFNλs delivered prophylac­
tically or therapeutically in the setting of ZIKV infec­
tion in mice protect against vertical transmission53,54. 
In addition to interferons, human trophoblasts also 
secrete antiviral microRNAs that are packaged into 
placental exosomes, which confer broad antiviral pro­
tection in non-​placental recipient cells and can be iso­
lated from the serum of pregnant women25,51,55–57. Given 
these non-​redundant and potent antiviral defences, it is 
perhaps not surprising that most viruses are unable to 
directly replicate in the STB. However, it should be noted 
that the effects of type I interferons (IFNα and IFNβ) 
may be distinct from those of the type III interferons. 
Induction of maternal type I interferon signalling has 
been shown to damage the placenta in mice in vivo and 
in human ex vivo tissue explants58. Although the mech­
anisms for these opposing effects have yet to be fully 
elucidated, at least one ISG, interferon-​induced trans­
membrane protein (IFITM), inhibits fusion of CTBs 
with the STB59,60, which may indicate that the expression 
of this and perhaps other ISGs must be tightly regulated 
in the placenta to prevent interferon-​mediated damage.

In the case of bacterial or parasitic infection, many 
studies highlight the resistant nature of the STB, which 
has largely been attributed to physical barrier proper­
ties22–24,61. However, similar to the properties of antivi­
ral resistance, it is clear that the human placenta also 
uses additional molecular pathways to resist infection 
by non-​viral pathogens. In addition to the constitu­
tive release of antiviral interferons, the human pla­
centa secretes other cytokines that likely function to 
limit infections in both an autocrine and a paracrine 
manner. For example, the constitutive activation of 
the inflammasome in placental trophoblasts results in 

the constitutive release of cytokines, including IL-1β, 
IL-18 and IL-1α, which can be found circulating sys­
temically in pregnant women62. In addition, infection 
of human placental explants with L. monocytogenes 
robustly induces inflammasome signalling, the inhibi­
tion of which sensitizes trophoblasts to infection62. 
Like the effects of interferons, the paracrine effects of 
inflammasome-​associated cytokines also protect from 
infection, as placenta-​derived IL-1β primes circulating 
immune cells for subsequent inflammasome activation 
and protects from L. monocytogenes infection62. By con­
trast, inflammasome activation in the STB has also been 
implicated in increased severity of neonatal outcomes 
associated with placental malaria63, suggesting that simi­
lar to interferon signalling, the balance of this signalling 
is crucial.

There is no evidence to suggest that placenta-​derived 
secreted products defend against parasite infections 
directly. In fact, the same placenta-​derived factors 
that protect against viruses exert no effect on T. gondii 
infection56. Instead, in the case of T. gondii, the placenta 
releases diverse immunomodulatory factors includ­
ing the regulatory T cell chemoattractants C-​C motif 
chemokine 22 (CCL22) and CCL17 in response to 
infection23 (Fig. 3). However, the impact of this signalling 
on maternal and/or fetal consequences of infection has 
yet to be defined.

TORCH pathogens
As discussed above, TORCH pathogens make up a limi­
ted number of microorganisms with known teratogenic 
effects. In the following sections, we review key mem­
bers of this group that fall into the categories of bacte­
ria, viruses and parasites, and the consequences of these 
infections (Table 1).

Bacteria
Listeria monocytogenes. L. monocytogenes is a small 
Gram-​positive bacterium that is transmitted through 
contaminated food. Listeriosis in pregnancy causes pre­
maturity and stillbirth and enhances maternal morbidity 
with increased rates of meningitis and sepsis during 
pregnancy (Table 1). In a recent outbreak in South Africa, 
the mortality rate for infants was 28% and for pregnant 
women it was 8%64. Pregnancy-​associated morbidity 
during this outbreak was responsible for 50% of cases 
presenting to health care64. Despite the immaturity of 
the fetal immune system in early pregnancy, treatment 
of L. monocytogenes in the first trimester after exposure 
has been shown to improve fetal outcomes65–67. By con­
trast, treatment after the first trimester has not been 
definitively shown to change the course of the disease 
for the fetus but is recommended to improve maternal 
outcomes68. This is likely due to enhanced susceptibi­
lity of the fetus to L. monocytogenes infection after the 
first trimester and suggests that there are gestational 
age-​specific differences in vertical transmission.

After entry through the enteric mucosa, L. monocy-
togenes spreads cell to cell by manipulating actin polymer­
ization. The mechanism of transplacental transmission 
of the bacterium remains unknown. In ex vivo cultures, 
the STB is highly resistant to infection24,62. The bacterial  
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virulence factors required for entry into other cells 
(for example, listeriolysin O and internalin B) are not 
required for entry into human choriocarcinoma troph­
oblast cell lines69. The bacterial internalin protein InlA 
is important for binding to E-​cadherin on primary 
trophoblasts70, but its role in crossing the placental bar­
rier in vivo remains unclear, with differential effects in 
different animal models71,72. Together, these data sug­
gest that transmission across the placental barrier may 
require additional, yet uncharacterized, bacterial viru­
lence factors. Accordingly, there was minimal strain 
variation with respect to the ability to infect the placenta 
in studies using a competitive in vivo model in guinea 
pigs73, suggesting that the trophoblast-​specific virulence 
factors are conserved in epidemic strains.

After placental colonization, the bacterium spreads 
to fetal tissues and can be reseeded back to maternal 
organs74. In mice, actin polymerization through the 
bacterial protein ActA has been shown to be important 
for cell-​to-​cell spread and transmission across the 
maternal–fetal interface75. The secreted bacterial colo­
nization factor internalin P is important for distorting 
cells and allowing the bacteria to traverse the basement 
membrane76, but the mechanisms of transport across 
the STB to the basement membrane have yet to be char­
acterized. Importantly, fetal infection is associated with 
placental abscess development and innate immune cell 
recruitment to the maternal–fetal interface77. Studies 
in non-​human primate models demonstrate that the 
bacterium is not required to traverse the maternal–
fetal barrier to cause placental inflammation, fetal loss 
and compromise78, suggesting that pregnancy loss may 
also occur in the absence of bacterial colonization of  
the fetus.

Treponema pallidum. T. pallidum is a well-​characterized 
teratogen. This bacterium is 6–20 µm in length, has a 
small genome of only 1,041 open reading frames and 
has an outer membrane covering a layer of peptido­
glycan but minimal surface-​exposed proteins and no 
lipopolysaccharide79. The lack of surface proteins may 
facilitate evasion of the immune response and the 
remarkable longevity of the bacterium in the human 
host79. T. pallidum can colonize and cause disease in all 
fetal organ systems and is the causative agent of congen­
ital syphilis (Table 1). More than 50% of women with 
syphilis have adverse pregnancy outcomes80–82, and fetal 
transmission causes a wide variety of neonatal patholo­
gies including meningitis, osteochondritis, bone marrow 
suppression and hydrops83–85 (Table 1). Congenital syph­
ilis is on the rise in the United States, with a reported 
1,306 cases in 2018 (ref.86) and is a major cause of 
infection-​mediated fetal loss and neonatal morbidity 
in the developing world, causing an estimated 150,000 
stillbirths, 60,000 neonatal deaths and 100,000 infections 
of infants annually81,82.

The pathophysiology of T. pallidum congenital 
transmission remains largely unknown. The sequelae 
of the fetus with congenital syphilis depends both on 
the maternal stage of infection and the gestational age 
of the fetus84,85. Congenital transmission occurs less fre­
quently with subsequent pregnancies, an observation 

known as Kassowitz’s law. This observation suggests 
that the maternal immune response to T. pallidum 
can limit the frequency of congenital syphilis, but the 
vertical transmission risk is never eliminated87–90. This 
has also been shown in a guinea pig model of congen­
ital syphilis, which is the best-​described model for this 
phenomenon90. Additionally, in the guinea pig model, 
the fetal IgM response corresponds more with verti­
cal transmission than spirochaetal DNA91, suggesting 
that the fetal immune response is important in the 
pathogenesis of congenital syphilis.

Inflammation and maceration of placental tissue 
has been demonstrated in cases of pregnancy loss or 
intrauterine fetal demise associated with congenital 
syphilis in the absence of congenital anomalies, sug­
gesting that the up to 50% fetal loss rate associated with 
maternal syphilis might be attributed to the inflamma­
tory response at the placenta itself92,93. Along with this, 
the Jarisch–Herxheimer reaction (heightened inflam­
matory responses that occur with antibiotic treatment 
of syphilis in pregnancy) is associated with preterm 
contractions and evidence of uteroplacental insuffi­
ciency94, suggesting that placental inflammation has a 
role in the pathogenesis of preterm delivery associated  
with syphilis.

As discussed above, the placenta forms a barrier that 
effectively restricts many bacterial pathogens. Although 
there is evidence that systemic inflammation can cause 
preterm birth and fever itself can be teratogenic, there is 
no evidence that other bacterial pathogens (for example, 
Klebsiella species, methicillin-​resistant Staphylococcus 
aureus (MRSA), Escherichia coli) routinely traverse 
the placental barrier and cause fetal infection. These 
pathogens are important causes of maternal morbidity 
in the setting of systemic maternal infection (for exam­
ple, pyelonephritis), but are not major causes of fetal 
infection, suggesting that the maternal–fetal barrier to 
multiple bacterial pathogens remains uncompromised 
in the case of maternal systemic illness and bacteraemia. 
The mechanisms underlying the antibacterial defences 
of the placenta in the setting of bacteraemia remain 
largely uncharacterized.

By contrast, there is a subset of well-described 
bacterial pathogens that ascend the genital tract and 
cause chorioamnionitis (reviewed in refs95,96). Intra-​ 
amniotic infection classically occurs in the setting of 
ruptured membranes, which suggests that the bridge 
of the fetal membrane provides an important barrier  
to fetal infection. Pathogens endemic to the vaginal 
microflora such as group B Streptococcus (GBS), E. coli 
and Bacteroides species have been found in placental and 
neonatal cultures97. Both primate and murine models 
demonstrate that vaginal microorganisms can traverse 
the genital tract and cause disseminated disease in the 
fetal cavity. Typically, infections arise from genitourinary 
microbiota and can be polymicrobial97,98. To cause dis­
ease in the uterine cavity, these bacteria would have to 
ascend the vaginal microbial biofilm and the antimicro­
bial cervical mucous plug to contact the fetal membranes 
and cause an inflammatory response locally.

The best-​studied microorganism associated with 
ascending infection and neonatal disease is GBS, which 

Osteochondritis
Inflammation of the cartilage.

Hydrops
The presence of excess fluid  
in two or more fetal body 
compartments, associated  
with severe perinatal morbidity 
and death.

Pyelonephritis
Inflammation and infection  
of the kidney.

Chorioamnionitis
Inflammation of the fetal 
membranes, classically 
associated with bacterial 
infection.
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can cause neonatal sepsis with transmission. Screening 
for colonization and intrapartum prophylaxis with anti­
biotics decreases the incidence of early onset neonatal 
sepsis99. GBS biofilms on fetal membranes have been 
observed100 and it is one of the most commonly cultured 
bacteria in the setting of intra-​amniotic infections97. 
GBS colonizes the genital tract in ~10–30% of women101. 
The predilection of some isolates to cause neonatal 
disease remains unclear, but GBS activates the innate 
immune neutrophil and macrophage response to initiate 
cytokine release, cell migration and the development of 
extracellular traps and bacteriolysis102,103. The mecha­
nisms of pathogenic switching and specific virulence 
determinants for ascending the genital tract include 
pili, adhesins and altered regulatory systems (reviewed 
in refs104,105). E. coli can also adhere to fetal membranes, 
although to a lesser degree than GBS106. E. coli, like GBS, 
inhabits the genital and gastrointestinal tract and is com­
monly isolated in the setting of intra-​amniotic infec­
tion. With implementation of universal screening and  
intrapartum prophylaxis with antibiotics to GBS, E. coli  
has become the most common aetiological agent of 
late-​onset sepsis in neonates97,107. In obstetric isolates, 
phylogenetic subgroups are variable but genes on path­
ogenicity islands for type 1 fimbriae and iron acquisition 
are enriched108, suggesting that horizontal gene acquisi­
tion is important to cause disease in pregnancy. Similar 
to other bacterial pathogens, the specific virulence 
factors that allow E. coli to cause clinical disease and 
ascend the reproductive tract during pregnancy remain 
under-​studied.

Viruses
Both DNA and RNA viruses can traverse the maternal–
fetal interface and cause fetal disease. In the following 
sections, we discuss key teratogenic viruses and what is 
known regarding their routes of transplacental transmis­
sion and clinical outcomes. Although rubella virus was 
a major source of congenital disease before successful 
vaccination efforts, we have restricted our discussion to 
the most common viruses currently associated with con­
temporary congenital disease — CMV, HSV1 and HSV2, 
parvovirus B19, HIV and ZIKV (Table 1).

Cytomegalovirus. CMV is a member of the Herpesviridae 
family and is one of the most common causes of ver­
tical infections globally. It is the single most common 
cause of congenital hearing loss in the United States, 
and the global burden of disease is also high, although 
likely underestimated109. Like other herpesviruses, CMV 
enters a latent state after acute infection and can be sub­
sequently reactivated. In the setting of maternal primary 
infection, there is a ~40% risk of fetal transmission. 
By contrast, the risk of transmission to the fetus after 
reactivation is <0.05%, but causes most of the clinical 
disease110,111. Gestational age-​specific variation in infec­
tivity and fetal consequences have been described112, 
suggesting that alterations in the maternal–fetal inter­
face during gestation regulates the mechanisms of CMV 
vertical infection. Placental histology in congenital  
CMV infection ranges from normal to acute and chronic 
intervillositis113. The classic, owl’s eye viral inclusion 

bodies occur more frequently in the first and second 
trimesters than in full-​term placentae114.

Given that other recent reviews have provided thor­
ough overviews of the mechanisms by which CMV 
might be vertically transmitted115–117, here we provide a 
more focused overview. CMV has been shown to infect 
trophoblasts, but with substantial gestational age-​related 
differences in infectivity28. Given that human CMV does 
not readily infect rodents, in vivo studies of the mecha­
nisms of CMV vertical transmission are limited to 
human placental primary cell cultures and/or explant 
models. Although guinea pig models of CMV infections 
in pregnancy have been described118, these do not fully 
recapitulate the phenotype of human CMV infections 
during pregnancy. Studies of CMV infection in human 
tissue demonstrate active replication in maternally 
derived decidua, which may generate a viral reservoir 
that could enhance the likelihood of CMV crossing 
the fetal barrier in the setting of primary infection36,119. 
Specifically, apolipoprotein B mRNA-​editing enzyme 
catalytic polypeptide-​like 3A (APOBEC3A) has been 
implicated in control of CMV replication in the decidua, 
but not in placental villi37. Studies have also shown that 
CMV may preferentially infect placental pericytes to gain 
access to the fetus and that this might be a primary mode 
of infection in the setting of maternal viraemia120. The 
role that these cells have at the maternal–fetal interface 
remains largely uncharacterized, but they may represent 
an important site from which CMV can traverse the pla­
centa and cause congenital infection particularly with 
advancing gestation.

Herpes simplex virus. HSV1 and HSV2 can be transmit­
ted to the fetus via the transplacental route, but trans­
mission through contact with a virus-​shedding lesion 
in the genital tract is a far more common mode of verti­
cal transmission. HSV1 and HSV2 are neurotropic and 
lie dormant in the dorsal root ganglion after primary 
infection. On reaching the fetus, these viruses are highly 
teratogenic and are associated with the classic triad of 
manifestations in skin (aplasia cutis, scarring, erosions), 
central nervous system (ventriculomegaly, microcephaly, 
intracranial calcifications) and eyes (chorioretinitis, 
atrophy), along with skeletal manifestations and fetal loss. 
A mouse model recapitulates vertical transmission, with 
fetal loss, congenital malformations and neurotropism, 
demonstrating that haematogenous dissemination 
(rather than ascending infection) is responsible for 
effects on the fetus121.

The mechanisms of transplacental transfer of HSV1 
and HSV2 are largely uncharacterized. The STB is 
resistant to HSV1 and HSV2 infection, but EVTs are 
permissive25,122. Although the HSV entry mediators 
HveA, HveB and HveC are expressed in EVTs, viral 
transmission is not blocked by antibodies to HveA122. 
The maternal surface of the placenta is positive for 
HSV1 or HSV2 in 9–28% of women who are asympto­
matic at the time of delivery without evidence of fetal 
transmission123,124, suggesting that the placenta and/or 
maternal immune response presents a barrier to trans­
placental transmission in women with non-​primary 
infection.

Intrapartum prophylaxis
The process of giving 
antibiotics, typically penicillins, 
to individuals in labour  
for treatment of group B 
Streptococcus colonization.

Pericytes
Specialized connective cells  
of mesenchymal origin that 
classically surround endothelial 
cells in blood vessels.

Aplasia cutis
A condition in which parts  
of the skin are missing.

Ventriculomegaly
A condition in which the brain 
ventricles are abnormally large.

Microcephaly
An abnormally small 
circumference.

Chorioretinitis
Inflammation of the choroid 
surrounding the retina of  
the eye.

Atrophy
Degenerative and small.
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Parvovirus B19. Parvovirus B19 is a non-​enveloped 
single-​stranded DNA virus in the Parvoviridae family. 
Infection with parvovirus B19 is common during child­
hood, causing low-​grade fever, maculopapular rash 
and slapped cheek facial rash. Humoral immunity is 
protective against infection, and 70% of the adult popu­
lation is immune125. The rate of transmission of mater­
nal parvovirus B19 infection to the fetus is 17–33%, and 
most fetuses have spontaneous resolution with no seque­
lae, although ~3% can go on to develop non-​immune 
hydrops from fetal anaemia9. Fetal loss and stillbirth are 
associated with infection even in the absence of hydrops. 
The sequelae of infection vary with gestational age, 
such that infection after 20 weeks confers a 0.5% risk of 
fetal loss, whereas before 20 weeks the rate is increased 
30-​fold9.

Parvovirus B19 exhibits strong tropism for erythroid 
precursors and immunohistochemistry demonstrates 
that after traversing the placenta the virus reaches the 
fetal endothelium126. The parvovirus B19 VP2 capsid 
protein has been shown to bind to globoside, which is 
present on the surfaces of the STB and CTBs127. The VP2 
capsid protein has also been shown to bind to villous 
trophoblast cells through globoside glycolipids128. After 
viral entry, non-​structural protein 1 (NS1) induces apop­
tosis in cells129. Consistent with this, apoptosis has also 
been demonstrated in the placenta in severely affected 
pregnancies, suggesting that fetal demise in the absence 
of hydrops may result from placental damage that 
directly affects function130. The rare but classic sequela 
of parvovirus B19 is non-​immune fetal hydrops caused 
by transient, severe anaemia with loss of both erythro­
cytes and nucleated erythroid precursors129. Dichorionic 
twin discordance in infection and in clinical sequelae 
has been reported131,132, suggesting that the placental and 
fetal responses are important for limiting clinical dis­
ease, but the immune mechanisms by which this occurs  
are unclear.

HIV. Congenital transmission of HIV remains associ­
ated with global neonatal morbidity. HIV can be ver­
tically transmitted via the transplacental route, during 
delivery and/or through breastfeeding postnatally.  
In the absence of antiretroviral therapy (ART), ~25% of 
infants born to HIV-​positive women become infected 
compared with <2% of those whose mothers are on 
ART133. The relative contributions of the various routes 
of vertical transmission suggest that each has a role in 
congenital HIV infection, but the majority of congeni­
tal infections occur with intrapartum transmission 
and direct exposure to maternal secretions and blood.  
Ex vivo, chorionic villous explants isolated from both 
first trimester and full-​term placentae support HIV 
infection, suggesting the possibility that the placenta 
could be infected during pregnancy134,135. However, 
although HIV proteins and/or nucleic acids can be 
detected in placental tissue collected from HIV-​positive 
women, this occurs relatively infrequently, with studies 
demonstrating that the majority of placentae collected 
from HIV-​positive women are negative for HIV136–138. 
These data concur with epidemiological data that sug­
gest that, although transplacental transmission of HIV 

is possible, it is an infrequent (<1%) occurrence139,140. 
However, maternal co-​infection with other pathogens 
such as CMV or malaria may further increase the 
risk of vertical transmission and/or adverse outcomes 
(reviewed in ref.141).

Zika virus. ZIKV is a positive-​strand RNA virus in 
the Flaviviridae family that caused a large outbreak of 
>2,000 cases of congenital disease in 2015–2016, with 
an epicentre in Brazil142,143. ZIKV is transmitted through 
vector-​dependent (Aedes aegypti mosquitoes) and 
vector-​independent (for example, sexual, blood trans­
fusion and vertical transmission) routes. Maternal ZIKV 
infections are associated with a range of fetal clinical out­
comes including ventriculomegaly, microcephaly and 
developmental delays (Table 1), which occur in ~10% of 
maternally infected patients144. The discrepancy between 
fetal infection and the diverse neurological sequelae of 
disease has led to the separation of congenital ZIKV 
infection and congenital ZIKV syndrome145. Since 
the initial outbreak, cases of ZIKV congenital disease 
have waned considerably, suggesting that pre-​existing 
immunity is important for regulating ZIKV infection 
of the maternal host. ZIKV infection in human pla­
cental explants and mouse models suggests clear gesta­
tional age differences in transmission efficacy and fetal 
sequelae, with infection in the first trimester posing the 
greatest risk37,53,144. Interestingly, twin discordance for 
placental and neonatal infections has been demonstrated 
with up to 50% discordance in twin pairs146, and this sus­
ceptibility can be recapitulated in vitro after delivery147, 
suggesting that fetally or placentally derived factors are 
important for limiting vertical transmission.

Like other TORCH pathogens, the mechanisms by 
which ZIKV crosses the placental barrier remain largely 
unknown (Fig. 4), despite considerable investigation. 
Some studies have associated placental cell tropism of 
ZIKV infection with receptor expression, but receptors 
that are important in flavivirus binding (for example, the 
TAM family of receptors) are not important for ZIKV 
infection in vivo148. In vitro mouse and ex vivo human 
studies have also suggested that pre-​existing antibodies 
to the related flavivirus dengue virus (DENV), which 
is co-​endemic with ZIKV, enhances ZIKV congenital 
infection149,150 and facilitates viral traversal across the 
placenta. However, data from human studies in endemic 
regions suggest that pre-​existing DENV immunity is 
associated with reduced risk of ZIKV infection151,152, 
which is supported by work in non-​human primate 
models153,154. By contrast, pre-​exposure to ZIKV sensi­
tizes to subsequent risk of severe DENV in humans155. 
Non-​human primate models of ZIKV vertical transmis­
sion have provided important insights into the com­
plex nature of maternal–fetal infections with this virus 
(reviewed in ref.156) and have also enabled studies that 
investigate neonatal and infant sequelae157. However, 
even these models have yet to elucidate the precise 
mechanisms by which the virus traverses the placental 
barrier. Both animal and in vitro models highlight the 
multifactorial complexity of vertical transmission of 
ZIKV and suggest that modelling this phenomenon 
may be difficult.

Nature Reviews | MiCRObiOlOgy

R e v i e w s

	  volume 20 | February 2022 | 75



0123456789();: 

Emerging viruses. Several emerging viruses may have 
major impacts on the mother and fetus during preg­
nancy. Although pregnancy is often not well studied 
in the setting of emerging pandemics, there are data 
indicating increased severity of maternal infection with 
Ebola virus (EBOV) and reports of vertical transmission 
of Rift Valley fever virus (RVFV), severe acute respiratory 
syndrome coronavirus 2 (SARS-​CoV-2), West Nile virus 
(WNV) and Eastern equine encephalitis virus (EEEV).

EBOV belongs to the Filoviridae family, which are 
negative-​strand, enveloped RNA viruses. EBOV infec­
tions are associated with maternal haemorrhage, pre­
term labour, miscarriage and maternal and fetal death. 
Maternal death occurs in 85% of cases with near 100% 
loss of offspring (stillbirth, miscarriage and neonatal 
death)158. In addition to causing severe maternal disease, 
there are also reports suggesting vertical transmission of 
EBOV. During the 2013–2016 outbreak in West Africa, 
pregnant women were noted to survive EBOV disease 
even with clear viraemia, but delivered stillborn infants 
with elevated viral RNA levels in placental and fetal 
swabs, suggesting vertical transmission of EBOV159,160. 

In addition, EBOV antigen has been found in the STB by 
immunohistochemistry, although this localization alone 
is insufficient to demonstrate vertical transmission and 
may instead suggest that the STB successfully restricted 
access to fetal blood159.

RVFV is an arbovirus in the Bunyaviridae family that 
is transmitted through an arthropod vector and is asso­
ciated with severe disease in domesticated animals and 
livestock. In herds, RVFV outbreaks are associated with 
‘abortion storms’, in which fetal loss and/or stillbirth are 
observed in as many as 90–100% of pregnant animals.  
A single case study has demonstrated vertical transmis­
sion in the third trimester in humans, and increased 
miscarriage and fetal demise in association with RVFV 
has also been described161,162. In human placental  
tissue ex vivo, viral replication has been demonstrated 
in both the STB and in CTBs163,164, but the specific route 
of vertical transmission in livestock and in humans, and 
whether these routes are similar, remains unclear.

WNV is an arthropod-​borne flavivirus associated 
with marked neurotropic pathology. There have been 
several case reports of vertical transmission in humans, 
and a case series demonstrated an association with cen­
tral nervous system abnormalities (hydrocephalus, micro­
cephaly and lissencephaly)165, but larger case studies are 
needed to confirm the association, and the frequency 
of vertical transmission remains unknown. In mouse 
models, WNV induces ZIKV-​like fetal death and dis­
ease, suggesting a potential to cause congenital disease 
in vivo166. In addition, human explant tissue including 
decidua, chorionic villi and fetal membrane samples are 
permissive to varying degrees166. In placental villi, EVTs 
are preferentially infected166 and the STB remains largely 
resistant to infection166,167, similar to what is described 
for ZIKV infection. Similar findings with Powassan virus 
(POWV) suggest that some emerging neurotropic arbo­
viruses have the potential to affect fetal development if 
vertically transmitted135. By contrast, other arboviruses 
including chikungunya virus (CHIKV) and Mayaro 
virus (MAYV) did not cause fetal disease in mice and 
replicated inefficiently in human placental explants, 
suggesting differences in the teratogenic potential of 
emerging arboviruses135.

Most recently, the SARS-​CoV-2 pandemic has high­
lighted the need to focus on women’s health, particularly 
during pregnancy. Several case reports from COVID-19- 
positive pregnant women describe infection of the STB 
by immunohistochemistry accompanied by placental 
pathological lesions168,169. Importantly, the vast major­
ity of cases do not demonstrate any evidence of vertical 
transmission170–173, suggesting that the placenta retains 
its barrier function even in the setting of severe maternal 
infection and disease. Thus, despite the magnitude of 
the pandemic, the risk to the fetus as a result of vertical 
transmission of SARS-​CoV-2 appears to be minimal and 
there are no data to suggest that SARS-​CoV-2 is in any 
way teratogenic itself.

Parasites
There are several relevant parasitic infections in preg­
nancy that cause fetal disease globally. These parasites 
differ in the mode of transmission to the maternal host, 

Infection of EVTs

Infection
of maternal 
decidua

Direct infection
of SYN layer

Inflammation-
induced damage

Fetal side

Maternal side

Decidua

Fig. 4 | Possible mechanisms of vertical transmission.  
The mechanisms by which many TORCH (Toxoplasma gondii, 
other, rubella virus, cytomegalovirus, herpes simplex virus) 
pathogens access the fetus are unclear. However, studies 
suggest that some of these pathogens may use similar 
pathways to bypass the placental barrier. These mecha-
nisms include infection of extravillous trophoblasts (EVTs; 
green cells) and/or infection of the maternally derived 
decidua, such as through direct infection of maternal 
immune cell populations. Other possible routes include 
direct infection of transmission across chorionic villi, 
through direct infection of the syncytium (SYN) or through 
inflammation-mediated damage of the syncytiotrophoblast 
layer that disrupts the barrier and allows transmission.

Hydrocephalus
Central nervous system 
abnormality from pathological 
ventriculomegaly with excess 
fluid in the brain causing 
compression of brain 
parenchyma and requiring 
treatment.

Lissencephaly
A brain malformation 
associated with severe 
developmental delay in  
which gyration of the brain  
is absent.
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but all have substantial implications for global maternal 
and child health.

Toxoplasma gondii. There are more than 200,000 cases of 
congenital toxoplasmosis globally each year174. T. gondii  
infects ~6–70% of fetuses, with maternal infection 
depending on gestational age at infection, and can be 
associated with devastating consequences, including 
ventriculomegaly, intracranial calcifications, chorioret­
initis and rarely hydrocephaly174–176. Maternal symp­
toms occur in only ~5% of cases and clinical sequelae 
are thus best characterized in studies in which routine 
antenatal screening is performed, as maternal infection 
is subclinical. Fetuses infected early in pregnancy are 
far more likely to display clinical disease. Only 9% of 
women with seroconversion at the end of pregnancy 
deliver children with neurodevelopmental delays  
(in comparison with 25% of those with seroconversion in  
the second trimester)177.

T. gondii infection has been extensively studied at the 
cellular and molecular level in many non-​placental cells. 
Infection is a multistep process that includes adhesion 
between T. gondii surface molecules and host cell surface 
proteoglycans, attachment that is driven by secretion of 
proteins into the host plasma membrane and invasion 
into the host cell that is mediated by interactions between 
parasite surface proteins and parasite proteins secreted 
onto the cell surface (reviewed in refs178,179). T. gondii 
also secretes protein effectors into the host cell during 
infection (reviewed in refs180,181). These diverse effec­
tors alter many fundamental aspects of host cell biology, 
including innate immune pathways that are important 
for defensive signalling181. Despite characterization in 
non-​placental cells, the mechanisms of T. gondii vertical 
transmission remain unclear. The STB displays distinct 
resistance to T. gondii infection, which occurs at the level 
of attachment and post-​entry replication23,24,61. By con­
trast, CTBs and EVTs do not display the same degree of 
resistance23,24, suggesting cell-​type specific differences in 
mechanisms of resistance. In addition to cell-​intrinsic 
defences, trophoblasts also respond to T. gondii infec­
tion through the specific induction of various cytokines 
and chemokines, including the robust induction of the 
regulatory T cell chemokine CCL22 (ref.23). Remarkably, 
this induction is not driven by trophoblast sensing, but 
instead requires the delivery of the T.gondii-​derived 
effector molecular GRA28 (refs23,182). However,  
it remains unclear what role placenta-​derived cytokines 
or chemokines have in T. gondii pathogenesis and 
vertical transmission.

Plasmodium species. Of the four malarial species that 
cause disease in humans, Plasmodium falciparum causes 
the majority of disease in pregnancy. In areas of low 
transmission and low pre-​existing immunity, congeni­
tal infection is symptomatic and causes cerebral malaria, 
respiratory distress syndrome, refractory hypoglycae­
mia, and miscarriage and stillbirth. In areas where the 
parasite is endemic and pre-​existing immunity is high, 
malaria can cause severe maternal anaemia, preterm 
delivery and fetal growth restriction, and remains a 
major cause of neonatal mortality183–185. Congenital 

infection has been reported, and data suggest that per­
inatal acquisition through vertical transmission also 
occurs in endemic areas186–188.

The Plasmodium parasite has a clear predilection for 
the placenta. Attachment of infected erythrocytes to the 
placenta allows the parasite to evade the maternal immune 
response by changing surface antigens (described in 
detail below), and histopathological specimens from 
pathogenic malarial infection contain a substantial num­
ber of erythrocytes in the intervillous space with para­
sites and acute and chronic intervillositis189,190. Owing 
to placental malarial burden, nutrient transport across 
the placenta is reduced, which highlights how placental  
function can be compromised by infection191,192 (Fig. 5).

The mechanisms for placenta-​specific binding and 
sequestration of infected erythrocytes have been rela­
tively well characterized. Plasmodium-​infected erythro­
cytes bind to endothelial receptors for tissue sequestration 
in non-​placental tissues through parasite-encoded vari­
ant surface antigens (VSAs) that are expressed by the 
infected erythrocyte (reviewed in ref.193). Expression 
of the VSA gene family var varies over the course of an 
infection. var encodes ~60 erythrocyte surface proteins 
annotated P. falciparum erythrocyte membrane protein 1  
(PfEMP1), which are responsible for adhesion to unin­
fected erythrocytes and other cell types193–195. During the 
course of infection, antigenic variation in expression of 
different family members in the gene family var occurs, 
allowing immune evasion. During pregnancy, the para­
site adapts to the presence of the placenta, allowing 
placental sequestration and immune evasion as well as 
maternal and fetal disease (Fig. 5). The Plasmodium gene 
encoding VSA 2CSA (var2csa) is selectively transcribed 
in placental malaria and allows the infected erythrocyte 
to adhere to the STB195–197. Outside of pregnancy, CD36 is 
a major receptor for infected erythrocytes, but chondroi­
tin sulfate A (CSA) on the STB becomes the major 
receptor for VAR2CSA and is important for placental 
sequestration198–200. The upregulation of VARCS2A by the 
parasite in infected erythrocytes during pregnancy allows 
evasion of a pre-​existing immune response in endemic 
areas and explains how primigravidity (that is, being 
pregnant for the first time) is a risk factor for severe dis­
ease. Accordingly, antibodies to placenta-​specific VSAs 
including VAR2CSA are not present in men and do not 
develop until later in pregnancy201–203. VSAs are primary 
targets for maternal IgG, and elevated levels and a higher 
affinity for VSAs are protective from severe disease204–206. 
Placental sequestration of infected erythrocytes leads to 
an influx of phagocytes and cytokines, which is thought 
to damage the adjacent STB and lead to adverse out­
comes in the absence of fetal parasitaemia194,207,208 (Fig. 5). 
Recently, placental autophagy, a mechanism to maintain 
normal cellular homeostasis, has been demonstrated to 
be dysregulated in placental malaria infection, which 
leads to decreased amino acid transport to the fetus and 
has been implicated in the development of fetal growth 
restriction209,210.

Trypanosoma cruzi. Chagas disease is caused by infec­
tion of T. cruzi, typically from an arthropod vector. 
Most women of reproductive age in endemic areas are 
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infected and ~5% transmit the parasite vertically211. Most 
congenitally infected infants are asymptomatic but can 
develop life-​threatening and disabling disease later in 
life. Features of symptomatic congenital Chagas disease 
include a low Apgar score, neonates that are small for ges­
tational age and signs of liver failure and hydrops212,213. 
Different strains of T. cruzi demonstrate differential tro­
pism for placental tissue, although the mechanistic basis 
for this remains unknown. High maternal parasitaemia 
correlates with congenital transmission214,215. Despite the 
fact that placental pathology demonstrates a predilection 
of the parasite for the decidua, ex vivo placental explants 
demonstrated that the parasite interacts with the STB 
and causes local destruction and detachment, likely 
through apoptosis216,217. Interestingly, T. cruzi-​derived 
exosomes, a marker of increased parasitic burden and 
severe disease, cause inflammation and histopathologi­
cal damage to the STB in placental explants218, suggesting 
that these exosomes may lead to inflammation-​mediated 
damage and allow the parasite to cross the syncytial 
barrier. The parasitic mechanisms responsible for tissue 
damage are an area of ongoing investigation, but it is 
thought that after the trypomastigote gains access to 
the intervillous extracellular matrix, its degradation  
promotes parasite access to the fetal circulation216.

Conclusions
There are substantial consequences resulting from infec­
tions in pregnancy. The complexity and unique features 
of the maternal–fetal interface have led to the discovery 
of multiple pathways of host–pathogen interactions 

unique to this niche. Yet, the molecular mechanisms 
of pathogenesis remain largely uncharacterized, in part 
owing to the complexities of defining the interactions 
that occur between the pathogen and maternal and/or 
fetal hosts during the context of pregnancy. Moreover, 
modelling the unique tissue architecture and immuno­
logy of the maternal–fetal interface creates additional 
complexities in delineating microbial vertical transmis­
sion strategies. Although the use of mouse models has 
provided important insights into various aspects of preg­
nancy, there are substantial differences in the placental 
architecture between human and mouse (reviewed in 
refs16,219) that limit direct correlates of these findings to 
humans. Although the placentae of primates and guinea 
pigs have a more similar architecture to that of humans, 
these models can be difficult to establish, and their lack 
of genetic tractability limits some mechanistic studies. 
Lastly, both clinical samples and primary tissues pro­
vide human-​based models to study pathogenic mech­
anisms or vertical transmission of TORCH pathogens; 
however, there can be limited access to healthy placen­
tae to generate these models. Recently, the development 
of stem cell-​derived organoid models of both maternal 
and fetal cell types220,221 at the maternal–fetal interface 
has opened up exciting new avenues to model this 
interface. However, organoid models lack immune cell 
components and do not recapitulate the immunological 
crosstalk that undoubtedly alters antimicrobial defences. 
The fetal and maternal immune cell phenotypes at the 
maternal–fetal interface are still an area of active inves­
tigation and characterization. Further understanding 
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of the contribution of the immune cell populations 
enriched at the interface will be essential to further 
define mechanisms of pathogenesis in pregnancy.

Future studies elucidating the complexity of interac­
tions between maternal and fetal tissues and how these 
interactions are modulated by pathogens are crucial to 
the development of targeted therapeutics. Moreover, 
understanding the mechanisms of microbial patho­
genesis across the maternal–fetal interface has broader 
implications in the study of infertility, miscarriage and 

hypertensive disorders of pregnancy and parturition, 
which may share common aetiology. Although the com­
plexity of pregnancy and the current gaps in understand­
ing of many of the fundamental aspects of infections 
at the maternal–fetal interface represent a challenge, 
further investigation into this crucial aspect of human 
health will lead to strategies that could substantially 
improve maternal and child health.
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