
Exercises Lecture VI - homework
Simulation of random processes: random walks

1. 1D Random walks:
properties; comparison numerical/analytical results; convergence

Write a code (e.g. see rw1d.f90) that simulates numerically a 1D random
walk with a Monte Carlo approach and gives the final position xN (and
x2
N ) after N steps with fixed length ℓ and probabilities p← and p→ of

moving left and right. Without any loss of generality, you can consider
x0 = 0 as starting position, and ℓ=1.
The code should calculate also averages over many different walkers (start-
ing from the same initial position but initialing the random number se-
quence with different seeds): ⟨xN ⟩, ⟨x2

N ⟩ and the mean square displace-
ment ⟨(∆x)2N ⟩ = ⟨x2

N ⟩ − ⟨xN ⟩2.
For comparison, the corresponding exact analytical (“theoretical”) results
are:

⟨xN ⟩th = N(p→ − p←)ℓ

⟨x2
N ⟩th = [N(p← − p→)ℓ]2 + 4p→p←Nℓ2

⟨(∆xN )2⟩th = ⟨x2
N ⟩ − ⟨xN ⟩2 = 4p→p←Nℓ2

(a) For the sake of definiteness, choose p←=p→= 0.5 and fix N (choose
a “reasonable” value, for instance N=100). In order to follow the evo-
lution of a random walk with the number of steps, calculate and plot
the instantaneous position, i.e., xi and x2

i vs. i, with i from 0
to N . Plot together the results for runs corresponding to a few dif-
ferent seeds (do one plot for xi and one plot for x2

i ). Do the results
change with seed? How do they compare with the expected theoret-
ical behavior ⟨xi⟩th = 0 and ⟨x2

i ⟩th = iℓ2? In particular, consider
the final values, xN and x2

N and compare them with the theoreti-
cal ones, ⟨xN ⟩th = 0 and ⟨x2

N ⟩th = Nℓ2, calculating the deviations
xN − ⟨xN ⟩th, x2

N − ⟨x2
N ⟩th.

(b) Calculate now the averages over many walkers for the instan-
taneous quantities ⟨xi⟩, ⟨x2

i ⟩ and ⟨(∆x)2i ⟩, and the final ones, ⟨xN ⟩,
⟨x2

N ⟩ and ⟨(∆x)2N ⟩, and compare also these results with the theoret-
ical values, as in the previous point. What do you observe now?

(c) Calculate the accuracy of the mean square displacement, given
by the relative deviation of the numerical value with respect to the
theoretical value:

∆ =

∣∣∣∣ ⟨(∆xN )2⟩calc.

⟨(∆xN )2⟩th
− 1

∣∣∣∣ .
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You should recognize that the larger is the number of walks for the
average, the smaller is ∆. How many walkers are needed to obtain a
“good” result, i.e. for istance with a relative accuracy ∆ ≤ 5% with
respect to the expected behavior?

(d) (optional) Keep fix p← = p→=0.5 and vary N . Compare analytical
and numerical results for ⟨x2

N ⟩ − ⟨xN ⟩2 increasing N (Consider for
instance N=8, 16, 32, 64). Does the number of walks necessary to
obtain a given accuracy change with N?

(e) Fix p← = p→ and consider a number of walks (see point (c)) large
enough to have a “good” accuracy for the numerical estimate of
⟨(∆xN )2⟩. Determine the dependence of ⟨(∆xN )2⟩ on N . (Hint: in
this problem, plotting ⟨x2

N ⟩ − ⟨xN ⟩2 as a function of N should show
directly a linear behavior: ⟨x2

N ⟩−⟨xN ⟩2 ≈ aN . In general, making a
log-log plot is convenient to exploit the power low of the dependence
of ⟨x2

N ⟩ − ⟨xN ⟩2 on N , that we expect to be: ⟨x2
N ⟩ − ⟨xN ⟩2 ≈ aN2ν .

A linear fit in log-log form should give ν=1/2. Using powers of 2 for
N , the data are equidistributed)

(f) Insert in the program the calculation of the distribution PN (x) (nu-
merically, from the simulation) and its expected behaviour:

P th
N (x) =

N !(
N
2 + x

2

)
!
(
N
2 − x

2

)
!
p

N
2 + x

2→ p
N
2 −

x
2←

(Attention: better to calculate (N ± x)/2 rather than N/2 ± x/2...
Why?) Consider again the case p← = p→ = 0.5 and N = 8 and plot
PN (x) and P th

N (x) vs x. Compare the two distributions. Is PN (x) a
continuous function? How can you explain its behaviour?

(g) For sufficiently large N , PN (x) can be approximated with the gaus-
sian distribution:

P (x) =
1√
2πσ2

exp[−(x− ⟨x⟩)2/2σ2]

where σ2 = ⟨(∆x)2⟩.
Verify by calculating numerically and plotting PN (x) for N=8, 16,
32, 64 and comparing it with P (x), where σ2 is numerically esti-
mated. Discuss the results. Hint: (the calculation with the analytical
expression containing N ! is discouraged. . . )

(h) (optional) You can consider random walks with steps of different
length, drawn for instance from a uniform, a gaussian, a lorentzian,
or a Student-t distribution. . . :

p(x) =
1√
2π

exp

(
−x2

2

)
p(x) =

1

π (1 + x2)
(Student− t with n = 1
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or standard Cauchy or Lorentz or Breit-Wigner)

p(x) =
1

(2 + x2)
3
2

(Student− t with n = 2)

p(x) =
1

(2 + x2)
3
2

(Student− t with n = 2)

2. 2D Random walks

(a) Write a program for the numerical simulation of 2D random walks
with equal probabilities of moving in each direction. (See for instance
rw2d.f90 in the continuum.)

(b) Calculate ⟨∆R2
N ⟩ = ⟨x2

N ⟩+ ⟨y2N ⟩− ⟨xN ⟩2−⟨yN ⟩2 for N=8, 16, 32, 64
(use a “reasonable” number of nruns). Make a log-log plot of ⟨∆R2

N ⟩
vs. N2ν and estimate ν.

(c) Fix N (a “reasonable” value). Consider at least two different al-
gorithms to randomly choose the displacements and compute again
⟨∆R2

N ⟩ vs. N2ν to estimate ν. Do you see any change?

(d) Consider now the 2D RW on a square lattice (For a possible imple-
mentation see for instance the piece of code reported below).

(e) Repeat calculation as in (b) and discuss the results.

(f) (optional) Modify the program in order to have p→=0.4 (random
walk with a “drift”) and the other probabilities equal. Calculate
again the N dependence of ⟨∆R2

N ⟩, using N=8, 16, 32, 64. Discuss
the results.

(g) (optional) Simulate a rain drop falling down from a given height h in
presence of wind going nowhere (e.g. put: p→ = p← = 0.15, p↑ = 0.1,
p↓ = 0.6). Let T be the average time necessary to reach the ground
(use proper units of time and lenght). What about T = T (h)? If X
is the displacement measured on the ground from a perfectly vertical
fall down, which is the h and T dependence of ⟨∆X2⟩? Is it possible
to define a vertical average velocity?
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3. Brownian motion (optional)

It has been proved that the brownian motion of large heavy particles sus-
pended e.g. in water (made of lighter smaller particles) can be dealt with
statistical methods, without worrying about the details of the dynamics of
the small molecules of the solvent. The final result for the velocity Vq and
the position Xq of the heavy particle of mass M at the time q + 1, after
many collisions in random directions with the smaller lighter particles, is
(*):

Vq+1 = Vq − (γ/M)Vq∆t+ wq

√
2γkBT∆t/M

Xq+1 = Xq + Vq+1∆t

where w is a random variable with standard Gaussian distribution and
γ, the drag coefficient, can be expressed as: γ = 6πηP , using Stokes
formula for a sphere of radius P describing the heavy particle in a solvent
of viscosity η. ∆t is the time interval for the discretization of the motion
equation.

This algorithm is implemented in brown1.f90. For a speck of pollen in
water at room temperature, the physical parameters are: kBT=4·10−21J ,
M=1.4·10−10kg, and (from reasonable values of η and P ) γ=8·10−7Ns/m.

(a) Verify that the mean square displacement ⟨(∆X)2⟩ averaged over
many heavy particles is linear in time after an initial transient.

(b) Estimate numerically the diffusion coefficient D from the slope of this
linear behaviour, since ⟨(∆X)2⟩ = 2dDt (d is the dimensionality of
the system, d = 2 in our case).

(c) Verify the robustness of the result on the choice of ∆t.

(d) Einstein provided a key relation between the diffusion coefficient D
and solvent viscosity η:

D = kBT/(6πηP ),

where T is the temperature, kB = R/NA is the Boltzmann constant,
R the gas constant, NA the Avogadro’s number. Verify the validity
of the Einstein relation from your numerical estimate of D and the
input parameter of your simulation (η, T, P).

(e) Repeat for reasonable different values of M, T and γ.

(*) after: De Grooth BG (1999), A simple model for Brownian motion
leading to Langevin equation, Am. J. Phys. 67, 1248;
see also: G. Pastore and M. Peressi, Doing physics with a computer in High
Scools: designing and implementing numerical experiment, in Proceedings
of MPTL-14 (http://www.fisica.uniud.it/URDF/mptl14/proceeding.htm)
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!CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

! rw1d.f90

! A simple random walk program in 1D.

!

program rw1d

implicit none

integer :: N ! number of steps

integer :: icount1, icount2, icount_rate, ix, irun, istep, nruns

real, dimension(:), allocatable :: rnd ! array of random numbers

integer, dimension(:), allocatable :: x_N, x2_N ! sum of deviations and

! squares over the runs

integer, dimension(:), allocatable :: P_N ! final positions, sum over runs

print *, "Enter number of steps, number of runs\rangle "

read *, N, nruns

allocate(rnd(N))

allocate(x_N(N))

allocate(x2_N(N))

allocate(P_N(-N:N))

x_N = 0

x2_N = 0

P_N = 0

do irun = 1, nruns

ix = 0 ! initial position of each run

call random_number(rnd) ! get a sequence of random numbers

do istep = 1, N

if (rnd(istep) < 0.5) then ! random move

ix = ix - 1 ! left

else

ix = ix + 1 ! right

end if

x_N (istep) = x_N (istep) + ix

x2_N(istep) = x2_N(istep) + ix**2

end do

P_N(ix) = P_N(ix) + 1 ! accumulate (only for istep = N)

end do

print*,"# N=",N," nruns=",nruns

print*,"# <x_N> = ",real(x_N(N))/nruns

print*,"# <x^2_N> = ",real(x2_N(N))/nruns

print*,"# <x^2_N> - <x_N>^2 = ",real(x2_N(N))/nruns-(real(x_N(N))/nruns)**2

open(1,file="P_N",STATUS="REPLACE", ACTION="WRITE")

write(1,*)"# N=",N," nruns=",nruns
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write(1,*)"# <x_N> = ",real(x_N(N))/nruns

write(1,*)"# <x^2_N> = ",real(x2_N(N))/nruns

write(1,*)"# <x^2_N> - <x_N>^2 = ",real(x2_N(N))/nruns-(real(x_N(N))/nruns)**2

write(1,*)" "

write(1,*)"# N, mean deviations, mean squared deviations, sigma^2"

do ix = - N, N

write(1,*)ix,real(P_N(ix))/nruns

end do

close(1)

end program rw1d

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! a part of code in f90 simulating 2D random walks on a square lattice, using:

! floor(a) largest integer < = a

! select case similar to ‘‘if’’, select different instructions

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! In a RW steps left,right up or down are chosen at random by taking a random

! number rand in the interval 0-1 with the built-in subroutine random_number.

! Since 0 < = rand < 1 => floor(rand*4) = 0 or = 1 or = 2 or = 3

! Steps to the right for 0 < = rand < 0.25, i. e. for floor(rand*4)=0 etc.

! The vector Ndir(0:3) contains how many steps are taken in each direction:

! right (Ndir(0)), left (Ndir(1)), up (Ndir(2)), down (Ndir(3))

! X and Y cartesian coordinates of walker during a walk of total N steps

do j=1,...

call random_number(rand)

select case(floor(rand*4))

case(0)

Ndir(0)=Ndir(0)+1

X=X+1

case(1)

Ndir(1)=Ndir(1)+1

X=X-1

case(2)

Ndir(2)=Ndir(2)+1

Y=Y+1

case(3)

Ndir(3)=Ndir(3)+1

Y=Y-1

end select

end do
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!CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

! rw2d.f90

! A simple random walk program in 2D.

PROGRAM drunk

IMPLICIT NONE

INTEGER :: i, N

REAL :: phi, rnd

REAL :: x=0.0, y=0.0 ! Put drunk initially at the origin

INTEGER, PARAMETER :: out=1 ! Set output unit

REAL, PARAMETER :: step=1.0, twopi=2.0*3.1415926 ! step size and constants

CHARACTER(LEN=15) :: filein

CHARACTER(LEN=15), SAVE :: FORMAT1 = "(1i5,1x,2F14.7)"

PRINT*,"Enter number of steps:"

READ*, N

PRINT*,"Enter file for data"

READ*,filein

OPEN(out, FILE=filein, STATUS="REPLACE", ACTION="WRITE")

CALL RANDOM_SEED(PUT=seed)

i = 0

WRITE(UNIT=out,FMT=FORMAT1)i,x,y

DO i=1, N

CALL RANDOM_NUMBER(rnd)

phi=twopi*rnd

x=x+step*COS(phi)

y=y+step*SIN(phi)

WRITE(UNIT=out,FMT=FORMAT1)i,x,y

END DO

CLOSE(out)

END PROGRAM drunk
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Brownian motion

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

PROGRAM Brown

IMPLICIT NONE

INTEGER :: npart,it,nit,i,j

REAL,DIMENSION(:,:),allocatable :: pos,pos0,vel,f

REAL,DIMENSION(:), allocatable :: mass

REAL,DIMENSION(2) :: harvest ! array with 2 random numbers

REAL :: dt,gamma,t,w,msq

WRITE(*,*)"Insert the number of heavy particles : "

READ*,npart

allocate(pos(2,npart))

allocate(pos0(2,npart))

allocate(vel(2,npart))

allocate(f(2,npart))

allocate(mass(npart))

WRITE(*,*)"Insert mass of the heavy particles (in kg) : "

READ*,mass(1)

mass(2:npart)=mass(1)

WRITE(*,*)"Insert time step (in seconds) :"

READ*,dt

WRITE(*,*)"Insert number of iterations :"

READ*,nit

WRITE(*,*)"Insert gamma and kT (in J) : "

READ*,gamma,t

vel = 0 ! Zero initial positions and velocities

pos0 = 0

it = 0

pos = pos0

! CALL f_ext(pos,f) ! in case of external force to be added

f = 0 ! here no external force: only drug and random forces

WRITE(1,*)"# iteration, time, pos_x, pos_y, vel_x, vel_y of particle 1"

WRITE(1,*)it,it*dt,pos(1,1),pos(2,1),vel(1,1),vel(2,1)

DO it=1,nit

DO j=1,npart

DO i=1,2

call gasdev(w)

vel(i,j) = vel(i,j)*( 1 - gamma*dt/mass(j)) + dt * f(i,j)/mass(j) &

+ w*sqrt(2*gamma*t*dt)/mass(j)

pos(i,j) = pos(i,j) + vel(i,j) * dt
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END DO

END DO

!CALL f_ext(pos,f)

msq = sum( (pos - pos0)**2 )/npart

WRITE(unit=1,fmt=*)it,it*dt,pos(1,1),pos(2,1),vel(1,1),vel(2,1)

WRITE(unit=2,fmt=*)it,it*dt,msq

END DO

close(1)

close(2)

stop

contains

SUBROUTINE gasdev(rnd)

IMPLICIT NONE

REAL, INTENT(OUT) :: rnd

REAL :: rsq,v1,v2

REAL, SAVE :: g

LOGICAL, SAVE :: gaus_stored=.false.

if (gaus_stored) then

rnd=g

gaus_stored=.false.

else

do

call random_number(v1)

call random_number(v2)

v1=2.*v1-1.

v2=2.*v2-1.

rsq=v1**2+v2**2

if (rsq \rangle 0. .and. rsq \langle 1.) exit

end do

rsq=sqrt(-2.*log(rsq)/rsq)

rnd=v1*rsq

g=v2*rsq

gaus_stored=.true.

end if

END SUBROUTINE gasdev

END PROGRAM Brown
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