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Using random numbers�
to simulate �

random processes:

1) radioactive decay (past week)
2) diffusion and random walks
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 Radioactive decay
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recovering and commenting the results of the exercise of past week: 

Atoms present at time  
Probability for each atom to decay in
Atoms which decay between      and 

t

∆N(t)

∆N(t) = −λN(t)∆t N(t) = N(t = 0)e−λt

t + ∆t

N(t)

t

λ ∆t

Purpose of the exercise: 
- fix λ (<1 since it is a probability)
- perform the stochastic simulation
- check whether N(t) has the expected behavior, also 
quantitatively, calculating the resulting decay constant from 
the data fitting and comparing with the given value of λ



 Radioactive decay
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recovering and commenting the results of the exercise of past week: 

In our simulation:       1 iteration in the loop ∆t

Atoms present at time  
Probability for each atom to decay in
Atoms which decay between      and 

t

∆N(t)

∆N(t) = −λN(t)∆t N(t) = N(t = 0)e−λt

t + ∆t

N(t)

t

λ ∆t

Purpose of the exercise: 
- fix λ….

(the time step is implicitly fixed in a Monte Carlo simulation!
somehow, in this exercise we decide the time discretization by fixing λ)
but in general in the numerical simulation of a dynamical process, the 
smaller is the time step, the more accurate is the simulation



Radioactive decay

5

recovering and commenting the results of the exercise of past week: 

(from a homework of a.y. 2022/23)



 Radioactive decay
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recovering and commenting the results of the exercise of past week: 

(the time step is implicitly fixed in a Monte Carlo simulation!
somehow, in this exercise we decide the time discretization by fixing λ:
but in general in the numerical simulation of a dynamical process, the 
smaller is the time step, the more accurate is the simulation)

In our simulation:       1 iteration in the loop ∆t

Atoms present at time  
Probability for each atom to decay in
Atoms which decay between      and 

t

∆N(t)

∆N(t) = −λN(t)∆t N(t) = N(t = 0)e−λt

t + ∆t

N(t)

t

λ ∆t

Purpose of the exercise: 
- fix λ….



decay.f90    
decay_checkloop.f90  

checkloop.f90

Programs: 
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2) Diffusion 
and Random Walks

• random motion and diffusion:
      history and analytic treatment
• simplified model: random walks 
• Brownian motion: implementation of an 

algorithm based on the Langevin equation
• Brownian motion: mathematical eqs. & 

miscellanea

8



Random motion and 
diffusion�

-history and analytic treatment-
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Random motion
Random Walk

• Robert Brown  1828

• J.C. Maxwell  1867

• Albert Einstein  1905

• Maryan Smoluchowski 1906

• Jean  Perrin 1912

• J. Bardeen , C. Herring 1950

Brownian motion is by now a well-understood problem, and the concepts, 
techniques and models have proven fruitful in many different fields, from 
statistical mechanics to econophysics.     A brief history:
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Random motion

• random motion of tiny particles had been 
reported early in scientific literature 

• before 1827,  random motion was attributed 
to living particles.

• random motion = “brownian motion”, after 
1827, when the British botanist Robert 
Brown claimed that even dead particles 
could exhibit a random motion

• What is the origin? In 1870, Loschmidt 
suggested that brownian motion is caused by 
thermal agitation 11



Random motion

• random motion of tiny particles had been 
reported early in scientific literature 

• before 1827,  random motion was attributed 
to living particles.

• random motion = “brownian motion”, after 
1827, when the British botanist Robert 
Brown claimed that even dead particles 
could exhibit a random motion

• What is the origin of the brownian motion? 
In 1870, Loschmidt suggested that it is caused 
by thermal agitation

“Brownian”
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Observations of "active molecules" by scientist Robert Brown in 1827
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Brownian motion

Observations of "active molecules" made by Brown in 
1827 led the physics community to search for the 
proof that molecules indeed exist.

At the turn of 20th century, the atomic nature of 
matter was fairly widely accepted among scientists, 
but not universally (there was NO direct evidence!)

Another argument under discussion: the kinetic 
theory of gases 

-open questions-
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Maxwell-Boltzmann distribution of velocity
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(1860) (1872)



• Under discussion in ~1900:                       ???

• Can we prove its validity from the observation of the 
Brownian motion?

• Could  m  be obtained from that relationship? In 

principle yes, provided one can measure v.   But  v	
cannot be measured from the erratic trajectory of 
particles observed at the microscope!

• so... What can we really measure?

Kinetic theory of gases

1

2
mv

2
=

3

2
kBT

_
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In essence, the Einstein’s paper provides:
- evidence for existence of atoms/molecules  
- estimation of the size of atoms/molecules
- estimation of the Avogadro’s number

Einstein predicted that microscopic particles 
dispersed in water undergo random motion as 
a result of collisions (stochastic forces)  with 
water molecules much smaller and light (not 
visible on the chosen observation scale).  
diameter of Brownian particles: ~ 1 μ, water: ~ 10-4 μ

Brownian motion
-Einstein’s 1905 paper-
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larger particles (blue = fat droplets) jiggle more slowly 
than smaller (red = water) particles;
only the larger particles are visible

fat droplets (0.5-3 μm) in milk
http://www.microscopy-uk.org.uk/dww/home/hombrown.htm

credit to David Walker, Micscape

Brownian motion
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A. Einstein:
"On the Movement of Small Particles Suspended in Stationary 
Liquids Required by the Molecular-Kinetic Theory of Heat"
Annalen der Physik 19, p. 549 (1905)

...
In this paper it will be shown that, according to the molecular-kinetic theory 
of heat, bodies of a microscopically visible size suspended in liquids 
must, as a result of thermal molecular motions, perform motions of such 
magnitude that they can be easily observed with a microscope. It is 
possible that the motions to be discussed here are identical with so-called 
Brownian molecular motion; however, the data available to me on the latter 
are so imprecise that I could not form a judgment on the question.

If the motion to be discussed here can actually be observed, together 
with the laws it is expected to obey, then [...] an exact determination 
of actual atomic sizes becomes possible. On the other hand, if the 
prediction of the motion were to be proved wrong, this fact would provide a 
far-reaching argument against the molecular-kinetic conception of heat....

Later Einstein wrote: "My major aim in this was to find facts which would 
guarantee as much as possible the existence of atoms of definite finite size."
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Einstein suggests that mean square displacements 
<Δr2> of suspended particles undergoing brownian 
motion (rather then their velocities) are suitable 
observable and measurable quantities, and 
directly related to their diffusion coefficient D:

<Δr2> = 2dDt    with    D = μkBT = kBT/(6πηP)   

(t time, d dimensionality of the system,  μ mobility,
P radius of brownian particles (???); η solvent viscosity; kB =R/N)

<Δr2> measurable => from (**) we get D;
 η, T  measurable  => from (*) we obtain P

Brownian motion
-Einstein’s 1905 paper-

<Δr2> (and therefore D), η, T  measurable  => obtain P !
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Einstein suggests that mean square displacements 
<Δr2> of suspended particles undergoing brownian 
motion (rather then their velocities) are suitable 
observable and measurable quantities, and 
directly related to their diffusion coefficient D:

<Δr2> = 2dDt    with    D = μkBT = kBT/(6πηP)   

(t time, d dimensionality of the system,  μ mobility,
P radius of brownian particles (???); η solvent viscosity; kB =R/N)

<Δr2> measurable => from (*) we get D;
 Once D is known, since η, T are measurable  => from (**) we obtain P

Brownian motion

(**)(*)

-Einstein’s 1905 paper-
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Diffusion

Compare: exponentials must be equal!

Umezawa public lecture presented at Dept. of Physics, 

University of Alberta, Edmonton, Alberta, March 9, 2005.

Slide 8
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Part I – Sedimentation Equilibrium
Compare Two Independent Analyses of Final State
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   
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From Mass Transfer Theory: From Thermodynamics:
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m

N RT
D



migration
in gravity diffusion

flux 0
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Imagine that the microscopic particles whose Brownian motion is going to be measured are heavier than the water they are dispersed 

in.  Then they will tend to settle toward the bottom of the container.  But because of Brownian motion or diffusion they do not simply rest 

on the bottom, but eventually distribute themselves so that the concentration of particles is higher near the bottom (as suggested by the 

gray-scale in this sketch).  This is called “sedimentation equilibrium.  

Einstein’s method of determining Avogadro’s number is based on two independent analyses of the concentration profile.  First, from 

mass transfer theory we have the migration of particles downward in the gravitational field and diffusion upward caused by the higher 

concentration near the bottom.  At steady state, the two rates must be equal and opposite so there is no net flux of particles in either 

direction.  

Integrating this differential equation, you obtain a concentration profile for the particles which decays exponentially as you move up 

from the bottom.  

The second analysis is thermodynamic: the particles will distribute themselves at equilibrium so that their free energy per mole is the 

same at all elevations.  There are two contributions to free energy: the gravitational potential energy and their chemical potential which is 

proportional to the logarithm of concentration.  This yields another differential equation which also integrates to yield an exponential 

concentration profile.

Clearly the two exponentials must be equal if both analyses are correct.  Equating the two exponents yields an equation which can be 

solved for N: Avogadro’s number.  This equation involves the universal gas constant R and temperature T whose values were well known 

in the late 1800’s.  So if we can measure the mobility and diffusion coefficient of the same particles, then we can calculate avogadro’s 

number.  

The mobility itself can be caculated from Stokes’ law provided you can measure the diameter of the particles.  This leaves just the 

diffusion coefficient of the particles which Einstein suggested could be measured by observing Browian motion.

μ=

μ

μ

P

P

(*)

First Fick’s law
(particle 
diffusion eq.) 
states that the flux  
(μWc) goes from 
regions of high 
concentration to 
regions of low 
concentration, with a 
magnitude that is 
proportional to the 
concentration gradient 
.

If there is a variation 
in the potential 
energy of a system, 
an energy flow will 
occur.
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D = μkBT

D = μkBTDerivation of the diffusion coefficient:

http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Energy


Umezawa public lecture presented at Dept. of Physics, 

University of Alberta, Edmonton, Alberta, March 9, 2005.
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Part II – Statistical Analysis of B.M.
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2

22
Fick's 2nd law:
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Because BM is random, it is impossible to predict how any single particle will move.  But it is possible to 

predict the average behavior of a large number of particles.  The probability of finding a particle at any location 

satisfies Fick’s second law of diffusion from a point source.  We further specify that we know for certain that the 

particle is located at x=0 at time t=0.  The solution of this partial differential equation was well known in the late 

1800’s.  

The probability slowly diffuses away from x=0 with time as suggested by this animation.  Note that the 

probability is symmetric on either side of x=0.  

If we integrate over all x’s, we obtain unity: in other words, the particle must exist somewhere.  If we weight x 

by the corresponding probability, we obtain an average x of zero.  This just means that the particle is equally likely 

to diffuse in the positive direction as in the negative direction.  So any positive x’s are cancelled by negative x’s.  

But if we square x before weighting it by the corresponding probability, we obtain a non-zero mean square 

value.  Indeed, this theory predicts that the mean-squared x must grow linearly with time and the rate of growth 

depends on the diffusion coefficient.   This is how Einstein suggested that we can measure the diffusion coefficient 

of microscopic particles.  

Fick’s law of diffusion (1855): a continuum model

The mean square displacements <Δr2> of suspended particles are 
suitable observable quantities and give D    

Brownian motion and diffusion

p(x) =
1

σ

1
√

2π
e
−x2/(2σ2)

gaussian with σ
2

= 2Dt

Here: 1D (d=1)
p=concentration

(**)

23

Time > 0



Fractal trajectory  D =2

Si on faisait des pointés à
des intervalles de temps 
100 fois plus rapprochés, 
chaque segment serait
remplacé par un contour 
polygonal relativement
aussi compliqué que le 
dessin entier, et ainsi de 
suite. On voit comment 
s’évanouit … la notion de 
trajectoire.

Jean  Perrin

Fractal trajectory  D =2

Si on faisait des pointés à
des intervalles de temps 
100 fois plus rapprochés, 
chaque segment serait
remplacé par un contour 
polygonal relativement
aussi compliqué que le 
dessin entier, et ainsi de 
suite. On voit comment 
s’évanouit … la notion de 
trajectoire.

Jean  Perrin

Brownian motion 
and 

fractal trajectory

(1912)
24



Random motion in nature

• in gases or diluted matter: random motion 
(after how many collisions on average a 
particle covers a distance Δr?    or which is 
the distance covered on average from the 
starting point by a particle after N collisions?)

• in solids: diffusion of impurities (molten 
metals) or vacancies..., electronic transport in 
metals...

25



Random walks

A very simplified model 
for the brownian motion 

and many phenomena

26



Fractal trajectory  D =2

Si on faisait des pointés à
des intervalles de temps 
100 fois plus rapprochés, 
chaque segment serait
remplacé par un contour 
polygonal relativement
aussi compliqué que le 
dessin entier, et ainsi de 
suite. On voit comment 
s’évanouit … la notion de 
trajectoire.

Jean  Perrin

• traditional RW          brownian motion

• modified (interacting) RW         the 
motion of the walker depends on his 
previous trajectory 

Random Walks

27



Scaling properties of RW
Dependence of                on      :

• normal behavior:                                                                              
for the brownian motion

• superdiffusive behavior:                      with              
in models where autointersections are unfavoured              

• subdiffusive behavior                           with               
in models where autointersections are favoured

〈R2(t)〉 t

〈R2(t)〉 ∼ t

〈R2(t)〉 ∼ t
2ν

ν > 1/2

ν < 1/2

〈R2(t)〉 ∼ t
2ν

28



One-dimensional RW
A walker at each step can go either left or right:
     : number of steps
     : length of the random displacement (random direction)
     (                relative displacement of the    step)
     : displacement from the starting point after        steps
     (                                                            )
     ,         : probability of left or right displacement 

What can we calculate? Averaging over walkers:
           : average net displacement after N steps
           : average square displacement after N steps
           : probability for       to be the final net displacement                            
from the starting point after N steps

Umezawa public lecture presented at Dept. of Physics, 

University of Alberta, Edmonton, Alberta, March 9, 2005.

Slide 10
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1-D Random Walk
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Simulation #1

Simulation #2

Simulation #3

Theory Average

Average of 10

0

x

x2

t

This slide summarizes some Brownian dynamics simulations for 1-D.  At each time step, the particle (red circle 

in top graph) must move either left or right exactly one spatial increment, depending on the flip of a coin.  The 

results for the net displacement from the origin (x) or x2 is shown in the lower two graphs.  Averaging over as few 

as 10 such simulations yields results in reasonable agreement with the expectations from the previous slide.

By making such observations (in 2-D), Jean Baptist Perrin was able to deduce the diffusion coefficient for single 

colloidal particles.  

〈x2

N 〉
〈xN 〉

N

!

! x

xN

p→ p←

PN (x) x

N

isi = ±!

xN =
∑N

i=1
si, xN ∈ [−N!, +N!]
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RW 1D
Exact analytic expressions can be easily derived for 

〈xN 〉 = 〈
N∑

i=1

si〉 = . . . (if p← = p→) . . . = 0

〈x2

N 〉 = 〈

(

N
∑

i=1

si

)2

〉 = 〈
N
∑

i=1

s2

i 〉 + 〈
∑

i !=j

sisj〉 = . . . (if p← = p→) . . . = N!2

p← = p→

More general, if               :

〈xN 〉 = N(p→ − p←)! 〈x2

N 〉 = [N(p→ − p←)!]2 + 4p→p←N!2

therefore: 

We expect this behavior for averages over many walkers

p← ≠ p→

⟨xN⟩ = n←(−ℓ) + n→(+ℓ) with n← = Np← and n→ = Np→

30

⟨Δx2
N⟩ = ⟨x2

N⟩ − ⟨xN⟩2 = 4p→p←Nℓ2



RW 1D
In general, average quantities can be calculated from            :

〈xN 〉 =
x=+N!∑

x=−N!

xPN (x)

PN (x)

Let’s make an example 
of analytical calculation of PN(x)

(N=3 is enough!)
...

(how many 
different walks of length N?)

(There are 2N different possible walks 
of N steps...)

31

(probability for  x   to be the final net displacement from the starting point after N steps)



RW 1D
In general, average quantities can be calculated from            :PN (x)

Let’s make an example 
of analytical calculation of PN(x)

(N=3 is enough!)
...

(There are 2N different possible walks 
of N steps...)

32

(probability for  x   to be the final net displacement from the starting point after N steps)

〈xN 〉 =
x=+N!∑

x=−N!

xPN (x)



RW 1D
N = 3  =>  8 possible different walks

⇒ P3(0) = P3(±2) = 0; P3(±1) = 3, P3(±3) = 1
33



PN (x) =
N !

(

N

2
+ x

2

)

!
(

N

2
−

x

2

)

!
p

N

2
+ x

2
→ p

N

2
−

x

2
←

RW 1D
Generalizing the expression for             :PN (x)

PN+1(x) = PN (x − 1)p→ + PN (x + 1)p←

P1(1) = p→; P1(−1) = p←From:

we have:

The Random Walk For Dummies 145

P (Gn = x) =

⇢ �n
l

�
prql, if x = n mod 2;

0, otherwise.

Consider for example the case p = q = 1
2 ; this is the case of the symmetric random

walk. The probability P (Gn = x) of being at position x after n steps is given in Table
3-1. This table is simply a pascal triangle interspersed with 0s.

Table 3-1
The Symmetric Random Walk

n \ x -5 -4 -3 -2 -1 0 1 2 3 4 5

0 1

1 1
2 0 1

2

2 1
4 0 2

4 0 1
4

3 1
8 0 3

8 0 3
8 0 1

8

4 1
16 0 4

16 0 6
16 0 4

16 0 1
16

5 1
32 0 5

32 0 10
32 0 10

32 0 5
32 0 1

32

The probability distribution in this particular case is given by

P (Gn = x) =

✓
n

l

◆✓
1

2

◆n

=

✓
n

l

◆�
2n.

Since every path is equally likely in the symmetric random walk, the probability can be
interpreted purely combinatorially. The probability is the number of di�erent ways of
arriving at x divided by the size of the sample space. The sample space is the set of all
the possible paths of length n. Since the drunk has two choices at each point, and he
takes a total of n steps, the total number of possibilities is 2n.

4. Taking a Step Further. From now on, we assume that the random walk is sym-
metric; that is, p = 1

2 . What is the probability that the drunk’s first return is at the
2nth step? Here is where Catalan numbers enter. Observe that there is a one-to-one
correspondence between paths and arrangements of parentheses. First, let an open
parenthesis represent a step to the left, and a closed parenthesis a step to the right. For
now, we consider only the case where the drunk’s first step is towards the left, since the
case to the right is clearly symmetric to it.

From Section 2, recall the definition of the Catalan number cn: it is the number of
2n well-formed arrangements of parentheses. Note that, for well-formed arrangements,
the number of open parentheses is always at least that of closed parentheses, regardless
of what first k parenthesis we pick. Because of the correspondence between paths and
arrangements, the Catalan numbers count the number of paths that the drunk can take,
which start and end at the bar, without ever crossing to the right side of the bar.

We now adapt our correspondence to the problem of the drunk’s first return. The
drunk takes his first step to the left. On the next 2n�2 steps, we insist that the drunk’s
path corresponds to a well-formed arrangement so that at step 2n� 1 he is at position

(Pascal
triangle)nu

m
be

r 
of

 s
te

ps

PN (x)

p← = p→

for
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PN (x) =
N !

(

N

2
+ x

2

)

!
(

N

2
−

x

2

)

!
p

N

2
+ x

2
→ p

N

2
−

x

2
←

Can be generalized to large N (put                , then            , 
continuum limit): 

N = t/∆t ∆t → 0

P (x, N∆t) =

√

2

πN
e−x2/(2N)

which looks like a Gaussian (a part from the normalization).
Why?
Let’s describe the RW problem with a space/time differential 
equation...

(*)

RW 1D
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RW 1D:  Diffusion - continuum limit

7.2.2. Continuum limit: the di�usion equation

[G+T 12.5; G+T 7A]

This basic random walk can be rewritten as a continuum di�usion equation by taking the limit in
which the lattice spacing l and the time step � go to zero.

Let us begin by writing the random walk behaviour in terms of a so called master equation. Let
P (i, N) denote the probability that a walker is at site i after N steps. Since walkers have an equal
probability to walk left and right, it is clear that

P (i, N) = 1
2P (i + 1, N � 1) + 1

2P (i� 1, N � 1)

To get a continuum limit with familiar names for the variables, we can identify

t = N� and x = il

Now we can rewrite the previous equation as

P (x/l, t/�) = 1
2P (x/l + 1, t/� � 1) + 1

2P (x/l� 1, t/� � 1)

7.12 Monte Carlo simulations, Kai Nordlund 2002, 2004

but since the probability is independent of the length or time scales, we have

aP (x, t) = P (ax, t) or bP (x, t) = P (x, bt)

for any constants a, b. So we can multiply the equation with l and � to obtain

P (x, t) = 1
2P (x + l, t� �) + 1

2P (x� l, t� �)

We rewrite this by subtracting P (x, t� �) and dividing by �

P (x, t)� P (x, t� �)

�
=

P (x + l, t� �) + P (x� l, t� �)� 2P (x, t� �)

2�
(3)

The left hand side already clearly resembles the definition of a derivative, if we take the limit
� �⌅ 0. To see what happens on the right hand side, we expand the P functions as Taylor series
about x and t with l and � as the deviation. We only write out the terms needed:

P (x, t� �) ⇤ P (x, t)�
⇤P (x, t)

⇤t
�

P (x± l, t� �) ⇤ P (x, t)±
⇤P (x, t)

⇤l
l + 1

2

⇤2P (x, t)

⇤x2
l2 �

⇤P (x, t)

⇤t
�

7.13 Monte Carlo simulations, Kai Nordlund 2002, 2004

7.2.2. Continuum limit: the di�usion equation

[G+T 12.5; G+T 7A]

This basic random walk can be rewritten as a continuum di�usion equation by taking the limit in
which the lattice spacing l and the time step � go to zero.

Let us begin by writing the random walk behaviour in terms of a so called master equation. Let
P (i, N) denote the probability that a walker is at site i after N steps. Since walkers have an equal
probability to walk left and right, it is clear that

P (i, N) = 1
2P (i + 1, N � 1) + 1

2P (i� 1, N � 1)

To get a continuum limit with familiar names for the variables, we can identify

t = N� and x = il

Now we can rewrite the previous equation as

P (x/l, t/�) = 1
2P (x/l + 1, t/� � 1) + 1

2P (x/l� 1, t/� � 1)
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x = i!Defining: , we have:

but since the probability is independent of the length or time scales, we have

aP (x, t) = P (ax, t) or bP (x, t) = P (x, bt)

for any constants a, b. So we can multiply the equation with l and � to obtain

P (x, t) = 1
2P (x + l, t� �) + 1

2P (x� l, t� �)

We rewrite this by subtracting P (x, t� �) and dividing by �

P (x, t)� P (x, t� �)

�
=

P (x + l, t� �) + P (x� l, t� �)� 2P (x, t� �)

2�
(3)

The left hand side already clearly resembles the definition of a derivative, if we take the limit
� �⌅ 0. To see what happens on the right hand side, we expand the P functions as Taylor series
about x and t with l and � as the deviation. We only write out the terms needed:

P (x, t� �) ⇤ P (x, t)�
⇤P (x, t)

⇤t
�

P (x± l, t� �) ⇤ P (x, t)±
⇤P (x, t)

⇤l
l + 1

2

⇤2P (x, t)

⇤x2
l2 �

⇤P (x, t)

⇤t
�
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and we can rewrite eq. 3 as

P (x, t)� P (x, t� �)

�
⇥

1

2�
[P (x + l, t� �) + P (x� l, t� �)� 2P (x, t� �)]

P (x, t)� P (x, t) + ⌅P (x,t)
⌅t �

�
⇥

1

2�

"
P (x, t) +

⌅P (x, t)

⌅l
l + 1

2

⌅2P (x, t)

⌅x2
l2 �

⌅P (x, t)

⌅t
�

+P (x, t)�
⌅P (x, t)

⌅l
l + 1

2

⌅2P (x, t)

⌅x2
l2 �

⌅P (x, t)

⌅t
�

�2P (x, t) + 2
⌅P (x, t)

⌅t
�

–

and after we do all the obvious cancellations we get

⌅P (x, t)

⌅t
⇥

l2

2�

⌅2P (x, t)

⌅x2

In the limit � ⇤ 0, l ⇤ 0 but where the ratio l2/� is finite, this becomes an exact relation. If we
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RW 1D:  Diffusion - continuum limit

Summarizing, for the discretized RW of N steps: Considering that t = N�t, defining D =
`2

2�t
, and measuring x in units of `, we get:

P (x, t) =

r
1

⇡Dt
exp

✓
� x2

4Dt

◆

which is

The fundamental solution of the continuum di↵usion equation of the previous slide, defining

D =
`2

2⌧
is:

P (x, t) =

r
1

4⇡Dt
exp

✓
� x2

4Dt

◆
.

The discretized solution of the RW problem:

PN (x) =

r
2

⇡N
exp

✓
� x2

2N

◆

considering t = N⌧ and the definition of D, can be rewritten as:

P (x, t) =

r
1

⇡Dt
exp

✓
� x2

4Dt

◆

a part from the normalization which is a factor of 2 larger in this form because of the spatial
discretization that excludes alternatively odd or even values of x.
The solution is therefore a Gaussian distribution with �2 = 2Dt which describes a pulse
gradually decreasing in height and broadening in width in such a manner that its area is
conserved.

=
1

2
�2

=
1

8�2

@⇢

@t
= r

8
><

>:

X, Y uniformly distributed in [�1,1];
take (X,Y ) only within the unitary circle;
) R2 = X2 + Y 2 is
uniformly distributed in [0,1]

x =
p

�2 lnR2
X

R
= X

p
�2 lnR2/R2

1

Wednesday, May 22, 13
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  ix = 0 ! initial position of each walker
  call random_number(rnd) ! get a sequence of random numbers
   do istep = 1, N
    if (rnd(istep) < 0.5) then ! random move
      ix = ix - 1 ! left
    else
      ix = ix + 1 ! right
    end if  ! now ix is the updated position of the individual walker
   end do

  
  
  

RW 1D: simulation
The basic algorithm:
ix = position of the walker
x_N, x2_N = cumulative quantities
rnd(N) = sequence of N random numbers

(1 run= 1 particle= 1 walker)

38

Now ix is the final position of the walker



do irun = 1, nruns
  
  ix = 0 ! initial position of each walker
  call random_number(rnd) ! get a sequence of random numbers
   do istep = 1, N
    if (rnd(istep) < 0.5) then ! random move
      ix = ix - 1 ! left
    else
      ix = ix + 1 ! right
    end if  ! now ix is the updated position of the individual walker
   end do

   x_N = x_N + ix
   x2_N = x2_N + ix**2 
  
end do

RW 1D: simulation
The basic algorithm:
ix = position of the walker
x_N, x2_N = cumulative quantities
rnd(N) = sequence of N random numbers

(1 run= 1 particle= 1 walker)

39

Let’s sum over many walkers
(note that x_N and x2_N must not be not reset to zero!)
This accounts for the final positions only after N steps



RW 1D: simulation
The basic algorithm:
ix = position of the walker
x_N, x2_N = cumulative quantities
rnd(N) = sequence of N random numbers

! rw1d.f90
! A simple random walk program in 1D.
!
program rw1d

implicit none
integer :: N ! number of steps
integer, dimension(1) :: seed
integer :: icount1, icount2, icount_rate, ix, irun, istep, nruns
real, dimension(:), allocatable :: rnd ! array of random numbers
integer, dimension(:), allocatable :: x_N, x2_N ! sum of deviations and
! squares over the runs
integer, dimension(:), allocatable :: P_N ! final positions, sum over runs

print *, "Enter number of steps, number of runs, seed >"
read *, N, nruns, seed(1)

allocate(rnd(N))
allocate(x_N(N))
allocate(x2_N(N))
allocate(P_N(-N:N))
x_N = 0
x2_N = 0
P_N = 0
CALL RANDOM_SEED(PUT=seed)

do irun = 1, nruns
ix = 0 ! initial position of each run
call random_number(rnd) ! get a sequence of random numbers
do istep = 1, N

if (rnd(istep) < 0.5) then ! random move
ix = ix - 1 ! left

else
ix = ix + 1 ! right

end if
x_N (istep) = x_N (istep) + ix
x2_N(istep) = x2_N(istep) + ix**2

end do
P_N(ix) = P_N(ix) + 1 ! accumulate (only for istep = N)

end do

print*,"# N=",N," nruns=",nruns
print*,"# <x_N> = ",real(x_N(N))/nruns
print*,"# <x^2_N> = ",real(x2_N(N))/nruns
print*,"# <x^2_N>-<x_N>^2 = ",real(x2_N(N))/nruns-(real(x_N(N))/nruns)**2

open(1,file="P_N",STATUS="REPLACE", ACTION="WRITE")

3

(1 run= 1 particle= 1 walker)
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But we can monitor what happens 
for each intermediate step by using 
arrays x_N() and x2_N() and 
including the calculation inside the 
loop on the steps



RW 1D: simulation

Umezawa public lecture presented at Dept. of Physics, 

University of Alberta, Edmonton, Alberta, March 9, 2005.

Slide 10

10

1-D Random Walk
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This slide summarizes some Brownian dynamics simulations for 1-D.  At each time step, the particle (red circle 

in top graph) must move either left or right exactly one spatial increment, depending on the flip of a coin.  The 

results for the net displacement from the origin (x) or x2 is shown in the lower two graphs.  Averaging over as few 

as 10 such simulations yields results in reasonable agreement with the expectations from the previous slide.

By making such observations (in 2-D), Jean Baptist Perrin was able to deduce the diffusion coefficient for single 

colloidal particles.  
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Random Walks 2D

Random Walk Simulation http://www.krellinst.org/UCES/archive/modules/monte/node4.html

1 of 1 24-10-2005 10:45

Next: Project
Up: MONTE-CARLO TECHNIQUES
Previous: Project

Random Walk Simulation

Random walk of 1000 steps going nowhere

Many physical processes such as Brownian motion, electron transport through metals, and round off
errors on computers are modeled as a random walk. In this model, many steps are taken with the
direction of each step independent of the direction of the previous one. For our model, we start at the
origin and take steps of lengths (not coordinates) in the x and y directions of

where there are a total of N steps. The distance from the starting point R is related to these steps by

 

Now while (2) is quite general for any walk you may take, if it is a random walk then you are equally
likely to move forwards as backwards in each step - as well as to the right or left. So on the average, 
for a large number of steps, all the cross terms in (2) will vanish and we are left with

 

where  is the square root of the average squared step size or root mean squared step size. Note, the
same result obtains for a three dimensional walk. According to (3), even though the total distance 

walked is , on the average, the distance from the starting point is only .

  Here are different methods to generate 2-D unit steps.

Project

Next: Project
Up: MONTE-CARLO TECHNIQUES
Previous: Project

In the continuum space, or discretised on a lattice…
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Random Walks 2D

〈R2

N 〉 = (∆x1 + ... + ∆xN )2 + (∆y1 + ... + ∆yN )2 = ... = N〈∆x2

i + ∆y2

i 〉 = N!2

x

y

also in 2D! (and in general in each dimension)

〉〈
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Random Walks 2D

Theory predicts that                        , but this holds only for averages 
on many walkers!

A Computational Physics Course, or Why Computer Scientists ... http://www.software-carpentry.com/extern/cse-landau.html

7 of 8 22-10-2005 0:09

Table 1: Problems

 

Figure 1: Seven different randon walks. Each walk starts at the origin and makes 1000 steps. (Courtesy of

P. Lagner.)

 

Figure 2: The distance R covered in random walks of N steps as a function of the square root of N. The

solid curves correspond to two different techniques for simulating the random walks. (Courtesy of H.

Kowallik.)
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Random Walks 2D
How to generate random unit steps http://www.krellinst.org/UCES/archive/modules/monte/unitstep.html

1 of 1 24-10-2005 10:42

Generating 2-D random unit steps

Choose  a random number in the range  and then set .1.

Choose a random value for  in the range  and  (choose the sign 

randomly too).

2.

Choose separate random values for  in the range  (but not ). 

Normalize  so that the step size is 1.

3.

Choose a direction (N, E, S, W) randomly as the step direction (no trigonometric functions are
then needed). Note, choosing one of four directions is equivalent to choosing a random
integer on [0,3].

4.

Choose separate random values  in the range . Although the step size is 

generally not 1, it becomes 1 on the average.

5.

Although all these methods seem to be reasonable, only the last one gives us good results when we
are dealing with a large number of steps.

BACK to the main document.

TEST DIFFERENT ALGORITHMS!
WHAT IS THE BEST?  THE ONE WHICH GIVES THE BEST BEHAVIOR?

WHAT IS THE MOST EFFICIENT?

49
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Generating 2D random unit steps
Comment on the algorithm n. 5 (p. 39 of the slides)

Indicating with x and y the individual displacements,

p(x) =
1

2
p
2
for |x| <

p
2 and 0 otherwise; the same for p(y);

the average step size is:

p
hx2 + y2i =

Z p
2

�
p
2

Z p
2

�
p
2
(x2 + y2) p(x) p(y) dx dy = ... =

2p
3

Therefore, with x and y generated in this way, the behaviour of the simulated

h�R2
N i should be

4

3
N (since h�R2

N i = N`2).

In which extension you should generate x and y in order to have on average
a unitary step size?

1

50

p(x) =
1

2 3/2
for |x | < 3/2 or 0 otherwise; the same for p(y)

⟨x2 + y2⟩ = ∫
3/2

− 3/2 ∫
3/2

− 3/2
(x2 + y2) p(x)p(y) dx dy = . . . = 1

(the code rw2d-with-averages-3methods.f90 checks this) 



Random Walks 2D

A Computational Physics Course, or Why Computer Scientists ... http://www.software-carpentry.com/extern/cse-landau.html

7 of 8 22-10-2005 0:09

Table 1: Problems

 

Figure 1: Seven different randon walks. Each walk starts at the origin and makes 1000 steps. (Courtesy of

P. Lagner.)

 

Figure 2: The distance R covered in random walks of N steps as a function of the square root of N. The

solid curves correspond to two different techniques for simulating the random walks. (Courtesy of H.

Kowallik.)

TEST DIFFERENT ALGORITHMS!

Theory predicts that                        , but this holds only for averages 
on many walkers! Consider this before deriving your conclusions…
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⟨ΔR2
N⟩ ∝ N

←  extracted 
from a book; 
the conclusion 
was:
“different 
algorithms give 
different 
results…”

True or false?
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Random Walks 2D
<ΔR^2> vs 
Nsteps

Test algorithm 
n. 1 (fort.10)
n. 3 (fort.11)
n. 5 (fort.12)

with
Nsteps = 1000

averaged over
A different 
number of 
Nwalks

Nwalks=5 Nwalks=100

Nwalks=1000 Nwalks=10000



Random Walks 2D
     0      0.0000000     0.0000000
   10      0.2242774     3.7794106
   20     -1.7333623     1.3218992
   30     -1.4481916    -3.1119978
   40     -2.2553353    -3.5246484
   50     -3.8911035    -6.6665235
   60     -3.6508965    -8.0110636
.....

    0      0.0000000     0.0000000
    1      0.6946244     0.7193726
    2      0.9359566     1.6898152
    3      1.8891419     1.9922019
    4      0.9642899     2.3725290
    5      0.1308700     2.9251692
    6      0.2071800     3.9222534
    7      0.9160752     4.6275673
    8      0.2856980     3.8512783
    9      1.0143363     3.1663797
   10      0.2242774     3.7794106
   11     -0.7752404     3.8104627
   12     -1.7280728     3.5069659
   13     -2.0930278     4.4379911
   14     -3.0587580     4.1784425
   15     -2.0729706     4.0104446
   16     -1.8304152     3.0403070
   17     -2.2890768     2.1516960
   18     -1.7717266     1.2959222
   19     -1.1920205     0.4810965
   20     -1.7333623     1.3218992
   21     -1.5798329     0.3337551
.....

if (mod(i,10)==0) then
    WRITE (...) i,x,y
end if

WRITE (...) i,x,y
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Random Walks 2D
self-similarity!

plot every 10 steps plot every step
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Random Walks 2D�
on a triangular lattice
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Other Random Walks
CHAPTER 12. RANDOM WALKS 408

Figure 12.1: Examples of the random path of a raindrop to the ground. The step probabilities are
given in Problem 12.2f.

12.2 Modified Random Walks

So far we have considered random walks on one- and two-dimensional lattices where the walker
has no “memory” of the previous step. What happens if the walkers remember the nature of their
previous steps? What happens if there are multiple random walkers, with the condition that no
double occupancy is allowed? We explore these and other variations of the simple random walk in
this section. All these variations have applications to physical systems.
Problem 12.3. A persistent random walk

a. In a “persistent” random walk, the transition or “jump” probability depends on the previous
transition. Consider a walk on a one-dimensional lattice, and suppose that step N − 1 has been
made. Then step N is made in the same direction with probability α; a step in the opposite
direction occurs with probability 1−α. Write a program to do a Monte Carlo simulation of the
persistent random walk in one dimension. Compute 〈xN 〉, 〈x2

N 〉, 〈∆x2
N 〉, and PN (x). Note that

it is necessary to specify both the initial position and an initial direction of the walker. What
is the α = 1

2 limit of the persistent random walk?

b. Consider the cases α = 0.25 and α = 0.75 and determine 〈∆x2
N 〉 for N = 8, 64, 256, and 512.

Estimate the value of ν from a log-log plot of 〈∆x2
N 〉 versus N for large N . Does ν depend on

α? If ν ≈ 1
2 , determine the self-diffusion coefficient D for α = 0.25 and 0.75. Give a physical

argument why D(α %= 0.5) is greater (smaller) than D(α = 0.5).

c. A persistent random walk can be considered as an example of a multistate walk in which the
state of the walk is defined by the last transition. In the above example, the walker is in
one of two states; at each step the probabilities of remaining in the same state or switching
states are α and 1 − α respectively. One of the earliest applications of a two state random
walk was to the study of diffusion in a chromatographic column. Suppose that a molecule in a
chromatographic column can be either in a mobile phase (constant velocity v) or in a trapped

Examples of the random path of a raindrop to the ground
The probability of a step down is larger than the probability of a step up;
furthermore, this is a restricted RW, i.e. limited by boundaries 
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Self-avoiding Random Walks
a) Schematic illustration of a linear 
polymer in a good solvent  :                                                                            
head-tail mean square distance is (in 3D):

b) Simulation with a SAW on a square lattice:
2D model gives
(independent on details such as monomers 
and solvent structures)

CHAPTER 12. RANDOM WALKS 420

(a) (b)

Figure 12.3: (a) Schematic illustration of a linear polymer in a good solvent. (b) Example of the
corresponding self-avoiding walk on a square lattice.

Let us consider a familiar example of a polymer chain in a good solvent: a noodle in warm
water. A short time after we place a noodle in warm water, the noodle becomes flexible, and it
neither collapse into a little ball or becomes fully stretched. Instead, it adopts a random structure
as shown schematically in Figure 12.3. If we do not add too many noodles, we can say that the
noodles behave as a dilute solution of polymer chains in a good solvent. The dilute nature of the
solution implies that we can ignore entanglement effects of the noodles and consider each noodle
individually. The presence of a good solvent implies that the polymers can move freely and adopt
many different configurations.

A fundamental geometrical property that characterizes a polymer in a good solvent is the
mean square end-to-end distance 〈R2

N 〉, where N is the number of monomers. It is known that for
a dilute solution of polymer chains in a good solvent, the asymptotic dependence of 〈R2

N 〉 is given
by (12.4) with the exponent ν ≈ 0.592 in three dimensions. The result for ν in two dimensions is
known to be exactly ν = 3/4 for the model of polymers that we will discussed. The proportionality
constant in (12.4) depends on the structure of the monomers and on the solvent. In contrast, the
exponent ν is independent of these details.

We now discuss a random walk model that incorporates the global features of linear polymers
in solution. We already have introduced a model of a polymer chain consisting of straight line seg-
ments of the same size joined together at random angles (see Problem 12.6). A further idealization
is to place the polymer chain on a lattice (see Figure 12.3b). If we ignore the interactions of the
monomers, this simple random walk model would yield ν = 1

2 , independent of the dimension and
symmetry of the lattice. Because this result for ν does not agree with experiment, we know that
we are overlooking an important physical feature of polymers.
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a. Run Program RandomWalk with the number of walkers nwalkers ≥ 200 and the number of steps
taken by each walker N ≥ 500. If each walker represents a bee, describe the qualitative nature
of the shape of the swarm of bees. Describe the qualitative nature of the surface of the swarm
as a function of N . Is the surface jagged or smooth?

b. Compute the quantities 〈xN 〉, 〈yN 〉, 〈∆x2
N 〉, and 〈∆y2

N 〉 as a function of N . The average is over
the walkers. Also compute the net mean square displacement 〈∆R2

N 〉 given by

〈∆R2
N 〉 = 〈x2

N 〉 + 〈y2
N 〉 − 〈xN 〉2 − 〈yN 〉2. (12.3)

What is the dependence of each quantity on N?

c. Enumerate all the random walks on a square lattice for N = 4 and obtain exact results for 〈xN 〉,
〈yN 〉 and 〈∆R2

N 〉. Assume that all four directions are equally probable. Verify your program
by comparing the Monte Carlo and exact enumeration results.

d. Estimate 〈∆R2
N 〉 for N = 8, 16, 32, and 64 using a reasonable number of trials for each value of

N . Assume that 〈∆R2
N 〉 has the asymptotic N dependence:

〈∆R2
N 〉 ∼ N2ν , (N >> 1) (12.4)

and estimate the exponent ν from a log-log plot of 〈∆R2
N 〉 versus N . If ν ≈ 1

2 , estimate the
magnitude of the self-diffusion coefficient D given by

〈R2
N 〉 ∼ 2dDN. (12.5)

The form (12.5) is similar to (8.39) with the time t in (8.39) replaced by the number of steps
N .

e. Estimate the quantities 〈xN 〉, 〈yN 〉, 〈R2
N 〉 = 〈x2

N +y2
N 〉, and 〈∆R2

N 〉 for the same values of N as
in part (d), with the probabilities 0.4, 0.2, 0.2, 0.2, corresponding to a step to the right, left, up,
and down, respectively. This choice of probabilities corresponds to a biased random walk with
a drift to the right. What is the interpretation of 〈xN 〉 in this case? What is the dependence of
〈∆R2

N 〉 on N? Does 〈R2
N 〉 depend simply on N?

f. Consider a random walk that starts at a site that is a distance y = h above a horizontal line
(see Figure 12.1). If the probability of a step down is greater than the probability of a step
up, we expect that the walker will eventually reach a site on the horizontal line. This walk is a
simple model of the fall of a rain drop in the presence of a random swirling breeze. Do a Monte
Carlo simulation to determine the mean time τ for the walker to reach any site on the line x = 0
and find the functional dependence of τ on h. Is it possible to define a velocity in the vertical
direction? Because the walker does not always move vertically, it suffers a net displacement ∆x
in the horizontal direction. How does 〈∆x2〉 depend on h and τ? Reasonable values for the step
probabilities are 0.1, 0.6, 0.15, 0.15, corresponding to up, down, right, and left, respectively.

g. Do a Monte Carlo simulation of 〈∆R2
N 〉 on the triangular lattice (see Figure 8.5) and estimate

ν. Can you conclude that ν is independent of the symmetry of the lattice? Does D depend on
the symmetry of the lattice? If so, give a qualitative explanation for this dependence.

ν = 0.592

ν = 3/4
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Other Random Walks

• RW with traps

• persistent RW (a correlated random walk in 
which the walker has probability α of 
continuing in the same direction as the 
previous step) => superdiffusive behaviour

• generalized (non brownian RW): Levy flights

• …
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Levy flights

Pierre Barthelemy et al., Nature 453, 495 (2008)

the step lengths during the walk are described by a ‘heavy-
tailed’ probability distribution



on https://moodle2.units.it

rw1d.f90
rw2d.f90
rw2-with-averages-1method.f90
rw2-with-averages-3methods.f90
rw2zoom.f90

contour,  pl => see following slide

Some programs: 
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‘pl’: macro for gnuplot for plotting trajectories
(suppose column 1 is ‘time’, 2 is x, 3 is y)
and check self-similarity:

set term postscript color
set size square
set out '1.ps'
p [-20:5][-10:15] '1.dat' u 2:3 w l
set out '10.ps'
p [-40:20][-10:50] '10.dat' u 2:3 w l, 'contour' u 1:2 w l

Use:
gnuplot$ load ‘pl’
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’decay.dat’ u 1:(log($2))

log(N(t))

t

radioactive decay:
N(t) ~ N0 exp(- a t)

fit with exp. ok, but even better:

log(N(t)) = log N0 - a t
(semilog plot)

Examples - linear regression

Random walk:
<x2N> ~ Na

log <x2N> = a log N
(log-log plot)

LINEAR FIT is more robust!
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Figure 7.2: Plot of ln〈x2
N 〉 versus ln N for the data listed in Table 7.2. The straight line y =

1.02x + 0.83 through the points is found by minimizing the sum (7.19).

is that the most probable error in m and b, σm and σb respectively, is given by

σm =
1√
n

σy

∆x
(7.27a)

σb =
1√
n

(
x2

)1/2

∆x
σy, (7.27b)

where

σ2
y =

1
n − 2

n∑

i=1

d2
i , (7.27c)

and di is given by (7.18). Because there are n data points, we might have guessed that n rather
than n − 2 would be present in the denominator of (7.27c). The reason for the factor of n − 2 is
related to the fact that to determine σy, we first need to calculate two quantities m and b, leaving
only n − 2 independent degrees of freedom. To see that the n − 2 factor is reasonable, consider
the special case of n = 2. In this case we can find a line that passes exactly through the two data
points, but we cannot deduce anything about the reliability of the set of measurements because
the fit always is exact. If we use (7.27c), we see that both the numerator and denominator would
be zero, and hence σy = 0/0, that is, σy is undetermined. If a factor of n appeared in (7.27c)
instead, we would conclude that σy = 0/2 = 0, an absurd conclusion. Usually n >> 1, and the
difference between n and n − 2 is negligible.

For our example, σy = 0.03, σb = 0.07, and σm = 0.02. The uncertainties δm and δν are
related by 2δν = δm. Because we can associate δm with σm, we conclude that our best estimate
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Other random processes: �
order and disorder

A box is divided into two parts communicating through a 
small hole. One particle randomly can pass through the hole 
per unit time, from the left to the right or viceversa.

Nleft(t): number of particles present at time t in  the left side
Given Nleft(0), what is Nleft(t) ? 

(more on that in a next Lecture)
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Iast part (optional): �
algorithm for the 
Brownian motion�

(Langevin treatment)
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(see code: brown.f90)



The numerical approach: �
the ingredients�

Here: NOT Einstein’s, but Langevin’s (1906) approach 
arriving at a Newtonian equation of motion including a 
random force due to the solvent �
See: De Grooth BG, Am. J. Phy. 67, 1248 (1999) 
�
Ingredients: �
* large Brownian particles - solvent interactions described 
by: elastic collisions between large particle (mass M, 
velocity V) and small (solvent) particles (m, v); �
* momentum and energy conservation at each collision �

MV+mv = MV’+mv’ �
MV2/2+mv2/2 = MV’2/2+mv’2/2�
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The numerical approach: �
the equation of motion�

After reasonable assumptions (many collisions (i) in a time 
interval Δt, where Vi are the same…, m<<M…, …)        => �
arrive at a simple expression for MΔV/Δt=M(V’-V)/Δt  : �

�
Ma = Fs - γV(t)  

 
Fs : stochastic force, i.e. the cumulative effect, in the time 
interval, of many collisions with smaller particles 
-γV(t) : drag force, opposite to V(t)  (γ>0); γ can be 
expressed (using Stokes’ formula for a sphere of radius P) 
as: �
     
(both forces have the same origin, in the collisions with the smaller particles) �

γ = 6πηP
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The numerical approach: �
discretization of the equation of motion�

Ma = Fs - γV(t) �
Rewritten as: MΔV/Δt = ΔVs /Δt - γ V(t)�
=> Vq+1 = Vq  + ΔVs - γ(Δt/M)Vq  

with: �
ΔVs  = 2mv/M = (…) = 1/M v/|v| √(2γkBT/n); �
At each collision v/|v| is -1 or +1  => after N collisions ??? �
Allowing students discover themselves (e.g. with dice-rolling 
experiments) that the result is a gaussian random variable 
wq centered in 0, s.d.=√(N/2)  => (see also next lectures)�
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Vq+1  = Vq - (γ/M)VqΔt +wq(√(2γkBTΔt))/M�
Xq+1  = Xq + Vq+1Δt �

�
- the hearth of our numerical approach�
-  can be easily implemented for iterative execution �

NOTE : we are NOT imposing any specific time 
dependence  behavior: it will come out as an 
“experimental” result of the simulation �

The numerical approach: �
discretized equations for positions and velocities�
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Vq+1  = Vq [1 - (γ/M)Δt] + wq(√(2γkBTΔt))/M�
�
�
�
-  physical parameters of the system: T   and   γ   

(through η and P:    γ=6πηP)      �

The numerical approach: �
Input parameters - I �
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Vq+1  = Vq [1 - (γ/M)Δt] + wq(√(2γkBTΔt))/M�
�
-  time step Δt : cannot be fixed a priori! �
�
Some suggestions from physical and rough numerical considerations �
[(γ/M)Δt < 1 to reproduce the situation of T≈0 (damped motion) �
Δt too small: too long numerical simulations necessary… �
Δt too large: serious numerical uncertainties…] �

Our numerical work: �
choice of Δt is analogous of an instrument calibration !!! �
suggestion: start from small Δt s.t. γΔt/M << 1, increase Δt until important 

changes in the diffusion coefficient are observed.�

The numerical approach: �
Input parameters - II �
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Running the code…�
kBT=4⋅10-21J, M=1.4⋅10-10kg,  

γ≈8⋅10-7Ns/m 
 
 
Snapshot of a numerical simulation  
of the Brownian motion in 2D 
 of many large particles.  
The trajectories of four of them are shown 
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We can prove by numerical experiments: �
(i)  the linear behavior of the mean square displacement 

<R2> with time: �
<R2> = 2dD t�

(i)  the validity of the Einstein relation between the slope of 
this line and the solvent parameters (temperature and 
drag coefficient): �
<R2> = (2d kBT / γ) t 

�

Discovering the results�
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