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Preface

The present lecture notes are based on the following literature.

• F. Delbaen and W. Schachermayer. The mathematics of arbitrage. Springer
Finance. Springer-Verlag, Berlin, 2006.

• H. Föllmer and A. Schied. Stochastic finance. Walter de Gruyter & Co.,
Berlin, extended edition, 2011. An introduction in discrete time.

• S. E. Shreve. Stochastic calculus for finance. I. Springer Finance.
Springer-Verlag, New York, 2004. The binomial asset pricing model.

Throughout we consider models of financial markets in discrete time, i.e., trad-
ing is only allowed at discrete time points 0 = t0 < t1 < · · · < tN = T . Here,
T > 0 denotes a finite time horizon. This is in contrast to models in continuous
time, where continuous trading during the interval [0, T ] is possible.

The following topics of mathematical finance will be covered:

• arbitrage theory;

• completeness of financial markets;

• superhedging;

• pricing of derivatives (European and American options);

• concrete modeling of financial markets via the Binomial asset price model
and (its convergence to) the Black Scholes model.

From a mathematical point of view, probability theory and stochastic analysis
play a key role in mathematical finance.
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Chapter 1

Basic notions from probability
theory

We recall here basic notions from probability theory which we will need for
modeling financial markets.

1.1 Filtered probability spaces, random variables and
stochastic processes

Let us start by recalling the ingredients of a probability space. A probability
space consists of three parts:

• a non-empty set Ω (Ergebnismenge), which is the set of possible outcomes;

• a σ-algebra F , i.e., a set consisting of sets of Ω to model all possible events
(Ereignisse) (where an event is a set containing zero or more outcomes);

• a probability measure P assigning probabilities to each event.

The precise mathematical definition of these notions are as follows:

Definition 1.1.1. A set F ⊂ P(Ω) is called σ-algebra if it satisfies

• Ω ∈ F ;

• A ∈ F ⇒ Ac = Ω \A ∈ F ;

• A1, A2, . . . ∈ F ⇒
⋃∞
n=1 ∈ F .

The above definition implies that a σ-algebra is closed under countable inter-
sections.

Definition 1.1.2. Let (Ω,F) be a measurable space, i.e. F is σ-algebra on Ω.
Then a probability measure is a function P : F → [0, 1] such that
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4 Basic notions from probability theory

• P [Ω] = 1;

• it is σ-additive, i.e. for any sequence of pairwise disjoint sets in F (i.e.,
An ∪Am = ∅ for n 6= m), we have P [

⋃∞
n=1An] =

∑∞
n=1 P [An].

Definition 1.1.3. • Two probability measures P , Q are called equivalent,
which is denoted by P ∼ Q if

P [A] = 0⇔ Q[A] = 0, A ∈ F .

• Q is absolutely continuous with respect to P , which is denoted by Q� P
if

P [A] = 0⇒ Q[A] = 0, A ∈ F .

Remark 1.1.4. • From the above definition, we immediately get

Q ∼ P ⇔ P � Q,Q� P.

and

Q� P ⇔ Q[A] > 0⇒ P [A] > 0.

• In the case when Ω consists of finitely many elements and P [{ω}] >
0 for every ω, then for every probability measure Q we have Q � P .
Equivalence means Q[{ω}] > 0 for every ω.

Let us recall the notion of an atom:

Definition 1.1.5. Given a probability space (Ω,F , P ), then a set A is called
atom if P [A] > 0 and for any measurable subset B ⊂ A with P [B] < P [A] we
have P [B] = 0. In the case of a finite probability space where only the empty set
has probability zero, we have the following equivalent definition a set A is called
atom if P [A] > 0 and for any measurable subset B ⊂ A with P [B] < P [A] we
have B = ∅.

Example 1.1.6. Let Ω = {ω1, ω2, ω3, ω4} and F = P(Ω). Consider a probability
measure P which satisfies P [ωi] > 0. Then the atoms are {ωi}, i ∈ {1, . . . , 4}.
If the σ-Algebra is given by F = {∅,Ω, {ω1, ω2}, {ω3, ω3}}, then the atoms are
{ω1, ω2} and {ω3, ω4}.

Definition 1.1.7. A family of σ-algebras with F0 ⊆ F1 ⊆ · · · FT is called
filtration and (Ω,F , (Ft){t∈[0,...,T ]}, P ) filtered probability space.

Remark 1.1.8. Ft is interpreted as the set of all events which can happen up to
time t or equivalently as the information which is available up to time t.



1.1 Filtered probability spaces, random variables and stochastic
processes 5

Assumption. Unless explicitly mentioned, we shall assume that FT = F . We
do not assume F0 to be necessarily the trivial σ-algebra (∅,Ω), although in many
applications this is the case.

For modeling asset prices we consider stochastic processes which are families of
random variables, whose definition we recall subsequently.

Definition 1.1.9. Let (Ω,F) and (E, E) be two measurable spaces. A random
variable X with values in E is a (F-E)-measurable function X : Ω→ E, i.e. the
preimage of any measurable set B ∈ E is in F : ∀B ∈ E, we have X−1(B) ∈ F .

In our setting (E, E) is typically (Rn,B(Rn)), where B(Rn) denotes the Borel
σ-algebra, defined as the smallest σ-algebra containing the open sets of Rn.

Remark 1.1.10. In the case (E, E) = (R,B(R)), (F-B(R))-measurability (or
simply F-measurability) is equivalent to

∀a ∈ R : {ω ∈ Ω : X(ω) ∈ (−∞, a]} ∈ F .

Definition 1.1.11. Let Ω be some set and (E, E) be a measurable spaces. Con-
sider a function X : Ω → E. Then the σ-algebra generated by X, denoted by
σ(X), is the collection of all inverse images X−1(B) of the sets B in E, i.e.,

σ(X) = {X−1(B) |B ∈ E}.

Definition 1.1.12. Let T be an index set, either {0, 1, . . . , T} or {1, . . . , T},
and (Ω,F) and (E, E) two measurable spaces. A stochastic process with values
in (E, E) is a family of random variables X = (Xt)t∈T = {Xt | t ∈ T } (i.e.
F-measurable).

Definition 1.1.13. Let (Ω,F , (Ft)t∈{0,1...,T}, P ) a filtered probability space.

1. A stochastic process X is called adapted with respect to the filtration (Ft)
if for every t ∈ {0, 1, . . . , T}, Xt is Ft-measurable.

2. A stochastic process Y is called predictable with respect to the filtration
(Ft) if for every t ∈ {1, . . . , T}, Yt is Ft−1-measurable.

Example 1.1.14. Let T = 2, Ω = {1, 2, 3, 4} and E = R. Consider the following
filtration F0 = {∅,Ω}, F1 = {∅,Ω, {1, 2}, {3, 4}} and F2 = P(Ω). Question:
How do adapted stochastic processes look like? Answer: For t = 0, a (F0-
measurable) random variable is constant, for t = 1 a (F1-measurable) random
variable is piece-wise constant (constant on {1, 2} and {3, 4}) and for t = 2 all
functions are (F2-measurable) random variables.
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Lecture 10
Conditional Expectation

The definition and existence of conditional expectation

For events A, B with P[B] > 0, we recall the familiar object

P[A|B] = P[A∩B]
P[B] .

We say that P[A|B] the conditional probability of A, given B. It is
important to note that the condition P[B] > 0 is crucial. When X and Y
are random variables defined on the same probability space, we often
want to give a meaning to the expression P[X ∈ A|Y = y], even though
it is usually the case that P[Y = y] = 0. When the random vector
(X, Y) admits a joint density fX,Y(x, y), and fY(y) > 0, the concept
of conditional density fX|Y=y(x) = fX,Y(x, y)/ fY(y) is introduced and
the quantity P[X ∈ A|Y = y] is given meaning via

∫
A fX|Y=y(x, y) dx.

While this procedure works well in the restrictive case of absolutely
continuous random vectors, we will see how it is encompassed by
a general concept of a conditional expectation. Since probability is
simply an expectation of an indicator, and expectations are linear, it
will be easier to work with expectations and no generality will be lost.

Two main conceptual leaps here are: 1) we condition with respect
to a σ-algebra, and 2) we view the conditional expectation itself as a
random variable. Before we illustrate the concept in discrete time, here
is the definition.

Definition 10.1. Let G be a sub-σ-algebra of F , and let X ∈ L1 be a
random variable. We say that the random variable ξ is (a version of)
the conditional expectation of X with respect to G - and denote it by
E[X|G] - if

1. ξ ∈ L1.

2. ξ is G-measurable,

3. E[ξ1A] = E[X1A], for all A ∈ G.

Last Updated: January 24, 2015



Chapter 2

Models of financial markets on
finite probability spaces

We consider a financial market with 1 ≤ T ∈ N periods and d + 1 financial
instruments. More precisely, the modeling framework consists of

• discrete trading times t = 0, 1, . . . , T ;

• d + 1 financial instruments (often a riskless bank account and d risky
assets), whose modeling requires a probability space (Ω,F , P ), a filtration
(Ft)t∈{0,1,...,T} and the notion of stochastic processes as introduced in the
previous chapter.

2.1 Description of the model

This section is mainly based on [1, Chapter 2].

Adapted stochastic processes are used to model asset price processes. The
idea is that Ft represents the information up to time t and the asset price is
measurable with respect to Ft, i.e., its value can be inferred from the knowledge
of Ft.

Definition 2.1.1. A multi-period model of a financial market in discrete time
t ∈ {0, 1, . . . , T}, T ∈ N, consists of an Rd+1-valued adapted stochastic process
Ŝ = (Ŝ0, Ŝ1, . . . , Ŝd) defined on a filtered probability space (Ω,F , (Ft), P ), where

• Ŝ0 is the so-called numéraire asset used as denomination basis, which is
supposed to be strictly positive, i.e. Ŝ0

t > 0 for all t ∈ {0, 1, . . . , T};

• (Ŝ1, . . . , Ŝd) are Rd-valued adapted stochastic processes for the risky as-
sets.

The interpretation is as follows: The prices of the assets 0, . . . , d are measured in
a fixed money unit, say Euro. The 0th asset plays a special role, it is supposed
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14 Models of financial markets on finite probability spaces

to be strictly positive and will be used as numéraire. It allows to compare
money (Euros) at time 0 to money at time t > 0. In many elementary models,
Ŝ0 is simply the bank account, which is in case of constant interest rates given
by Ŝ0

t = (1 + r)t.

Definition 2.1.2. • A trading strategy for the d risky assets (Ŝ1, . . . , Ŝd) is
an Rd-valued predictable process Ht = (H1

t , . . . ,H
d
t )t∈{1,...,T}. The set of

all such trading strategies is denoted by H. (In other words H corresponds
to all Rd-valued predictable processes.)

• Similarly, a trading strategy for the d+ 1 assets (Ŝ0, . . . , Ŝd) is an Rd+1-
valued predictable process, which we denote as follows

(Ĥt)t∈{1,...,T} = (H0
t , H

1
t , . . . ,H

d
t )t∈{1,...,T} = (H0

t , Ht)t∈{1,...,T}.

Remark 2.1.3. The component H i
t corresponds to the number of shares invested

in asset i from period t− 1 up to t. This means H i
tS

i
t−1 is the invested amount

at time t − 1 and H i
tS

i
t is the resulting wealth at time t. Predictability of Ĥ

means that an investment can only be made without knowledge of future asset
price movements.

Definition 2.1.4. A trading strategy for the d + 1 assets (Ŝ0, . . . , Ŝd) is self-
financing if for every t = 1, . . . , T − 1, we have

Ĥ>t Ŝt = Ĥ>t+1Ŝt

or more explicitly
∑d

i=0H
i
t Ŝ

i
t =

∑d
i=0H

i
t+1Ŝ

i
t.

The self-financing condition means that the portfolio is always adjusted in such
a way that the current wealth remains the same (one does not remove or add
wealth). Accumulated gains or losses are only achieved through changes in the
asset prices.

Definition 2.1.5. The undiscounted wealth process (V̂t){t∈{0,1,...,T}} with respect

to a trading strategy Ĥ is given by

V̂0 = Ĥ>1 Ŝ0 =

d∑
i=0

H i
1Ŝ

i
0,

V̂t = Ĥ>t Ŝt =

d∑
i=0

H i
t Ŝ

i
t , t ∈ {1, . . . , T}. (2.1)

The Ft-measurable random variable V̂t defined in (2.1) is interpreted as the
value of the portfolio at time t defined by the trading strategy Ĥ.

Remark 2.1.6. Note that if Ĥ is self-financing, we have V̂t = Ĥ>t Ŝt = Ĥ>t+1Ŝt.
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In the sequel we shall work with discounted price and wealth processes, that
means we consider everything in terms of units of the numéraire asset S0.

Definition 2.1.7. The discounted asset prices are given by

Sit :=
Ŝit

Ŝ0
t

, i ∈ {1, . . . , d}, t ∈ {0, 1, . . . , T},

and we write S = (S1, . . . , Sd). The discounted wealth process is given by

Vt =
V̂t

Ŝ0
t

, t ∈ {0, 1, . . . , T}.

Remark 2.1.8. Note that the discounted numéraire asset S0
t ≡ 1 for all t ∈

{0, . . . , T}.

The self-financing property can be characterized by the following proposition,
where we use the notation ∆Su = Su − Su−1.

Proposition 2.1.9. Let Ŝ be a model of a financial market as of Defini-
tion 2.1.1 and consider an Rd+1-valued trading strategy Ĥ = (H0, H) for Ŝ.
Then the following are equivalent:

1. Ĥ is self-financing.

2. The (undiscounted) wealth process satisfies

V̂t = V̂0 +
t∑

j=1

Ĥ>j ∆Ŝj , t = 0, . . . , T.

3. We have

H0
t +H>t St = H0

t+1 +H>t+1St, t = 1, . . . , T − 1,

where S denotes the discounted price process as of Definition 2.1.7.

4. The discounted wealth process satisfies

Vt = V0 +

t∑
j=1

H>j ∆Sj , t = 0, . . . , T, (2.2)

where S denotes the discounted price process as of Definition 2.1.7 and

V0 = V̂0
Ŝ0
0

=
Ĥ>1 Ŝ0

Ŝ0
0

= H0
1 +H>1 S0.

Moreover, there is a bijection between self-financing Rd+1-valued trading strate-
gies Ĥ = (H0, H) and pairs (V0, H), where V0 is a F0-measurable random
variable and H an Rd-valued trading strategies for the risky assets. Explicitly,
H0
t = V0 +

∑t
u=1H

>
u ∆Su −H>t St.
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Proof. 1) ⇔ 2): Ĥ is self-financing if and only if

V̂j+1 − V̂j = Ĥ>j+1Ŝj+1 − Ĥ>j Ŝj = Ĥj+1(Ŝj+1 − Ŝj), j = 0, . . . , T − 1

which in turn is equivalent to

V̂t = V̂0 +

t∑
j=1

(V̂j − V̂j−1) = V̂0 +

t∑
j=1

Ĥj(Ŝj − Ŝj−1).

1) ⇔ 3) 3) is obtained from 1) by dividing through S0
t and conversely 1) is

obtained from 3) by multiplying with S0
t .

3) ⇔ 4): 3) holds if and only if

Vj+1−Vj = H0
j+1+H>j+1Sj+1−H0

j−H>j Sj = H>j+1(Sj+1−Sj), j = 0, . . . , T−1,

which in turn is equivalent to

Vt = V0 +
t∑

j=1

(Vj − Vj−1) = V0 +
t−1∑
j=0

H>j (Sj − Sj−1).

For the last statement let (V0, H) be given. Since the self-financing property of
Ĥ is equivalent to (2.2), we can determine H0 from (V0, H) via

V0 +

t∑
j=1

H>j (Sj − Sj−1) = Vt = H0
t +H>t St,

where the last equality is simply the definition of the discounted wealth process.
Thus

H0
t = V0 +

t∑
j=1

H>j (Sj − Sj−1)−H>t St = V0 +
t−1∑
j=1

H>j (Sj − Sj−1)−H>t St−1

which is predictable. Conversely, for a given self-financing Rd+1-valued strategy
(H0, H), V0 is determined via H0

1 +H>1 S0.

Definition 2.1.10. Let S = (S1, . . . , Sd) be a model of a financial market in
discounted terms (as of Definition 2.1.7) and consider an Rd-valued trading
strategy H ∈ H. The discounted gains process with respect to H is defined
through the stochastic integral (in discrete time)

Gt := (H • S)t :=

t∑
j=1

H>j (Sj − Sj−1) =:

t∑
j=1

H>j ∆Sj

and corresponds to the gains or losses accumulated up to time t in discounted
terms.
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Remark 2.1.11. Note that by Proposition 2.1.9 the discounted wealth process V
of a self-financing strategy is given as the sum of the discounted initial wealth
V0 and the discounted gains process. Moreover due to the second part of 2.1.9,
for any Rd-valued trading strategy H ∈ H and initial wealth V0 we can define
Vt := V0 + (H • S)t which then corresponds to the discounted wealth processes
of a self-financing Rd+1-valued trading strategy Ĥ = (H0, H) where H0

t =
V0 +

∑t
u=1H

>
u ∆Su −H>t St.

From now on we shall work in terms of the discounted Rd-valued process denoted
by S and discounted wealth process V .

2.2 No-arbitrage and the fundamental theorem of
asset pricing

This section is mainly based on [1, Chapter 2].

Definition 2.2.1. Let S = (S1, . . . , Sd) be a model of a financial market in
discounted terms.

• An Rd-valued trading strategy H ∈ H is called arbitrage opportunity if

(H • S)T ≥ 0 P -a.s. and P [(H • S)T > 0] > 0.

• We call a model arbitrage-free or satisfies the no-arbitrage condition (NA)
if there exists no arbitrage strategy.

Remark 2.2.2. The notion of arbitrage can equivalently be formulated as follows:
A self-financing Rd+1-valued strategy Ĥ is called arbitrage opportunity if the
associated wealth process V̂ satisfies V̂0 = 0 and V̂T ≥ 0 P -a.s and P [V̂T > 0] >
0.

Assumption 1. From now on we assume that the probability space Ω under-
lying our model is finite.

Ω = {ω1, . . . , ωN}

for some N ∈ N and a probability measure P such that

P [ωn] = pn > 0, for n = {1, . . . , N}

and that F = FT = P(Ω).

Recall the notation L(Ω,F , P ) from (1.1) which denotes in the present case (as
pn > 0 for all n) the space of random variables (which are under the above
assumption on F all functions from Ω→ R).

Definition 2.2.3. A (discounted) European contingent claim (derivative/option)
f is an element of L(Ω,F , P ).
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