Sistemi di numerazione e codici

Capitolo 1

Generalità

- Sistema di numerazione
 - □ Insieme di simboli (cifre) e regole
 - □ stringa di cifre ↔ valore numerico
 - □ codici posizionali (il valore dipende dalla posizione delle cifre)

In base 10 (la piu' comune)

$$A_n A_{n-1} A_{n-2} \dots A_0 \implies N = A_n \cdot 10^n + A_{n-1} \cdot 10^{n-1} + A_{n-2} \cdot 10^{n-2} + \dots + A_0 \cdot 10^0$$

Ad esempio

$$1923 \implies 1 \cdot 10^3 + 9 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$$

 Si possono pero' adottate altre basi con B≠10 (le piu' comuni: B=2, B=8, B=16) si adottano B cifre diverse (Ad.es B=16: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

Sistema di numerazione su base qualsiasi

- La base 2 e' la piu' piu' piccola possibile (ON/OFF) - Binary Digit
- Le basi 8 e 16 permettono rappresentazioni piu' compatte del numero binario
 - □ Il passaggio da base 2 a base 8 o16 e viceversa e` particolarmente facile

$$55_{10} = 110111_2$$

 $110111_2 = 37_{16} = 67_8$

Conversione tra basi diverse

- si divide ripetutamente il numero per la base voluta fino ad ottenere un quoziente nullo e si memorizzano i resti (la seq. dei resti ordinata rappresenta la notazione)
- Per quanto detto il passaggio da basi B a Bⁿ e viceversa risulta particolarmente semplice

Es:
$$157_{10} = 10011101_2 = 235_8 = 9D_{16}$$

Conversione di frazioni

 La parte frazionale viene distinta dalla parte intera mediante una "virgola" : ","

Ad esempio

$$1923,45 \implies 1.10^{3} + 9.10^{2} + 2.10^{1} + 3.10^{0} + 4.10^{-1} + 5.10^{-2}$$
parte intera
parte frazionale

- La virgola distingue le cifre che vanno moltiplicate per B con esponente positivo da quelle con esponente negativo
- La conversione avviene in tal caso per moltiplicazioni successive

$$0.375_{10} = 0.011_{2}$$

Conversione di frazioni

NOTA BENE

 Se con una base una notazione frazionaria richiede un numero finito di cifre, potrebbe richiederne infinite con una diversa notazione

$$(1/3)_{10} = 0.3333333..._{10} = 0.1_3$$

$$0,6375_{10} = 0,101000110_2$$

Conversione da binario a decimale

- □ Parte intera: raddoppio successivo + somma a partire dalla cifra piu' significativa
- □ Parte frazionaria: idem + successiva divisione per 2^f ove f sono i bit rappresentativi della parte frazionale

$$101,010_2 = (5+2/8)_{10} = 5,25_{10}$$

Aritmetica Binaria

Addizione

```
0+0=0
0+1=1
1+0=1
1+1=0 (+ riporto di 1 al rango superiore)
```

Sottrazione

```
0-0=0
1-0=1
1-1=0
0-1=1 (+ riporto negativo di 1 al rango superiore)
```

 La sottrazione puo' pero' avvenire tramite la somma usando una notazione complementata

Complemento decimale

ES:

$$123 - 73 = 123 + comp(73) = 123 + 927 = 1|050 = 50$$

□ In questo caso si usa un complemento a 10³=1000 ovvero comp(73)=1000-73 che e' facile da calcolare basta adottare la

corrispondenza

0 → 9	9 → 0
1 → 8	8 → 1
$2 \rightarrow 7$	7 → 2
3 → 6	6 → 3
4 → 5	5 → 4

e poi sommare 1

$$073 \rightarrow 926 + 1 = 927$$

Complementi a B e B+1

Analogamente in altre Basi (ad esempio base 2)

Si definiscono:

$$C_B = B^n - N$$
 e $C_{B-1} = B^n - 1 - N$

Da cui si desume che:

$$C_B = C_{B-1} + 1$$

Attenzione : il (Complemento a B) – 1 non e' uguale al Complemento a (B-1)

- □ Il complemento a B-1 e' semplice da calcolare
 - basta una tabella di equivalenza (come prima)

$$C_{B-1} = B^n-1-N = B'B'B'B'B'B'B'B' - N$$
 ove $B'=B-1$

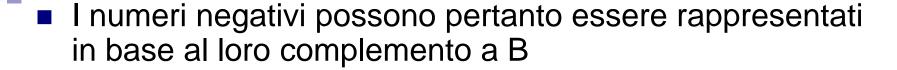
Il complemento a B si ottiene dal precedente sommandovi 1

$$N_1 - N_2 \rightarrow N_1 + C_B(N_2) = N_1 + (B^n - N_2) = B^n + (N_1 - N_2)$$

Numeri negativi

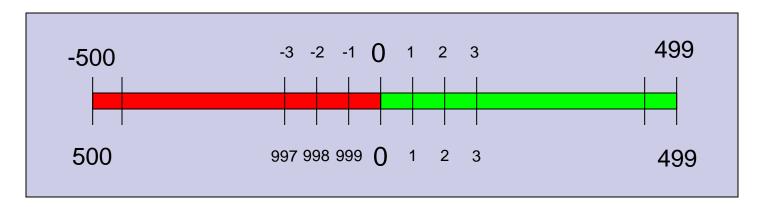
- Dalla differenza di N₁ ed N₂ vi possono essere due casi:
 - □ N₁≥N₂: il risultato risulta maggiore o uguale a Bⁿ, che pertanto va eliminato dal risultato finale (eliminazione dell'1 piu' significativo oltre il range del numero stesso)
 - □ N₁<N₂: il risultato risulta minore di Bⁿ, e deve essere inteso come complemento a B (pertanto rappresentante di un numero negativo) del risultato

Numeri negativi



$$-143 \rightarrow C_{10}(143) = 999 - 143 + 1 = 856 + 1 = 857$$

- Si può notare che il range dei numeri risulta modificato:
 - □ 0 < n < 499 : range dei numeri positivi
 - □ 500< n < 999 : range dei numeri negativi</p>



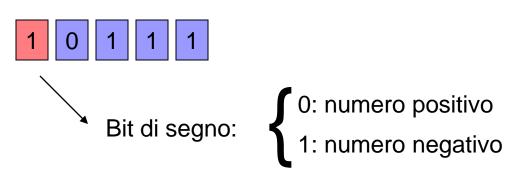
Ovviamente in base 10 questa non è una pratica usualiga

Numeri binari negativi

 Risulta invece estremamente diffusa nel caso di numeri binari ove i numeri negativi vengono rappresentati in base al loro complemento a 2

Es:

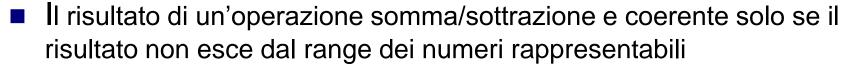
$$-9 = -01001 = C_2(01001) = 10110 + 1 = 10111$$



Numero positivo: i restanti numeri rappresentano il numero stesso Numero negativo: i restanti numeri rappresentano il numero complementato

$$C_2(0111) = 1000 + 1 = 1001 = 9_2$$

Errori nei risultati



- Ovvero
 - o non si e' avuto alcun riporto ne' nel bit di segno ne' fuori dalla parola
 - o si sono avuti riporti in entrambi
 - se si e avuto un solo riporto il risultato e' errato

: cifre "out of range" e pertanto non vengono calcolate

: bit di segno

Moltiplicazione e Divisione

$$0*0=0$$

$$0*1=0$$

$$1*0=0$$

nel caso di piu' cifre si procede come nel caso decimale

Divisione

□ vengono di solito eseguite per sottrazioni successive

Modificare il numero di BIT

- Aumentare o diminuire
- Per notazioni "signed" ed "unsigned"
- Da unsigned verso signed

Codici

- Codice:
 - Insieme di parole [C] adottato per rappresentare gli elementi di un insieme [C*]
- Simboli: elementi costituenti le parole di codice
- Codificazione: associazione parola di [C] ← elemento di [C*]
- Codice non ambiguo: se la corrispondenza e' univoca,
- Codice ambiguo: se almeno una parola di [C] rappresenta 2 o piu' elementi di [C*];
- se vi sono K simboli ed N elementi e le parole sono di lunghezza l: usando n simboli → Kⁿ combinazioni per non avere ambiguita' N<Kⁿ

$$n \ge \log_K N$$

Codice efficiente / ridondante /ambiguo: se l=n, l>n, l<n</p>

Codici Efficienti

- Rappresentazioni cifre decimali
 4 bits = 16 configurazioni → 6 configurazioni sono inutilizzate
- Codice BCD codice ponderato (detto anche codice 8421)
- Codice eccesso tre (binario +3) e' un codice autocomplementante
- Codice Aiken (o 2421) autocomplementante e ponderato

BCD

0	0000	9	1001
τ-	0001	8	1000
2	0010	7	0111
3	0011	6	0110
4	0100	5	0101

Ecc. 3

0	0011	9	1100
1	0100	8	1011
2	0101	7	1010
3	0110	6	1001
4	0111	5	1000

Aiken

0	0000	9	1111
1	0001	8	1110
2	0010	7	1101
3	0011	6	1100
4	0100	5	1011

Codici Ridondanti

- Utili ad evidenziare/correggere eventuali errori (si usano k bit per il controllo)
 - \square m = n + k
- Ridondanza: rapporto tra i bit usati ed i bit strettamente necessari
 - \square R (ridondanza) = m / n = 1 + k / n
- Peso: numero di bits diversi da 0
- Distanza: numero di bits per cui 2 configurazioni differiscono
- Molteplicita' d'errore: Distanza tra la configurazione trasmessa e quella (non significativa) ricevuta – errori singoli, doppi, tripli ...
- **Distanza di Hamming (h)**: la minima distanza tra tutte le possibili coppie di parole di un codice: Sono individuabili gli errori con molteplicita' minore di h. Se h e' grande si puo' operare una correzione dell'errore (codici autocorrettori)

Probabilita' di errore non rilevato

Sia p: la probabilita' di errore di ogni singolo bit la probabilita' che una parola si trasformi in un'altra a distanza esattamente r e'

$$P_r = p^r \cdot (1-p)^{m-r} \binom{m}{r}$$
 r: cifre errate m-r: cifre esatte Combinazioni possibili

la probabilita' che l'errore non sia rilevato dipende da quante configurazioni significative N_r si trovano a distanza "r" dalla parola

$$P_{tr} = P_{sr} \cdot p^{r} \cdot (1-p)^{m-r} \cdot {m \choose r} \qquad \text{ove} \quad P_{sr} = \frac{N_{r}}{{m \choose r}} \longrightarrow \text{conf. significative}$$

La prob. di errore non rilevato e la sommatoria per ogni r

$$P_{t} = \sum_{h=1}^{m} {_{r}N_{r}p^{r}} \cdot (1-p)^{m-r} \cong N_{h}p^{h}$$
tipicamente p <<1

Codice a controllo di parita'

- Ai vari bit che compongono la parola si aggiunge un ulteriore bit (ridondante)
 - □ detto bit e' 0 se il peso della parola e' pari
 - □ e' 1 se il peso e' dispari
 - La parola risultante sara' a peso pari
- La distanza di Hamming e' 2
- E' in grado di rilevare tutti gli errori di molteplicita' dispari

Esempio cod. a controllo di parita'

- Un codice a 7 bit (128 parole)
- ha una ridondanza R=7/6=1,16
- Vi sono 64 parole ed altrettante config. non significative
- Per ogni parola il numero di parole che distano 2 sono:

$$N_h = \begin{pmatrix} 7 \\ 2 \end{pmatrix} = 21$$
 Per avere un'altra parola del codice si devono commutare 2 bit su 7

- Supponendo p=0,01
- La prob. di errore non rilevato e'

$$P_t = N_h p^h = 21.0,01^2 = 0,21\%$$

In pratica coincide con la probabilita' che vi sia un errore di molteplicita' 2 (solo perche' tutte le configurazioni a distanza 2 sono significative)

Codici a peso costante

- Tutte le parole hanno lo stesso peso w
- la distanza di Hamming e' h= 2 se 'm' e' la lunghezza
- le parole significative saranno $\binom{m}{w}$
- mentre le config. non signif. saranno $2^m {m \choose w}$
- Il numero di parole a distanza 2 e'

$$N_2 = w(m - w)$$

Bisogna commutare uno $1 \rightarrow 0$ (in w modi) ed uno $0 \rightarrow 1$ (in m-w modi)

pertanto

$$P_t = N_2 p^2 = w(m - w) p^2$$

Non basta che vi sia un errore doppio, ma questo deve portare anche in un'altra configurazione significativa

Codice 2 da 5



$$n = \binom{5}{2} = 10$$

Ridondanza

R =	5	_	1.	.25
•	4		-	,

0	01100	5	00110
1	11000	6	10001
2	10100	7	01001
3	10010	8	00101
4	01010	9	00011

Prob. di errore non rilevato con p=0,01

$$P_t = 2(5-2)p^2 = 0.06\%$$

Codice biquinario

- Doppio controllo di parita' sui primi 2 e sugli ultimi 5 bits
- Ridondanza

$$R = \frac{7}{4} = 1,75$$

0	10 10000	5	01 10000
1	10 01000	6	01 01000
2	10 00100	7	01 00100
3	10 00010	8	01 00010
4	10 00001	9	01 00001

- N_h=5
- Prob. di errore non rilevato

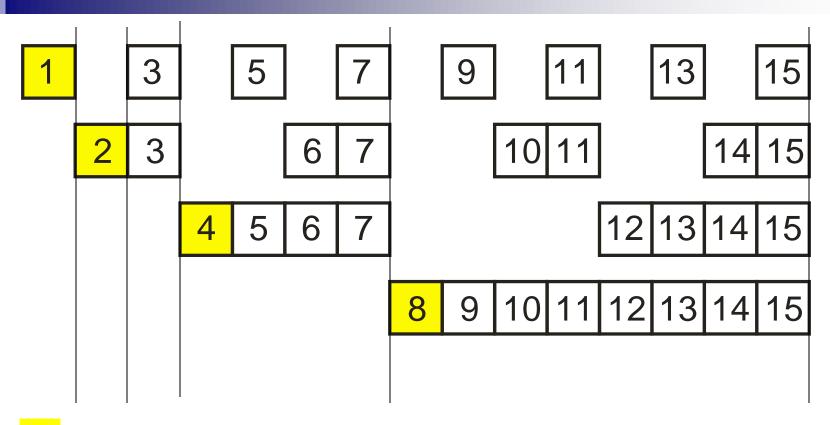
$$P_t = N_h p^h = 5 \cdot (0.01)^2 = 0.05\%$$

Le configurazioni significative a distanza 2 da ogni parola sono SOLO 5

Codici di Hamming

- Sono codici con h=3 o h=4 usati come rilevatori/autocorrettori di errore
- molteplicità di errore rilevabile r < h-1</p>
- molteplicità di errore correggibile c < h/2</p>
- Dato un codice efficiente ad n bits vi si aggiungono k bits di controllo che controllano la parita' di gruppi di bits i bits aggiunti si posizionano alla posizione 2^b
 - □ bit 1 : controllo di parita' per 1,3,5,7,9,11,13,15,17,
 - □ bit 2 : controllo di parita' per 2,3,6,7,10,11,14,15,
 - □ bit 4 : controllo di parita' per 4,5,6,7,12,13,14,15,
 - □ bit 8 : controllo di parita' per 8,9,10,11,12,13,14,15,
- In ricezione si verifica la parità per ogni gruppo e si scrive 0 se verificata, 1 se non verificata. Il risultato (letto in binario) darà la posizione del bit errato

Codice di Hamming (schema)



: Bits di controllo (controllori di parita')

Nota: la commutazione di un bit della parola comporta la communtazione di almeno due bits di parita' pertanto la distanza minima tra le parole e' 3 N.B. NON tutte le parole sono distanti 3 tra loro ma tutte le parole sono sicuramente distanti ALMENO 3 altre distano molto di piu'

Cod. di Hamming (esempio)

Si voglia trasmettere : [0 1 0 1]

Si trasmettera': [b₁ b₂ 0 b₄ 1 0 1]

ove $b_1 = 0$, $b_2 = 1$, $b_4 = 0$

Si trasmettera' pertanto [0 1 0 0 1 0 1]

Supponendo di ricevere [0 1 0 1 1 0 1]

parita' dei bit 1,3,5,7: 0 parita' dei bit 2,3,6,7: 0 parita' dei bit 4,5,6,7: 1

Risultato : errore in posizione 1 0 0 \rightarrow ovvero 4

Cod. di Hamming

Per il corretto funzionamento

$$m \leq 2^k - 1$$

 Si dicono ottimi i codici in qui per la relazione di cui sopra e' verificata con il segno uguale

$$n+k=2^k-1$$
$$n=2^k-(k+1)$$

k=1	n = 0
k=2	n = 1
k=3	n = 4
k=4	n = 11
k=5	n = 26

Cod. di Hamming

Nel caso di un cod. di Hamming a 7 bits

$$P_t \le 15 \cdot p^3$$
 \implies se p= 0,01 \implies $P_t \le 15 \cdot 0.01^3 = 0,0015\%$

Ammetterndo che le parole a distanza 3 siano tutte parole del codice e tutte le altre parole del codice

 Esistono anche cod. di Hamming con h=4 (vi e' un ulteriore bit di parita` globale: si rilevano errori doppi e tripli e si correggono quelli singoli

$$P_t \le 15 \cdot p^4$$
 \implies se p= 0.01 \implies $P_t \le 15 \cdot 0.01^4 = 1.5 \cdot 10^{-7}$

Cod. di Hamming (h=4)

Esempio

- □ si voglia trasmettere [1 1 0 0]
- \square si crea la parola [p b₁ b₂ 1 b₄ 1 0 0]
- ovvero [p 0 1 1 1 1 0 0]
- □ quindi [0 0 1 1 1 1 0 0]
- supponiamo vi sia un errore doppio [0 0 1 0 1 1 1 0]
- che l'errore sia doppio lo si rileva perché il bit di parità è corretto, mentre le parità parziali non lo sono
 - parità complessiva : 0
 - parità bit 1,3,5,7 : 1
 - parità bit 2,3,6,7 : 0
 - parità bit 4,5,6,7 : 1
- □ Vi sono 2 possibilità:
 - o sono sbagliati p e b₅ (prob. 2/N)
 - oppure sono sbagliati 2 bit interni (prob 1-2/N) (più elevata)
 - però vi sono (2^{k-1}-1) possibili coppie di bit (k: bit di controllo)

Codici riflessi

- Sono ciclici ed ogni config. differisce dalla precedente per un bit
 - producono poco "rumore"
 - non sono ponderati
 - ☐ Si dicono completi se hanno tutte le 2ⁿ combinazioni
- Il piu' noto e il codice di Gray

n=1

Codice di Gray

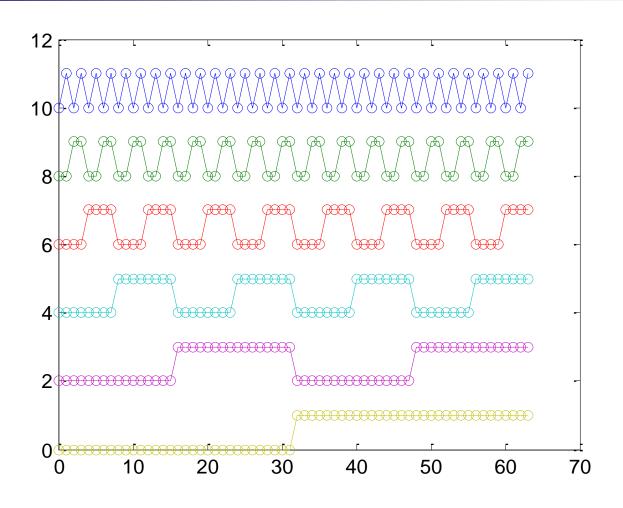
■ La conversione Gray → binario e' particolarmente semplice

Gray: 10111101001

Binario: 11010110001

- Da gray a binario procedendo da sx a dx
 - □ ad ogni 1 si opera un'inversione del bit
 - □ ad ogni 0 si copia inalterato
- Da binario a Gray procedendo da sx a dx
 - quando i 2 bit sono uguali si scrive uno 0
 - quando sono diversi si scrive un 1

Rappresentazione grafica Cod. binario



Rappresentazione grafica Cod. Gray

