
The simulation techniques, Molecular Dynamics and Monte Carlo, as
they are constructed, are only capable of calculating quantities expressible as
averages of mechanical quantities A = A({r}, {p}). Unfortunately, entropy,
and consequently all the quantities that contain it, cannot be expressed in
this way. In fact, from a statistical mechanics point of view, entropy is a
measure of the accessible phase space to the system. To measure it, it is
therefore necessary to visit the entire phase space Γ: the simulation can only
stop if the system returns after a number n of steps within a predefined
volume ω that surrounds the starting point, and only at this point can one
give an estimate of the accessible volume as ≈ nω (in the microcanonical
ensemble; similarly for others). But the number n, the recurrence time, is
astronomically large even for systems of modest size, a few tens or hundreds
of atoms, and increases rapidly with the number of degrees of freedom. This
approach is therefore unfeasible.

It is therefore necessary to adopt more refined strategies. One of these
consists in observing that mechanical quantities are often the derivatives of
appropriate ones free energies or thermodynamic potentials. For example,
pressure can be expressed as P = −∂A/∂Ω|T , where A(N,Ω, T ) is the
Helmholtz free energy A = E − TS. Let us therefore imagine that the
system is described by a Hamiltonian Hλ = K(p) + V (r;λ), where λ is any
parameter that varies from 0 to 1. The partition function Z = ZpZq =
∫

d3Np e−βK
∫

d3Nq e−βV will therefore be a function of λ, more precisely
it will be the configurational part Zq. But A = − 1
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and from the fundamental theorem of integral calculus we derive an
expression for the difference in free energy between the states λ = 1 and
λ = 0:

∆A = A(λ = 1)− A(λ = 0) =
∫

1

0

dλ
∂A

∂λ
=

∫

1

0

dλ

〈

∂V

∂λ

〉

.



Let’s discuss a few things:

1. The average value of ∂V
∂λ

must be calculated at different values of λ.
Each calculation is a different simulation, with its own thermalization.
In practice, we will use values of λ corresponding to the points required
by a suitably chosen numerical integration algorithm, for example the
points of the various Gauss formulas. Note that these points will almost
always be internal points of the segment [0, 1].

2. Even when ∂V
∂λ

is independent of λ, which as we will see is a frequent
case, its average value is a function of λ because the dynamics of the
system depends on it via V .

3. No hypotheses were made on λ, nor on the dependence of V (λ), except
for the differentiability of the quantities involved. In particular, the
“intermediate” systems with 0 < λ < 1 need not necessarily exist or
be realizable in nature.

4. Given this freedom in the choice of V (λ), it can be exploited to make

the integrand
〈

∂V
∂λ

〉

as smooth as possible, thus facilitating numerical
integration, which will require as few points as possible, therefore fewer
simulations possible.

5. However, it will be very difficult to obtain an easily integrable function
if the initial and final states, λ = 1 and λ = 0, correspond to
different thermodynamic phases, given that at the transition any
thermodynamic function is no longer regular.

Let’s see some examples. Suppose we want to calculate the free energy
of an anharmonic crystal with interaction VA. A suitable reference system
consists of a crystal, of the same structure, in which the atoms are considered
as independent harmonic oscillators (Einstein crystal). The corresponding
potential is

VH =
N
∑

I

mIω
2(rI − ξI)

2

where the ξI are the equilibrium positions of the atoms in the crystal target
of the calculation and ω a frequency representative of the frequencies of the
system, typically the optical phonons, if present, or the acoustic phonons at
about half of the Brillouin zone. A parameterization could therefore be



Vλ = λVA + (1− λ)VH ,
∂V

∂λ
= VA − VH .

We therefore see that ∂V
∂λ

is independent of λ even if, as mentioned,
its average in general will not be. This calculation, given the similarity
of the extreme states, promises to be easily feasible. However, care must
be taken as it is not just the harmonic system it is not ergodic, which
is of little importance since no calculations are actually performed on it,
but systems with small λ are weakly anharmonic, and since the Fermi-
Pasta-Ulam calculations we know how little ergodic the latter are. One will
therefore need to pay particular attention to the correct thermalization of the
system and, if necessary, use a massive chain of Nosè-Hoover thermostats.

A more complicated case consists in the calculation of the free energies
of formation of lattice defects. If we consider a vacancy, for example, and
for simplicity we imagine the volume to be kept fixed, the concentration of
vacancies will be given by c = e−βA, where A is the Helmholtz free energy of
formation of an isolated vacancy. In general other contributions should also
be taken into account, but here we have considered the simplest case. If AN

C

is the free energy of a perfect crystal of N atoms and AN−1

V that of a crystal
of N − 1 plus a vacancy, we have for the free energy of formation
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In our simulations, however, the number of atoms will necessarily, being
an integer, remain N in all systems regardless of λ. We therefore proceed
not to eliminate an atom from the cell, but to decouple it from the others in
this way, hypothesizing for simplicity only two-body potentials and labeling
the atom to decouple with I = 1:
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The system with λ = 1 therefore corresponds to the defective crystal plus
a decoupled atom (only kinetic energy), the one with λ = 0 corresponds to
the perfect crystal. Thermodynamic integration would then give
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where ϕ1 is the free energy of an atom not interacting with the others, which
is obviously known. One finally obtains
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This scheme, however, presents a serious problem. In simulations at λ ∼ 1
the interatomic potential goes to 0, therefore the atom being decoupled can
get very close to the others, as the repulsive core is greatly weakened. During
these approaches however ∂V

∂λ
= −

∑

J>1 v1J , which does not depend on λ,
preserves said core in full, therefore 〈

∑

J v1,J〉 → ∞ when λ → 1, making the
integration very complicated. This is an example of a case where the systems
are not similar enough. To make them more similar, we proceed as for the
case of the anharmonic crystal, adding a potential Vh = m1ω

2(r1−ξ)2 on the
decoupling atom, which will therefore oscillate in a similar way to the others.
Its free energy at λ = 1 therefore is no longer ϕ1 but that of a harmonic
oscillator, φh, which is also known, so we are still able to calculate A:
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as long as the decoupling atom thermalizes, i.e. that the system is ergodic.
Even in this case it can be remedied, if necessary, by using a Nosè-Hoover
chain on atom 1.


