
To obtain a useful expression for calculating pressure we start from
Maxwell’s expression
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where A is the Helmholtz free energy E − TS = −kBT lnZ. If the
Hamiltonian of the system is of the usual type H(p, q) = K(p) + V (q), lnZ
decomposes in a sum lnZp + lnZq where the first addend does not depend
on Ω and can be neglected when taking the derivative. Therefore
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Since the integration must be extended over the volume Ω (for each
particle, therefore, symbolically, over ΩN), it is not possible to simply bring
the derivative within the integral sign. To eliminate the dependence on
the extremes of integration, we scale the coordinates: s = qΩ−1/3, so
d3Nq = ΩNd3Ns. In this way the integration extends over the unit hypercube
ω = [0, 1]3N , constant, and we obtain
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The sum must be understood to run over all configurational degrees
of freedom (3N in total). It has been assumed that the pressure is due
exclusively to the interactions between particles; in the case that there is a
contribution to the energy U that depends exclusively on the volume of the
system (which for example happens in metals) one has simply to add a term
equal to −

∂U
∂Ω

.
Returning to the original variables q
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The first term is the ideal gas term, the only one that remains even if
V = 0. The averaged term, up to constants, is called virial, and in terms of
three-dimensional vectors its expression for point particles is
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where the sum now runs over the particle indices. In the case of two-
body forces FIJ , FI =

∑

J FIJ , and exploiting Newton’s third principle
FJI = −FIJ to exchange the indices I and J we finally have
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, rIJ = rI − rJ .

The virial is a mechanical term that can therefore be calculated through
a Molecular Dynamics simulation. In this way one can therefore calculate
for example the equation of state of the system.

One may ask whether this result can be used not only to calculate the
pressure at constant (N,Ω, E) (microcanonical ensemble), but also in other
ensembles, for example the isoenthalpic-isobaric (N,P,H), where H is the
enthalpy H = E + PΩ, i.e. if it is possible to carry out a simulation at
constant pressure, and not volume. One method was proposed by Andersen.

We start from the Lagrangian of the system, by definition therefore in
the microcanonical ensemble:
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Let’s rewrite it by scaling the coordinates s = rΩ−1/3, in analogy with
what was done before, but making it appear the volume as a variable with a
dynamic chosen arbitrarily but appropriately:
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The parameter Q plays here the role of a “mass” of the volume (note,
however, that it does not have the dimensions of a mass) and is arbitrary,
while P , as we will see immediately, is the desired pressure. The system
defined by this new Lagrangian does not have a direct physical meaning, as
the dynamics of the volume does not have a physical sense. However this
extended system is a perfectly acceptable dynamical system, which describes
a conservative dynamics in a fixed volume (for the scaled variables: unit
hypercube ω), therefore in a microcanonical ensemble in the space of the
new 3N+1 degrees of freedom. The equations of motion are, using the usual
prescriptions of Analytical Mechanics,
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In the second equation the second term on the right is the term which,
when averaged, gives the virial. The first instead at equilibrium averages to
NkBT/Ω, so the second member of the second equation of motion is, when
averaged, the pressure exerted by the system minus P . As a result, the
volume oscillates in such a way as to maintain the system pressure around
P . The crucial point, however, is that it can be shown that the trajectories
of the system, once r(t) = Ω1/3s(t) , are trajectories that provide the correct
averages for a constant pressure system (N,P,H).

We can also define a Hamiltonian
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(Π = QΩ̇ is the conjugated momentum to Ω and pI to sI) which is a constant
of motion since it does not explicitly depend on time. This quantity is
therefore useful for checking the accuracy of the integration of the equations
of motion, thus taking the place of the energy E =
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I + V (r) of the

physical system. In fact, the latter is no longer a conserved quantity, since
it does not contain the terms of the pseudodynamics of the volume.



The additional equation for Ω can be integrated with the already known
methods. The value of Q is in principle irrelevant. However, choosing too
high a value for Q leads to a slow dynamics for the volume, which would
therefore remain almost constant, making the scheme useless. Too low a
value instead gives fast dynamics that overlap with that of particles and could
cause disturbances in dynamic quantities, such as correlation functions, or
generate unwanted and unphysical resonances. Optimal values are therefore
those that give a dynamics for Ω just slower than the slowest modes of the
system, for example such that the period of oscillation of Ω is approximately
equal to the time that a sound wave takes to pass through the simulation
cell.


