
The results of a simulation can take different forms depending on the
objectives one seeks. A first and basic evaluation that must be made is to
establish what the thermodynamic phase of the system is. To this end there
exist various tools. In addition to the visual examination of the temporal
evolution using appropriate visualization tools (in our course for example
Jmol), there are more quantitative methods.

The most important of these methods is the calculation of the pair
correlation function g(r) = probability density that at a distance r from an
atom there are another = average number dn(r) of atoms in a spherical shell
of thickness dr around r divided by dr. It is immediate to understand that if
a system is a homogeneous solid at 0 temperature, the respective g(r) will be
a set of δ functions centered at the lattice distances, allowing to reconstruct
the crystalline structure, if unknown. The integral of each δ will give the
number of first neighbors (coordination number), second neighbors etc.. At
the other extreme, a perfect gas, if we neglect the excluded volume effects,
will have a proportional g(r) to r2, since each atom moves independently
of the others. Since this dependence is purely geometric and appears in all
situations, and since it is much more convenient and efficient to deal with
constant functions, the usual definition is

g(r)dr = dn(r)/(4πr2)

which in the case of the perfect gas is a constant. What happens in the
intermediate cases between a cold solid and a perfect gas? If we consider
a crystal at finite T the δs will widen due to thermal agitation, and will
gradually tend to overlap. The space between the peaks where g = 0 will
reduce as T increases until it disappears, with the exception of the r ∼ 0 zone
where it will remain 0 due to excluded volume effects (repulsive core). In a
liquid those spaces will simply be throughs in the function g(r), but if the
fluid is sufficiently dense a structure of peaks and throughs remains, providing
valuable information on coordinations and distances between atoms. As T
increases, in particularly in supercritical conditions, the structure eventually
disappears, leaving an almost steplike function.

The g(r) is therefore valuable for the analysis, and moreover it is easy to
connect to the experimental results, since its Fourier transform is the static
structure factor S(k), i.e. the result of the scattering experiments, both
X-rays and neutrons.

The definition given above requires, to be useful, that the system is



entirely composed of equivalent atoms. If it is not, however, it is not difficult
to extend it for example to binary (and similarly ternary etc.) mixtures
of atoms of species A and B, introducing functions gAA = average number
dnAA(r) of atoms of type A around an aton A in a spherical shell of thickness
dr around r divided by dr, and similarly gAB and gBB. For spatially
inhomogeneous systems, for example surfaces of solids, it is also possible to
define a series of different correlation functions. For example, for the case of
the surface the averages can be limited to the distances relative to the atoms
found on the surface obtaining a function g1(r), then one can define a second
one limiting the averages to the distances relative to the atoms belonging
to the immediately lower layer and obtaining a second function g2(r), then
define a third etc., in order to observe the differences in the chemical-physical
environment as the depth increases.

A second analysis method consists in calculating the diffusion coefficient
D. Imagining for simplicity a homogeneous system, this coefficient is defined
by the diffusion equation

∂ρ

∂t
= D∇2ρ

where ρ is the concentration of particles, a function of time and space. Note
the similarity to the equation of heat (and also with that of Schrödinger...).
The coefficient D, which at equilibrium obeys the Arrhenius law

D = D0e
−βQ

where the pre-exponential coefficient D0 and the (free) activation energy Q
are, in the first approximation, constants, connects to microscopic quantities
via the Einstein relation

D = lim
t→∞

〈

r2
〉

/6t

where 〈r2〉 is the mean square displacement (ensemble mean at fixed time
t), of the particles from the starting point (coordinates at t = 0). Note that
for free particles, with ballistic motion, r ∼ t therefore 〈r2〉 ∝ t2 and a finite
limit does not exist. Diffusive motion therefore occurs only in the presence of
interactions between particles that transform the motion into a random walk,
in which r ∼

√
t. Vice versa, for a solid system, if we neglect the motions

that take the atoms out of their lattice sites, 〈r2〉 is a constant, closely linked
to the Debye-Waller factor. Note also that the limit t → ∞ is essential,



because by terminating the calculation at the appropriate t you can obtain
more or less any desired value... Used correctly, however, it allows, among
other things, to distinguish between a solid, for which 〈r(t)〉 oscillates around
a constant value, from a fluid, for which 〈r(t)〉 is an increasing straight line
unless there are fluctuations.

The diffusion coefficient and the pair correlation function are special cases
of a set of quantities called correlation functions that express the dynamic
connections within a system. Any mechanical quantity can be correlated by
defining functions of this type. Another important example is the velocity
autocorrelation function defined as

C(t) = lim
σ→∞

1

σ

∫ σ

0

dτ 〈vI(t+ τ) cdotvI(τ)〉

where the average is also in this case the ensemble average, at a fixed t, on all
I atoms. Let’s consider two extreme cases: 1) vI(t) is constant with respect
to t for every I (maximum correlation), 2) vI(t) is a random variable (zero
correlation). In case (1), C(t) = 〈v2

I〉 is a non-zero constant (it is proportional
to the total average kinetic energy), in case (2) the integral over τ will give
0 since each value of the positive integral will correspond to a negative value
equal in magnitude. It shows therefore we actually obtain a measure of how
much the system “remembers” its past dynamics: the greater the modulus
of C, the greater the “memory”.

Finally, if we set vI(t) = A cosωt, then

C(t) = lim
σ→∞

[

A2

σ

∫ σ

0

dτ cosωτ 2 cosωt− A2

σ

∫ σ

0

dτ cosωτ sinωτ sinωt

]

=
A2

2
cosωt.

It can therefore be seen how the C also provides information on the
vibrational spectrum of the system. Taking the Fourier transform C(ω)
we therefore obtain the power spectrum of the system dynamics and from
this, exploiting the equilibrium hypothesis, also the vibrational density of
states, which is its product with a Boltzmann factor. For a solid, if the
eigenvectors of the dynamical matrix are known the phonon frequencies can
also be obtained.



Finally, we observe that the value at zero frequency

C(ω = 0) = lim
σ′→∞

∫ σ′

0

dt C(t) = lim
σ′→∞

∫ σ′

0

dt lim
σ→∞

1

σ

∫ σ

0

dτ 〈vI(t+ τ) · vI(τ)〉

= lim
σ,σ′→∞

1

σ

〈

∫ σ

0

dτ vI(τ) ·
∫ σ′

0

dt vI(t+ τ)

〉

= lim
σ,σ′→∞

1

σ
〈(rI(σ)− rI(0)) · (rI(σ′)− rI(0))〉 ∝ lim

σ→∞

〈

r2
〉

/σ ∝ D.

Usually, however, the direct calculation of the mean square displacement
is preferable.


