Exercises Lecture VII

Monte Carlo numerical Integration

Metropolis method to generate random numbers

1. Monte Carlo method: acceptance-rejection

Using the acceptance-rejection method, calculate I = fol V1 — x2dz (no-
tice that @ = 47I). The numerical estimate of the integral is F, = s
where ng is the number of points under the curve f(z) =+/1— 22, and
n the total number of points generated. An example is given in pi.f£90.
Estimate the error associated, i.e. the difference between F;, and the true
value. Discuss the dependence of the error on n.

(Notice that many points are needed to see the n~Y/2 behavior, which can
be hidden by stochastic fluctuations; it is easier to see it by averaging
over many results (obtained from random numbers sequences with differ-
ent seeds))

2. Monte Carlo method:
generic sample mean and importance sampling

(a)

(b)

Write a code to compute the numerical estimate F}, of I = fol e~ dy =

@erf(l) ~ 0.746824 with the MC sample mean method using a set
{z;} of n random points uniformly distributed in [0,1]:

1

Write a code (a different one, or, better, a unique code with an
option) to compute F, using the importance sampling with a set
{z;} of points generated according to the distribution p(z) = Ae™*
(Notice that erf is an intrinsic fortran function; useful to compare the
numerical result with the true value). Remind that in the importance
sampling approach:

[e () o2 05

with p(z) which approximates the behaviour of f(z), and the average
is calculated over the random points {z;} with distribution p(z).
Notes: pay attention to:

- the normalization of p(x);

- the exponential distribution: expdev provides random numbers x
distributed in [0,+oc0[; here we need x in [0,1] ...

/a b p(a)dz = F,

Compare the efficiency of the two sampling methods (uniform and
importance sampling) for the estimate of the integral by calculating
the following quantities: F,, 0, = (< f? > — < f; >)Y2, 0,/\/n,
where f; = f(z;) in the first case, and f; = ﬁ?; f:p(m)dx in the
second case (make a log-log plot of the error as a function of n: what
do you see?).

3. Monte Carlo method — sample mean (generic); error analysis
using the “average of the averages” and the “block average”
NOTE: THIS EXERCISE IS VERY IMPORTANT !!!

(a)

Write a code to estimate the same integral of previous exercise, m =
41 with I = fol V1 — 22dz, using the MC method of sample mean
with uniformly distributed random points. Evaluate the error A,, =
F,, — I for n=102%, 103, 10*: it should have a 1//n behaviour.

Choose in particulat n = 10* and consider the corresponding error
A,,. Calculate 02 =< f? > — < f >2. You should recognize that
o, CANNOT BE CONSIDERED A GOOD ESTIMATE OF THE
ERROR (it’s much larger than the actual error...)

In order to improve the error estimate, apply the following two dif-
ferent methods of variance reduction: 1) “average of the averages”:
do m =10 runs with n points each, and consider the average of the
averages and its standard deviation:

o2 =< M?*>— < M >?

where
<M>:i§:M e <M2>:i§:M2
ma:l : ma:l “

and M, is the average of each run. You should recognize that o, is
a good estimate of the error associated to each measurement (=each
run) and o, & 0,,/+/n is the error associated to the average over the
different runs.

2) Divide now the n = 10,000 points into 10 subsets. Consider the
averages fs within the individual subsets and the standard deviation
if the average over the subsets:

o2 =< fi> - < fi>?.

You should notice that o4/+/s = oy,

4. Random numbers with gaussian distribution:
Metropolis algorithm

Here we use the Metropolis algorithm to generate points with the dis-
tribution P(x) = e=v"/(20%) The algorithm is implemented for instance
in the code gauss_metropolis.f90. We consider ¢ = 1, but the sugges-
tion is to write the code for a generic o.

(a)

Start from zo=0 and choose d=b50 to be the maximum displacement
for each step. Execute runs with n=100, 1000, 10000, 100000 points,
make an histogram of the points generated and compare it with the
gaussian distribution. For which n the agreement is satisfactory?

Choose n which gives a satisfactory result. For o fixed, change the
step size § (i.e., change the ratio §/0). Determine qualitatively the
dependence of the acceptance ratio on §/o. Make a plot. How to
choose /0 in order to accept from ~ 1/3 to ~ 1/2 of trial changes?

By varying n in a more refined way (e.g. from 100 to 10000 with steps
of 100), compare the first moments of the distribution obtained nu-
merically with the exact ones analytically calculated with the Gaus-
sian. In particular, focus on the second moment and make a plot of
the difference “exact variance - numerical variance” as a function of
n.

For fixed ¢ = 1 and §=50, determine qualitatively the equilibration
time (i.e. the number of steps necessary to equilibrate the system);
a possible criterion is that the numerical estimate of (z?) — (z)? is
close enough to o2, say within 5%.

! pi.f90: Calculates pi using MC
Program pi
Implicit none

integer, dimension(:), allocatable :: seed
real, dimension(2) :: rnd

Real :: area, x, y

Integer :: i, max, pigr, sizer

call random_seed(sizer)
allocate(seed(sizer)
print*,’ enter max number of points=’

read*, max
print*,’ enter seed (or type /) >’
read*, seed
call random_seed(put=seed)
! open data file, initializations
Open(7, File=’pigr.dat’, Status=’Replace’)
pigr=0
! points generated within a square of side 2
! count how many fall within the circle x*x+y*y <= 1;
Do i=1, max

call random_number (rnd)

x = rnd(1)*2-1

y = rnd(2)*2-1

If ((x*x + y*y) <= 1) then

pigr = pigr+l

Endif

area = 4.0 * pigr/Real(i)

if (mod(i,10)==0) Write(7,*) i, abs(acos(-1.)-area) !write every 10 points
end do
Close(7)
Stop ’data saved in pigr.dat °’

End program pi

gauss_metropolis.f90

METROPOLIS generation of random numbers with a Gaussian distribution
P(x) = exp(-x**2/(2*sigma**2))/sqrt(2*pi*sigmax*2)

program gauss_metropolis
implicit none
integer, parameter :: dp=selected_real_kind(13)
integer :: i,n,ibin,maxbin,m
real (kind=dp):: sigma,rnd,delta,x0,deltahisto
real (kind=dp):: x,x1,x2,x3,x4,Xp,eXpX,eXpxp,w,acc
real, dimension(:), allocatable :: histog
character(len=13), save :: formatl = "(a7,2x,2f9.5)"

print*,’ insert n, sigma, x0, delta, maxbin >’
read*, n, sigma,x0,delta,maxbin
allocate(histog(-maxbin/2:maxbin/2))

histog = 0.
deltahisto = 10.*sigma/maxbin ! histogram over a range of 10*sigma
acc = 0.0_dp
x = x0
x1 = 0.0_dp
x2 = 0.0_dp
x3 = 0.0_dp
x4 = 0.0_dp
do i=1,n
x1l =x1 +x
X2 = X2 + x*¥%2
x3 = x3 + x*¥*x3

x4 = x4 + x¥xx4
Rddddddddddddddddddddddddddd e
expx = - x**2 /(2%sigmax*2) !
call random_number (rnd) !
xp = x + delta * (rnd-0.5_dp) !
expxp = - xp**2 /(2*sigma**2) | metropolis
w = exp (expxp-expx) ! algorithm
call random_number (rnd) !
if (w > rnd) then !
X = Xp !
lcceeceeccecececeecececceceecececceceeeee
acc=acc+1.0_dp
endif
ibin = nint(x/deltahisto)
if (abs(ibin) < maxbin/2) histog(ibin) = histog(ibin) + 1

enddo

write(unit=%,fmt=*)"# n, x0, delta = ",n,x0,delta
write(unit=*,fmt=+)"# acceptance ratio = ",acc/n
write(unit=*,fmt=+)"# Results (simulation vs. exact results):"
write(unit=x,fmt=formatl)"# <x> = ",x1/n,0.0_dp
write(unit=*,fmt=formatl)"# <x"2>= ",x2/n,sigma**2
write(unit=*,fmt=formatl)"# var2 = ",x2/n-(x1/n)**2,sigma**2

write(unit=*,fmt=formatl)"# <x~3>= ",x3/n,0.0_dp
write(unit=*,fmt=formatl)"# <x"4>= ",x4/n,3.0_dp*sigma**4

open(1l,file=’gauss_metropolis.dat’,status=’replace’)
write(unit=1,fmt=*)"# n, x0, delta = ",n,x0,delta
do ibin = -maxbin/2 , maxbin/2

write(1l,*)ibin*deltahisto, histog(ibin)/real(n)/deltahisto
end do

close(1)
deallocate (histog)

end program gauss_metropolis

