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Materials and Methods 

Molecular cloning 
All constructs were inserted between two ubiquitins with terminal cysteines by 

molecular cloning and expressed in E. coli. The complete amino acid sequence of the 
construct WT-CaM was 
MACKMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLED
GRTLSDYNIQKESTLHLVLRLRGGELADQLTEEQIAEFKEAFSLFDKDGDGTITTK
ELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEE
EIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVN
YEEFVQMMTAKGTMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQR
LIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGKCLE-His6. Underlined parts 
denote sequences that were deleted for the constructs CaM-123, CaM-234 and CaM-23. 
For the crosslinked mutant CaM-128/144, residues 128 and 144 of calmodulin were 
replaced by cysteines. 

The complete sequence of the construct CaM-12 was 
MACKMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLED
GRTLSDYNIQKESTLHLVLRLRGGELADQLTEEQIAEFKEAFSLFDKDGDGTITTK
ELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMKGTMQIF
VKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNI
QKESTLHLVLRLRGGKCLE-His6, the sequence for CaM-34 was 
MACKMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLED
GRTLSDYNIQKESTLHLVLRLRGGELKMKDTDSEEEIREAFRVFDKDGNGYISAA
ELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAKGTMQIFVK
TLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQK
ESTLHLVLRLRGGKCL-His6. 

Protein-DNA construct formation 
For attachment to functionalized DNA handles, we used a protocol similar to a 

protocol described by Cecconi et al. (23). In brief, the cysteines were activated by DTDP 
and mixed with 34 bp ssDNA oligos with TCEP-activated 3’ thiol groups. DNA linkers 
of 370 nm length were generated by PCR using a lambda-phage template. The forward 
primers were a mixture of equal amounts of biotin and digoxigenin modified oligos. A 
reverse primer with an introduced abasic site was designed to leave a ssDNA overhang 
complementary to the protein-bound oligos. 

Measurement procedure 
Protein with attached oligos was mixed with the DNA linkers and incubated with 

silica beads (1µm diameter, Polysciences), in-house functionalized with covalently bound 
anti-digoxigenin Fab fragments (Roche). These constructs were diluted in sample buffer 
(50 mM Tris, 150 mM KCl, 10 mM or 100 µM CaCl2, 26 U/ml glucose oxidase, 17000 
U/ml catalase, 0.65% glucose, pH 8.0) and subsequently mixed with streptavidin coated 
silica beads (1 µm diameter, Bangs Laboratories, Inc.). The concentrations were adjusted 
such that the protein-oligo construct was only sparsely distributed on the beads and 
multiply tethered dumbbells were negligibly rare. Beads were brought into close 



proximity and tested for tether formation through stretch-and-relax cycles. Successfully 
tethered dumbbells were then held at a constant trap separation. In this configuration, the 
force is not constant and changes significantly upon folding or unfolding. The pretension 
force was after Hidden-Markov analysis (see below) assigned as the force of the green 
state (F34). 

Optical tweezers setup 
The setup we used was a dual beam optical tweezers setup with back focal plane 

detection and one steerable beam using an AOD, based on a setup described earlier (14). 
Calibration of beads was performed using a technique introduced by Tolić-Nørrelykke et 
al. (37) and all relevant corrections to the power spectrum (38). The error of trap stiffness 
determination was approximately 10%. Trap stiffnesses between different experiments 
varied between 0.25-0.30 pN/nm. Data were collected at 100 kHz and averaged to 20 
kHz before storage. The signals were corrected for both crosstalk due to depolarization of 
the beams and the proximity of the beams. Final analysis was performed on the 
difference of both bead signals to increase the signal to noise ratio (39). 

Data analysis 

Linker and polypeptide elasticity 
The elasticity of the linker in a low force regime, where the protein is still folded, 

was modeled using an extensible worm like chain model (40). In this model, the force is 
given by  

  (1) 

with persistence length , contour length , elastic modulus  and extension . The 
persistence lengths obtained in this assay were between 20–25 nm, the contour length in 
the expected range of ca. 370 nm and the elastic modulus in the range of 600–1000 pN. 

To account for additional compliances from unfolded protein, the linker elasticity 
was considered in series with a worm-like chain model (41) 

  (2) 

with polypeptide persistence length , contour length and protein extension . In our 
measurements, we used a fixed persistence length of 0.5 nm. 



Contour length differences 
The contour length differences were obtained both from fits to force-extension 

curves as well as from constant-distance information. Both methods gave consistent 
results. We reported the values obtained from constant-distance information in Table 2. 

Theoretical values were calculated based on the dumbbell structure of calmodulin 
(PDB code 1CLL). The difference in contour length between a folded state I and an 
(partially) unfolded state II is given by  where  is the 
difference in number of unfolded amino acids between state I and state II,  is the 
extension of the folded state and  is the extension of the remaining folded part of the 
unfolded state.  

The calculations of contour lengths are based on the crystal structure of the 
wildtype. Since the folding intermediates in our experiments may deviate from this 
structure, errors in those calculated lenths may occur. The precise number of amino acids 
folded in the intermediates is unkown. This may explain the slight deviations in length 
measured for F34 and F12. 

The shown time-dependent force trajectories were analyzed using a Hidden-Markov 
classifier (see below). These traces can be converted to unfolded contour length using 
equations (1) and (2). An example is shown in Fig. S14. 

Hidden Markov analysis 
In order to identify states, a Hidden-Markov analysis (42) was performed on the 20 

kHz raw data of the difference signal. First, the raw data was coarse grained into typically 
400-500 bins. Initial level positions were picked from histograms of the raw data and the 
emission values of the model were initialized with Gaussian representations of the states. 
Iterations involved one pass of the Forward-Backward-Algorithm. Subsequently, the 
emission probabilities were re-estimated from the maximum state probabilities of each 
data point. The emission probabilities were not constrained to Gaussian shapes. Iterations 
were repeated until only negligible numbers of data points (typically less than 0.08%) 
were reclassified in each iteration. The performance of the algorithm was checked by 
comparing the resulting lifetime distributions with single exponentials (Fig. S2). The 
transition probability matrix was adjusted manually to yield optimal lifetime 
distributions. Even though the states F23, F12 and F34 all consist of two folded EF-hands, 
separation was possible due to different lifetime distributions and small differences in 
length (Fig. S1). 

A five-state model for WT CaM always resulted in inconsistencies and non-single 
exponential lifetime distributions. An example for a five-state model applied to WT CaM 
is shown in Fig. S4. 

Further, it is important to note that a robust classification of data points into states is 
difficult without assuming the connectivity of the network of states. This connectivity has 
to describe the data at all pretensions. Even though the length difference between, for 
instance, F23 and F12 is small and at intermediate pretensions their lifetimes are very 
similar, they are readily separable at higher pretensions (see Fig. S14). The connectivity 
information then allows us to enhance the separation of the states even at lower 
pretensions (Fig. S15). 

To confirm the good performance of the Hidden Markov classifier we performed 
Brownian Dynamics simulations of our assay (description below) and compared the 



results of a Hidden Markov analysis of such traces with the known hidden state of the 
protein at each time point. We find that the algorithm classifies >98% of the points 
correctly (see Fig. S16). 

The distributions of lifetimes for the different states at comparable pretensions 
correspond very well to those measured in truncation mutants, exemplified in Fig. S6. 

Brownian Dynamics simulations 
We simulated the thermal movement of both beads in their traps using Brownian 

Dynamics (43). Mimicking the experimental setup, the two beads were connected with a 
linker consisting of DNA, modeled by an extensible worm-like chain model (Eq. (1)), in 
series with a worm-like chain term (Eq. (2)) with a contour length corresponding to the 
state of the protein at each time step. A Monte Carlo generator was used to decide on the 
state of the protein at each time step. The transition probabilities used for the Monte 
Carlo generator were calculated from the rates determined in the experiment (Table 1). 
Upon each transition, the contour length of the worm-like chain term was adapted. 
During the simulation, the response of the two beads was followed using Brownian 
Dynamics. Like in the experiments, data points were taken with 100 kHz and 
subsequently sampled down to 20 kHz. After the simulation of a full trajectory, the signal 
was calculated from the difference signal of the two beads. An example for such a 
simulated trace showing both the (hidden) state of the simulated protein and the 
Brownian response of the beads is shown in Fig. S16. 

Point spread function 
Due to the nonlinearity of the linker the data points belonging to a specific state do 

not follow a Gaussian distribution. In a first order approximation, histograms could be fit 
with the following equation (see Fig. S1): 

 
 (3) 

Force-dependent probabilities and determination of equilibrium energies 
Probabilities for each state were calculated directly as the sum of all lifetimes for a 

respective state divided by the trace length. Since the accuracy of this estimation is 
limited by the finite measurement time, the uncertainties were estimated by Monte-Carlo 
simulations (44). In brief, an ensemble of traces was generated based on the measured 
transition rates. The standard deviation of probabilities obtained from this trace ensemble 
was assigned as probability error. 

The free energy of the complete system  at a force  is given by 

 , (4) 

where  is the free energy of the protein in state ,  is the energy 
stored in the deflection  of the beads from the trap center,  is the energy stored in 



the stretching of the linker and  is the free energy of the unfolded polypeptide.  
and  are readily calculated as integrals over WLC and eWLC functions (equations (1) 
and (2)). 

When the system undergoes a transition from state  to state , the force changes 
from  to . The energy difference between the states is then given by  

 . (5) 

Since the probabilities are related to energies according to 

  , (6) 

we can obtain the energy differences  of the protein between states  and  by 
performing a global fit to the probability data with  

  (7) 

and weights equal to the inverse of the errors calculated as described before. 
The experimental uncertainty of  is dominated by the calibration error of the 

trap stiffness and is ca. 10%. 

Transition rates 
For transition rate calculation, the off-rates of all levels were obtained from single 

exponential fits to the lifetime-distributions of the states obtained by HMM analysis. The 
fits were applied to normalized integrated lifetimes and took into account that events 
shorter than a dead time  or longer than  could not be observed: 

  (8) 

In our experiments, we chose  to be the length of the trajectory while  
depended on the applied pretension and was in the range of 200 µs to 800 µs. 

The off-rate  from a given state  is equal to the sum of transition rates into all 
other states: 

  (9) 



Furthermore, the ratio between two transition rates can be calculated as 

 , (10) 

where  is the number of transitions observed from state  to state . 
Taken together, transition rates  from state  to state  can be calculated 

according to 

 . (11) 

For determining rates at zero force and distances to the transition state, the unfolding 
rates were fitted with a Bell model: 

  
(12) 

Folding rates were fitted with a model accounting for the energy differences in the 
DNA linker and beads deflection between unfolded state  and transition state  (45): 

 
 (13) 

For zero-force folding and unfolding rates, it is important to note that we extrapolate 
over a force range (7 pN) that is much smaller than usual in AFM experiments (several 
hundreds of pN). Nevertheless, we believe the errors can approach an order of magnitude. 
What gives us confidence in the choice of models we use for extrapolation is the fact that 
the equilibrium free energies as calculated by  lie close to the measured 
ΔG values obtained from equilibrium populations of states. 

Calculation of folding times 
The distribution of folding times displayed in Fig. S13 was calculated from the zero-

force extrapolated rates  given in Table 1 using Monte Carlo simulations. Starting from 
the unfolded state, the system was allowed to transition through its kinetic network. For 
each transition, the average dwell time  was calculated from the inverse off rate (Eq. 
(9)): 

 
 (14) 



The dwell time  for a particular transition was drawn from an exponential 
distribution: 

 
 (15) 

The transition probabilities  to the next state were calculated according to 

 
 (16) 

and the subsequent state chosen randomly according to these probabilities. 
Along the trajectory through the kinetic network, the dwell times were added up 

until the system reached the folded state. For the shown histogram, 10000 such 
simulations were performed. 

The off-pathway nature of F23 and F123 
Concerning the off-pathway nature of F123, in addition to the evidence described in 

the main text, more statistical evidence for the off-pathway nature of F123 can be found 
when counting the number of transitions that occur between the native state F1234 and 
either F12 or F123. For F123 being off-pathway, only a negligible number of transitions 
between F123 and F1234 should be observed. However, since at low pretensions F12 is very 
short-lived, we are likely to miss a fraction of the F12 states and hence observe some 
direct transitions between F123 and F1234 while in reality they occur from F123 via F12 to 
F1234 (or vice versa). Given a temporal resolution of 400 µs we, for instance at a 
pretension of 9.6 pN, expect to find 28% of the transitions occurring between F123 and 
F1234 via F12 to be falsely classified as direct transitions between F123 and F1234 (for an 
example see, for instance, the simulated trace shown in Fig. S16). Experimentally, we 
find 30%. In fact, at none of the measured pretensions a number of transitions between 
F123 and F1234 not in statistical agreement with the expected number due to missed events 
was found. 

 
In order to quantify the off-pathway nature of F23, we counted the number of such 

short-lived events (irrespective of the classification by the Hidden Markov model) that 
exhibit a lifetime shorter than 3 times the lifetime of F23, which then proceeded further to 
the native state. We find that only 6 transitions took this route to the native state. 
Comparing this number to the overall 302 events that led into the native state strongly 
confirms the off-pathway nature of F23. Additional evidence for the off-pathway nature of 
F23 comes from averaging the rising slopes of the transitions leading into each of the 
intermediate states (Fig. S18). If F23 were an obligatory on-pathway state, we would 
expect this state to be populated in transitions leading from the unfolded state to F12 
and/or F34. In this case, we would expect a rapid rise of the averaged F12 and F34 traces to 
the position of F23 and then an exponentially smeared out transition into the final levels of 



F12 or F34. The time-scale of the exponential smearing should be the lifetime of F23. Such 
an analysis had been done to detect intermediate states in molecular motors (46). In 
contrast, we find that the transitions proceed rapidly (within the first two data points) into 
the levels F12 and F34 without intermediate dwells on the shorter F23 level. 

The cross-linked mutant CaM 128/144 
The crosslink in the EF hand 4 between residues 128 and 144 results in a shortening 

of the stretchable polypeptide chain by 16 amino acid residues corresponding to 5.8 nm 
of contour length. This shortening will affect all levels where EF hand 4 is unfolded, i.e. 
F12, F123, F23 and U. In the crosslink mutant almost all transitions from the unfolded level 
proceed into F34 because the shortened chain makes this transition less sensitive to force 
and hence it will be faster than the competing transitions into F12 or F23. Therefore 
extension values for F23 could not be measured in the crosslink mutant. 

A sample trace with the shift of the levels comparing WT CaM and CaM-128/144 is 
shown in Fig. S7. A table comparing the measured contour length increases between WT 
CaM and CaM-128/144 is given in Table S1. 



Fig. S1 

	
  
Fig. S1. Histograms of data points classified into each of the six states for WT-CaM at a 
pretension of 9.6 pN. Due to the nonlinear linker, the distributions are skewed and were 
fit with a phenomenological skewed Gaussian (Eq. (3)). Colors correspond to the coding 
given in Fig. 1C. 



Fig. S2 

	
  
	
  
Fig. S2. Integrated lifetime histograms of all states at a pretension of 9.6 pN. The colors 
correspond to the coding of Fig. 1C. The dashed lines are single exponential fits. 
 



Fig. S3 

 
 
Fig. S3. Lifetime histograms of state F23 (orange) and F12 (bright blue) and single 
exponential fits (dashed lines) at different high pretensions. At the shown pretensions F23 
and F12 are clearly distinguishable by their lifetime. A hypothetical lifetime histogram if 
F23 and F12 were actually the same state is shown in grey. It does not follow a single 
exponential distribution (shown in the dashed black lines). 
 



Fig. S4 

	
  
	
  
Fig. S4. Left: Integrated lifetime histograms when a 5-state model is applied to the data. 
While the model performs well finding the states F12 (bright blue), F123 (dark blue) and U 
(red), it pools the state F23 into the class for F34 (green), yielding a clearly double 
exponential distribution of lifetimes. Continuous lines are lifetimes extracted from the 
model, dashed lines are single exponential fits. Note that at the shown pretension of 11 
pN the folded state F1234 is not populated. 
Right: Scatter plot of the data points classified into the class for F34 by a 5-state model 
(grey points). The levels with longer life times (integrated lifetime histogram in green) 
scatter in deflection around the level of state F34 (dashed green line), while the falsely 
classified levels actually belonging to class F23 with shorter lifetimes scatter around a 
lower deflection value. Note that due to statistical effects (square root of N errors), the 
shorter-lived states scatter more in deflection. 



Fig. S5 
 

 
Fig. S5.  
(A) Top: Sample trace for the N-terminal domain of calmodulin (CaM-12). Bottom 
left: Occupation probabilities for the two states of CaM-12 plotted against the force of the 
system in the corresponding state. Note that in this representation the probabilities at a 
given force do not add up exactly to one, because experiments are conducted at non-
constant force (see equation (7) in SOM). The continuous lines are a global fit to all 
datapoints. Bottom right: Rate dependence of the transitions and fit. The colors 
correspond to the originating state in the transition (color code given in Fig. 1C). 
(B) Top: Sample trace for the C-terminal domain of calmodulin (CaM-34). Bottom 
left: Occupation probabilities for the two states of CaM-34 plotted against the force of the 
system in the corresponding state. Note that in this representation the probabilities at a 
given force do not add up exactly to one because experiments are conducted at non-
constant force (see equation (7) in SOM). The continuous lines are a global fit to all 
datapoints. Bottom right: Rate dependence of the transitions and fit. The colors 
correspond to the originating state in the transition (color code given in Fig. 1C). 



Fig. S6 

	
  
	
  
Fig. S6. Integrated lifetime histograms of F23 in WT CaM (thick line) and CaM-23 (thin 
line) at comparable pretensions. Both curves exhibit identical lifetimes. 
 



Fig. S7 
 

 
Fig. S7. Comparison between wildtype calmodulin and the crosslinked mutant CaM-
128/144 at comparable pretensions. 

(A) Histogram of points classified into states F1234 (purple), F123 (dark blue), F12 
(bright blue) and F34 (green) and their sum (black). The center values for F12 and 
F123 are shifted in CaM-128/144 as indicated by arrows. 

(B) Sample traces for wildtype calmodulin (left) and CaM-128/144 (right) at similar 
forces. Due to the crosslink the levels U, F12 and F123 are shifted (arrows). F23 is 
not detectable in CaM-128/144 (see respective paragraph in the SOM). 



Fig. S8 

 
 
Fig. S8. Dependence of rates for each of the folding and unfolding transitions in wildtype 
calmodulin. The colors correspond to the originating state in the transition (color code 
given in Fig. 1C). Error bars are 1σ estimators. The lines represent fits to unfolding and 
folding models as described in Materials and Methods. The bracketed data points in the 
middle right graph indicate that missed events due to limited temporal and spatial 
resolution of the assay biases the data points towards lower rates. 



 

Fig. S9 

 
 
Fig. S9. Kinetic data for the truncation mutant CaM-234. 
(A) Occupation probabilities for each of the states F34 (green), F23 (orange) and U 
(red) and their dependence on force. Note that in this representation the probabilities at a 
given force do not add up exactly to one because experiments are conducted at non-
constant force (see equation (7) in SOM). Continuous lines represent a global fit to all 
datapoints. 
(B-C) Rates of each transition found in this mutant and their dependence on force. 
Colors correspond to the originating state in the transition. Continuous lines are fits 
according to models for folding and unfolding. 



Fig. S10 

	
  
	
  
Fig. S10. Kinetic data for the truncation mutant CaM-123. 
(A) Occupation probabilities for each of the states F123 (dark blue), F12 (bright blue), 
F23 (orange) and U (red) and their dependence on force. Note that in this representation 
the probabilities at a given force do not add up exactly to one because experiments are 
conducted at non-constant force (see equation (7) in SOM). Continuous lines represent a 
global fit to all datapoints. 
(B-D) Rates of each transition found in this mutant and their dependence on force. 
Colors correspond to the originating state in each transition. Continuous lines are fits 
according to models for folding and unfolding. 



Fig. S11 

	
  
	
  
Fig. S11. Kinetic data for the truncation mutant CaM-23. 
(A) Occupation probabilities for the states F23 (orange) and U (red) and their 
dependence on force. Note that in this representation the probabilities at a given force do 
not add up exactly to one because experiments are conducted at non-constant force (see 
equation (7) in SOM). Continuous lines represent a global fit to all datapoints. 
(B) Rates of the transition between F23 and U. Shown are data for unfolding (orange) 
and folding (red) and fits to models for folding and unfolding (lines). 



Fig. S12 

	
  
	
  
Fig. S12. Relax-cycles at 500 nm/s sorted according to the folding pathway. Left: 
Refolding via state F34 occurs fast and at high loads (arrows) Right: When refolding out 
of state F123, the molecule gets rapidly trapped in the off-pathway intermediate state F123 
and further refolding occurs slowly. Even though the protein has to contract much less to 
reach the native state compared to refolding from F34, refolding occurs at much lower 
forces (arrows). 



Fig. S13 

	
  
	
  
Fig. S13. Calculated distribution of folding times for WT-CaM from state U to F1234 
under zero load (black). The left peak incorporates the fast direct folding pathways via 
F12 and F34. Molecules getting trapped in state F123 show up mainly in the middle peak, 
those getting trapped in F23 mainly in the right peak. 
The blue trace only shows the folding time of those simulated trajectories that visited 
state F123 at least once. The orange trace shows those that visited state F23 at least once. 



Fig. S14 

	
  
	
  
Fig. S14. Trajectory of molecular extension of WT-CaM. Shown is the trajectory of Fig. 
1C given in terms of contour length of unfolded polypeptide. Horizontal lines are the 
average state positions given in contour length (see Table 2). 



Fig. S15 
	
  

	
  
Fig. S15. Sample trace of WT-CaM at about 11pN pretension with temporal zooms. The 
states F23 (orange) and F12 (bright blue) are clearly distinguishable at this pretension not 
only due to their different length and connectivity of the network (as described in the 
text), but also due to their different lifetimes. At this pretension the folded (purple) state 
F1234 is not populated. The color-coding follows Fig. 1C. 



Fig. S16 

	
  
	
  
Fig. S16. Sample trace of WT-CaM at a pretension of 9.6 pN where all levels are 
populated. Shown are the raw data colored in the way the Hidden Markov model 
classifier assigned them to states in three different zoom levels. The color-coding 
corresponds to Fig. 1C. 



Fig. S17 

	
  
	
  
Fig. S17. Simulation of the experiment at pretension values similar to the data trace in 
Fig. S16. We performed Brownian dynamics simulations of the experiment with the 
kinetic parameters given in Table 1 (for details see Materials & Methods). The true 
kinetic trajectory of the protein is shown as a bar graph below the traces. Colors 
correspond to the coding of Fig. 1C. 
The traces were then analyzed with our Hidden Markov algorithm and the colors of the 
traces assigned accordingly. Arrows show events that were misidentified or missed by the 
algorithm. 



Fig. S18 

	
  
	
  
Fig. S18. Ensemble averaged transition events from state U to F23 (left, N=35), U to F34 
(middle, N=69) and U to F12 (right, N=36). The transitions were synchronized to the 
beginning of the transition, binned and averaged (46). Error bars represent standard errors 
of the mean. The average lifetime for F23 at the depicted force is 2.5 ms. The thick 
horizontal lines represent the determined level position at this pretension. 



Table S1 

	
  
	
  
Table S1. Measured contour length increases for CaM 128/144. The expected shortening 
of the length difference between F1234 and the levels U, F23, F12 and F1234 compared to 
CaM-WT is 5.8 nm. 
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