
Programming in Java – Part 06 -
Basics of Input and Output

Paolo Vercesi

ESTECO SpA

Input and Output streams

Data streams

Agenda

Reading and writing binary data

Reading and writing Java types

Readers and Writers
Reading and writing text

Console I/O
Reading and writing from the console

Input and Output streams
Reading and writing binary data

© 2021 ESTECO SpA

I/O Streams

I/O in Java is based on streams. Not to be confused with the streams in java.util.stream
The abstraction is the same, but the implementation is different

I/O streams represent a flow of binary data

Input streams are used to read from (binary data) sources
Output streams are used to write to (binary data) targets

© 2021 ESTECO SpA

Introducing InputStream

public class InputStream implements Closeable {
…
 public abstract int read() throws IOException;
…
}

Reads the next byte of data from
the input stream

The value byte is returned as an int
in the range 0 to 255

If no byte is available because the
end of the stream has been reached,
the value -1 is returned

The method blocks until
• input data is available
• the end of the stream is detected
• an exception is thrown

try (InputStream is = …) {
 int read;
 while ((read = is.read()) != -1) {
 System.out.println("Read: " + read);
 }
}

try-with-resources

© 2021 ESTECO SpA

The InputStream hierarchy

FileInputStream ByteArrayInputStream FilterInputStream

<<abstract>>
InputStream

…

BufferedInputStream …

© 2021 ESTECO SpA

Examples of InputStream 1/3

String fileName = "G:\\My Drive\\ … \\Input and Output.pptx";
try (InputStream fis = new FileInputStream(fileName)) {
 int count = 0;
 while (fis.read() != -1) {
 count++;
 }
 System.out.println("Read: " + count);
}

© 2021 ESTECO SpA

Examples of InputStream 2/3

URL url = new URL("https://www.google.it");
try (InputStream urlStream = url.openStream()) {
 int read;
 while ((read = urlStream.read()) != -1) {
 System.out.print((char) read);
 }
}

WARNING we are
converting a stream of

bytes into chars

© 2021 ESTECO SpA

Examples of InputStream 3/3

byte[] byteArray = …
try (InputStream is = new ByteArrayInputStream(byteArray)) {
 int read;
 while ((read = is.read()) != -1) {
 System.out.print(read);
 }
}

© 2021 ESTECO SpA

Other methods in InputStream

public int read(byte b[]) throws IOException

public int read(byte b[], int off, int len) throws IOException

public byte[] readNBytes(int len) throws IOException

public int readNBytes(byte[] b, int off, int len) throws IOException

public byte[] readAllBytes() throws IOException

public long skip(long n) throws IOException

public void skipNBytes(long n) throws IOException

public long transferTo(OutputStream out) throws IOException

public int available() throws IOException

public synchronized void mark(int readlimit)

public synchronized void reset() throws IOException

public boolean markSupported()

public void close() throws IOException

© 2021 ESTECO SpA

BufferedInputStream

When reading from the filesystem or from the
network, the reading of small chunks of data can
be very inefficient

Java offers buffered input to speedup the
reading of small chunks of data

The BufferedInputStream reads data in advance
in a buffer of a specified size

public class BufferedInputStream extends FilterInputStream {

 public BufferedInputStream(InputStream in)
 public BufferedInputStream(InputStream in, int size)
 …
}

BufferedInputStream

<<abstract>>
InputStream

A BufferedInputStream is an
InputStream wrapping
another input stream

FilterInputStream

© 2021 ESTECO SpA

Working with BufferedInputStream

URL url = new URL("https://www.google.it"):
try (InputStream urlStream = new BufferedInputStream(url.openStream())) {
 int read;
 while ((read = urlStream.read()) != -1) {
 System.out.print((char) read);
 }
}

String fileName = "G:\\My Drive\\ … \\Input and Output.pptx";
try (InputStream fis = new BufferedInputStream(new FileInputStream(fileName))) {
 int count = 0;
 while (fis.read() != -1) {
 count++;
 }
 System.out.println("Read: " + count);
}

© 2021 ESTECO SpA

Introducing OutputStream

public class OutputStream implements Closeable {
…
 public abstract void write(int b)
 throws IOException;
…
}

Writes the specified byte to this

output stream

The byte to be written is the 8

low-order bits of the argument b

The 24 high-order bits of b are

ignored

try (OutputStream os = …) {
 int[] data = …;
 for (int datum : data) {
 os.write(datum);
 }
}

try-with-resources

© 2021 ESTECO SpA

The OutputStream hierarchy

FileOutputStream ByteArrayOutputStream FilterOutputStream

<<abstract>>
OutputStream

…

BufferedOutputStream PrintStream …

© 2021 ESTECO SpA

Examples of OutputStream

try (OutputStream fos = new FileOutputStream("A:\\git\\sdm\\pippo.dat")) {
 for (int i = 0; i < 10; i++) {
 fos.write(i);
 }
}

byte[] byteBuffer = new byte[10];
try (OutputStream os = new ByteArrayOutputStream(byteBuffer)) {
 for (int i = 0; i < 10; i++) {
 os.write(i);
 }
}

© 2021 ESTECO SpA

Other methods of OutputStream

public void write(byte b[]) throws IOException

public void write(byte b[], int off, int len) throws IOException

public void flush() throws IOException

public void close() throws IOException

© 2021 ESTECO SpA

BufferedOutputStream

When writing to the filesystem or to the
network, the writing of small chunks of data can
be very inefficient

Java offers buffered output to speedup the
writing of small chunks of data

The BufferedOutputStream writes data to the
wrapped stream only when the buffer is full or
when flush() is invoked

public class BufferedOutputStream extends FilterOutputStream {

 public BufferedOutputStream(OutputStream out)
 public BufferedOutputStream(OutputStream out, int size)
 …
}

BufferedOutputStream

<<abstract>>
OutputStream

A BufferedOutputStream is
an OutputStream wrapping
another output stream

FilterOutputStream

© 2021 ESTECO SpA

Working with BufferedOutputStream

String fileName = "A:\\git\\sdm\\pippo.dat";
try (OutputStream fos = new BufferedOutputStream(new FileOutputStream("…")) {
 for (int i = 0; i < 10; i++) {
 fos.write(i);
 }
}

© 2021 ESTECO SpA

Streams must be closed

Use try-with-resources if you open (create)
and use the stream from the same method

Explicitly invoke close() if you open (create)
and use the stream in different methods

Data streams
Reading and writing Java types

© 2021 ESTECO SpA

Primitive types I/O

DataOutputStream and DataInputStream enable you to
write or read primitive data to or from a stream

They implement the DataOutput and DataInput
interfaces, respectively. These interfaces define
methods that convert primitive values to or from a
sequence of bytes

These streams make it easy to store binary data, such
as integers or floating-point values, in a file

DataOutputStream

<<abstract>>
OutputStream

FilterOutputStream

DataInputStream

<<abstract>>
InputStream

FilterInputStream

© 2021 ESTECO SpA

DataInputStream

public class DataInputStream extends FilterInputStream implements DataInput {

 public DataInputStream(InputStream in)

 public final boolean readBoolean() throws IOException

 public final byte readByte() throws IOException

 public final int readUnsignedByte() throws IOException

 public final short readShort() throws IOException

 public final int readUnsignedShort() throws IOException

 public final char readChar() throws IOException

 public final int readInt() throws IOException

 public final long readLong() throws IOException

 public final float readFloat() throws IOException

 public final double readDouble() throws IOException

 public final String readUTF() throws IOException

 …

}

© 2021 ESTECO SpA

DataOutputStream
public class DataOutputStream extends FilterOutputStream implements DataOutput {

 public DataOutputStream(OutputStream out)

 public void flush() throws IOException

 public final void writeBoolean(boolean v) throws IOException

 public final void writeByte(int v) throws IOException

 public final void writeShort(int v) throws IOException

 public final void writeChar(int v) throws IOException

 public final void writeInt(int v) throws IOException

 public final void writeLong(long v) throws IOException

 public final void writeFloat(float v) throws IOException

 public final void writeDouble(double v) throws IOException

 public final void writeBytes(String s) throws IOException

 public final void writeChars(String s) throws IOException

 public final void writeUTF(String str) throws IOException

 …

}

Readers and Writers
Reading and writing text

© 2021 ESTECO SpA

Text streams

What about reading and writing text?

© 2021 ESTECO SpA

Character sets and encoding

To know everything about character sets and encodings:

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-
developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

Characters Character set
Coded

character set
Encoding

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

© 2021 ESTECO SpA

Character

https://docs.oracle.com/javase/tutorial/i18n/text/terminology.html

A character is a minimal unit of text that has semantic value.

£ A a
ì

8 newline

?

ち

л

☃
嘿

https://docs.oracle.com/javase/tutorial/i18n/text/terminology.html

© 2021 ESTECO SpA

Character set

A character set is a collection of characters that might be used by multiple
languages. For example, the Latin character set is used by English and most
European languages, though the Greek character set is used only by the Greek
language.

£
A

a ì8

newline

?
ち

л☃

嘿

© 2021 ESTECO SpA

Unicode terminology – Coded character set

A coded character set is a character set where each character is assigned a unique number (code point).

Code point Character

0 NUL

1 SOH

… …

65 A

66 B

67 C

… …

126 ~

127 DEL

Code point Character

0 NUL

1 SOH

… …

65 A

66 B

67 C

… …

254 þ

255 ÿ

Code point Character

0 NUL

1 SOH

… …

65 A

66 B

67 C

… …

254 ţ

255 ˙

Windows-1252/ISO-8859-1 Windows-1250US-ASCII

Windows-1252 and ISO-8859-1 are not the same character set, but they differs for some code points assigned to control codes
For HTML5 they can be considered the same https://www.w3.org/TR/encoding/

https://www.w3.org/TR/encoding/

© 2021 ESTECO SpA

Unicode

The Unicode standard defines 144,697 characters and their respective code
points. This character set is called Universal Coded Character Set (UCS,
Unicode).

Positions 0 through 127 of UCS are the same as in US-ASCII.

Positions 0 through 255 of UCS and Unicode are the same as in ISO-8859-1.

Positions 0 through 65535 of UCS (Basic Multilingual Plan) cover all the
commonly used languages

How do we encode this
information in computers?

© 2021 ESTECO SpA

Encodings

1 byte is enough to encode the whole US-ASCII and ISO-8859-1 character sets.

For characters sets with more than 256 characters with need to use multibyte encodings.

Generally, a character sets define its own encoding and so the term charset is used to
refer to both the character set and the encoding. E.g., HTTP and HTML define a charset
parameter and attribute, respectively, to define the combination character set/encoding.

UCS is currently the most important character sets and it has multiple encodings, so this
character set is represented by the name of the encoding, UTF-8, UTF-16, or UTF-32.

© 2021 ESTECO SpA

Java characters

The Java primitive type char uses 16 bit to represent characters.

So, the char type is not able to represents all Unicode characters. Indeed,
Java internally represents text in 16-bits code units using UTF-16.

The char type does not represent characters but code units, this is
relevant only when we are using a language outside the Basic
Multilanguage Plane. E.g., the cuneiform language, Phoenician, etc.

© 2021 ESTECO SpA

Encodings supported by Java

Charset Description

US-ASCII Seven-bit ASCII, a.k.a. ISO646-US, a.k.a. the Basic Latin block of the
Unicode character set

ISO-8859-1 ISO Latin Alphabet No. 1, a.k.a. ISO-LATIN-1

UTF-8 Eight-bit UCS Transformation Format

UTF-16BE Sixteen-bit UCS Transformation Format, big-endian byte order

UTF-16LE Sixteen-bit UCS Transformation Format, little-endian byte order

UTF-16 Sixteen-bit UCS Transformation Format, byte order identified by an
optional byte-order mark

Every implementation of the Java platform is required to support the following
standard charsets. Usually, every implementation supports many more charsets.

If in doubt, create documents in UTF-8.

What about reading documents in unknown encodings?

© 2021 ESTECO SpA

There is no such thing

as Plain Text

© 2021 ESTECO SpA

Text streams

To write (read) text to (from) an output(input)
stream we need to encode (decode) the text into
(from) a binary stream

Fortunately, Java is doing this for us, given we
provide a very tiny piece of information, the
encoding/charset of the stream

Unfortunately, Java defines default methods that let
us skip this step by using by default the default
charset

Unfortunately, the default charset might vary
depending on the internationalization settings or
depending on the operating system

E.g., the default charset on Linux can be UTF-8 while
on Windows can be Windows-1252 (in Italy)

Don’t use such methods
unless you really know

what you are doing

© 2021 ESTECO SpA

Introducing Reader

public abstract class Reader implements Closeable {
 …
 public int read() throws IOException;
 …
}

Reads a single character as an integer in the
range 0 to 65535 or -1 if the end of the
stream has been reached

This method will block until
• a character is available
• an I/O error occurs
• or the end of the stream is reached.

try (Reader reader = …)) {
 int ch = -1;
 while ((ch = reader.read()) != -1) {
 System.out.print((char) ch);
 }
}

© 2021 ESTECO SpA

The Reader hierarchy

CharArrayReader InputStreamReader

<<abstract>>
Reader

StringReader

FileReader

…BufferedReader

© 2021 ESTECO SpA

try (Reader reader = new FileReader(fileName, StandardCharsets.UTF_8)) {
 int ch = -1;
 while ((ch = reader.read()) != -1) {
 System.out.print((char) ch);
 }
}

Examples of Reader 1/2

String fileName = "A:\\git\\sdm\\src\\it\\units\\sdm\\iostreams\\Examples.java";
try (Reader reader = new InputStreamReader(new FileInputStream(fileName), UTF_8)) {
 int ch = -1;
 while ((ch = reader.read()) != -1) {
 System.out.print((char) ch);
 }
}

© 2021 ESTECO SpA

Examples of Reader 2/2

URL url = new URL("https://www.google.it"):
try (InputStream urlStream = url.openStream()) {
 int read;
 while ((read = urlStream.read()) != -1) {
 System.out.print((char) read);
 }
}

URL url = new URL("https://www.google.it");
try (Reader reader = new InputStreamReader(url.openStream(), StandardCharsets.UTF_8)) {
 int ch;
 while ((ch = reader.read()) != -1) {
 System.out.print((char) ch);
 }
}

We guess the encoding to be UTF-8

© 2021 ESTECO SpA

BufferedReader

When reading from the filesystem or from the
network, the reading of small chunks of data can
be very inefficient

Java offers buffered input to speedup the
reading of small chunks of data

The BufferedReader reads data in advance in a
buffer of a specified size

public class BufferedReader extends Reader {

 public BufferedReader(Reader in)
 public BufferedReader(Reader in, int size)
 …
}

<<abstract>>
Reader

A BufferedReader is a Reader
wrapping another reader

BufferedReader

© 2021 ESTECO SpA

Working with BufferedReader

try (Reader reader = new BufferedReader(new FileReader(fileName, UTF_8))) {
 int ch = -1;
 while ((ch = reader.read()) != -1) {
 System.out.print((char) ch);
 }
}

try (BufferedReader reader = new BufferedReader(new FileReader(fileName, UTF_8))) {
 reader.lines().forEach(System.out::println);
}

try (BufferedReader reader = new BufferedReader(new FileReader(fileName, UTF_8))) {
 String line;
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
}

© 2021 ESTECO SpA

Introducing Writer

public abstract class Writer implements Closeable {
 …
 public void write(int c) throws IOException
 public void write(String str) throws IOException
 …
}

Writes a single character. The
character to be written is contained in
the 16 low-order bits of the given
integer value; the 16 high-order bits
are ignored

String data = "some data";

try (Writer writer = …) {
 writer.write(data);
}

try (Writer writer = …) {
 for (int i = 0; i < data.length(); i++) {
 writer.write(data.charAt(i));
 }
}

© 2021 ESTECO SpA

The Writer hierarchy

CharArrayWriter OutputStreamWriter

<<abstract>>
Writer

StringWriter

FileWriter

…BufferedWriter

© 2021 ESTECO SpA

Examples of Writer

String data = "some data";
try (Writer writer = new FileWriter("A:\\git\\sdm\\pippo.txt", StandardCharsets.UTF_8)) {
 writer.write(data);
}

try (Writer writer = new OutputStreamWriter(new FileOutputStream(fileName1), UTF_8)) {
 writer.write(data);
}

© 2021 ESTECO SpA

BufferedWriter

When writing to the filesystem or to the
network, the writing of small chunks of data can
be very inefficient

Java offers buffered output to speedup the
writing of small chunks of data

The BufferedWriter writes data to the wrapped
writer only when the buffer is full or when flush()
is invoked

public class BufferedWriter extends Writer {

 public BufferedWriter(Writer writer)
 public BufferedWriter(Writer writer, int size)
 …
}

<<abstract>>
Writer

A BufferedWriter is a Writer
wrapping another writer

BufferedWriter

© 2021 ESTECO SpA

Readers and Writers must be closed

Use try-with-resources if you open
(create) and use the stream from the
same method

Explicitly invoke close() if you open
(create) and use the stream from
different methods

Console I/O
Reading and writing from the console

© 2021 ESTECO SpA

Console I/O

System.in is an object of type InputStream

System.out and System.err are objects of type PrintStream.

These are byte streams, even though they are typically used to read
and write characters from and to the console

© 2021 ESTECO SpA

Digression - PrintStream & PrintWriter

PrintStream

<<abstract>>
OutputStream

FilterOutputStream

<<abstract>>
Writer

PrintWriter

PrintStream & PrintWriter are a stream and a
writer providing functionalities to conveniently
print Java data types in text format into streams

PrintStream and PrintWriter are directly used to
write text

I.e., printing a byte to a PrintStream or a
PrintWriter results in writing its textual
representation rather than its binary
representation

© 2021 ESTECO SpA

PrintXXX API

void println()

void print/println(boolean x)

void print/println(char x)

void print/println(char[] x)

void print/println(double x)

void print/println(float x)

void print/println(int x)

void print/println(long x)

void print/println(Object x)

void print/println(String x)

PrintWriter format(String format, Object... args)

PrintWriter format(Locale l, String format, Object... args)

None of these methods throws any IOException, use checkError() to test the error status.

© 2021 ESTECO SpA

Reading from the console

public class Echo {

 public static void main(String[] args) throws IOException {
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(System.in, System.console().charset()));

 String line;
 while (!(line = reader.readLine()).isEmpty()) {
 System.out.println("READ: " + line);
 }
 }
}

DO NOT CLOSE System.in

© 2021 ESTECO SpA

The java.lang.io.Console class

Charset charset()

void flush()

Console format(String format, Object... args)

Console printf(String format, Object... args)

Reader reader()

String readLine()

String readLine(String format, Object... args)

char[] readPassword()

char[] readPassword(String format, Object... args)

PrintWriter writer()

The methods format() and printf() are exactly the same
Remember to flush when you use writer()

© 2021 ESTECO SpA

Reading from the Console

public class Echo {

 public static void main(String[] args) throws IOException {
 String line;
 while (!(line = System.console().readLine()).isEmpty()) {
 System.console().printf("READ: %s\n", line);
 }
 }
}

Assignments

© 2021 ESTECO SpA

Write a program that given a file writes the hexdump of the file in another file.

E.g., the command
java it.units.sdm.HexDump Streams.pdf

Shall produce a file Streams.pdf.hexdump with the following content (don’t print characters
outside the US-ASCII charset.

Assignment 1

2550 4446 2d31 2e37 0d0a 25b5 b5b5 b50d %PDF-1.7..%.....
0a31 2030 206f 626a 0d0a 3c3c 2f54 7970 .1 0 obj..<</Typ
652f 4361 7461 6c6f 672f 5061 6765 7320 e/Catalog/Pages
3220 3020 522f 4c61 6e67 2865 6e29 202f 2 0 R/Lang(en) /
5374 7275 6374 5472 6565 526f 6f74 2033 StructTreeRoot 3
...

Write a program that do the reverse, i.e., creates a files from the hexdump,
and verify that the recreated file is still usable!

© 2021 ESTECO SpA

Write a program to change the charset of a text file

java it.units.sdm.Recode pippo.txt UTF-8 Windows-1252

pippo.txt should contain some non US-ASCII character, e.g., ‘è’.

The output file could be named pippo.txt.Windows-1252

Extra step, throw an exception if the program encounter an unmappable byte sequence, e.g.,
when reading a file containing the ‘嘿’ character by using the Windows-1252 charset. Hint:
explore the java.io.Files class

Assignment 2

© 2021 ESTECO SpA

Assignment 3

Write a class (or a set of classes) that given a text file string it produces a Term Frequency table.
Consider the option to provide a list of stop words, normalization, etc.
Provide an option to print the table in alphabetical order and by frequency.

“ T e r m f r e q u e n c y
(TF) means how often
a term occurs in a
d o c u m e n t . I n t h e
context of natura l
l a n g u a g e , t e r m s
correspond to words
o r p h r a s e s … ”

Term Frequency

english 8

language 7

words 12

input 7

cactus 1

fireworks 3

…

Solution of assignments

© 2021 ESTECO SpA

Write a program that given a file writes the hexdump of the file in another file.

E.g., the command
java it.units.sdm.HexDump Streams.pdf

Shall produce a file Streams.pdf.hexdump with the following content (don’t print characters
outside the US-ASCII charset.

Assignment 1

2550 4446 2d31 2e37 0d0a 25b5 b5b5 b50d %PDF-1.7..%.....
0a31 2030 206f 626a 0d0a 3c3c 2f54 7970 .1 0 obj..<</Typ
652f 4361 7461 6c6f 672f 5061 6765 7320 e/Catalog/Pages
3220 3020 522f 4c61 6e67 2865 6e29 202f 2 0 R/Lang(en) /
5374 7275 6374 5472 6565 526f 6f74 2033 StructTreeRoot 3
...

Write a program that do the reverse, i.e., creates a files from the hexdump,
and verify that the recreated file is still usable!

© 2021 ESTECO SpA

HexDump.java

public class HexDump {

 public static void main(String[] args) throws IOException {
 HexDump hexDump = new HexDump();
 try (FileInputStream inputStream = new FileInputStream(args[0])) {
 hexDump.dump(inputStream, new PrintWriter(System.out, true));
 }
 }

 public void dump(InputStream inputStream, Writer writer) throws IOException {
 StringBuilder binary = new StringBuilder();
 StringBuilder text = new StringBuilder();
 String lineSeparator = "";
 int groups = 0;
 int read;
 while ((read = inputStream.read()) != -1) {
 binary.append(HexFormat.of().toHexDigits((byte) read));
 text.append(read < 32 || read > 126 ? '.' : (char) read);
 if (++groups % 2 == 0) {
 binary.append(' ');
 }
 if (groups % 16 == 0) {
 writer.append(lineSeparator).append(binary).append(" ").append(text);
 binary.delete(0, binary.length());
 text.delete(0, text.length());
 lineSeparator = "\n";
 }

 }
 if (!binary.isEmpty()) {
 writer.append(binary).append(" ".repeat(41 - binary.length())).append(text);
 }
 }
}

© 2021 ESTECO SpA

HexDumpTest.java – 1/2

@Test
void testOneGroup() throws IOException {
 HexDump hexDump = new HexDump();
 InputStream inputStream = new ByteArrayInputStream(new byte[] {0x25, 0x50});
 StringWriter writer = new StringWriter();

 hexDump.dump(inputStream, writer);

 assertEquals("2550 %P", writer.toString());
}

@Test
void testTwoGroups() throws IOException {
 HexDump hexDump = new HexDump();
 InputStream inputStream = new ByteArrayInputStream(new byte[] {0x25, 0x50, 0x44, 0x46});
 StringWriter writer = new StringWriter();

 hexDump.dump(inputStream, writer);

 assertEquals("2550 4446 %PDF", writer.toString());
}

© 2021 ESTECO SpA

HexDumpTest.java – 2/2

@Test
void testNonPrintables() throws IOException {
 HexDump hexDump = new HexDump();
 InputStream inputStream = new ByteArrayInputStream(new byte[] {0x25, 0x50, 0x44, 0x46, 0x2d, 0x31, 0x2e, 0x37, 0x0d,
0x0a, 0x25, (byte) 0xb5, (byte) 0xb5, (byte) 0xb5, (byte) 0xb5, 0x0d});
 StringWriter writer = new StringWriter();

 hexDump.dump(inputStream, writer);

 assertEquals("2550 4446 2d31 2e37 0d0a 25b5 b5b5 b50d %PDF-1.7..%.....", writer.toString());
}

@Test
void testMultipleLines() throws IOException {
 HexDump hexDump = new HexDump();
 InputStream inputStream = new ByteArrayInputStream(new byte[] {
 0x25, 0x50, 0x44, 0x46, 0x2d, 0x31, 0x2e, 0x37, 0x0d, 0x0a, 0x25, (byte) 0xb5, (byte) 0xb5, (byte) 0xb5,
(byte) 0xb5, 0x0d,
 0x0a, 0x31, 0x20, 0x30, 0x20, 0x6f, 0x62, 0x6a, 0x0d, 0x0a, 0x3c, 0x3c, 0x2f, 0x54, 0x79, 0x70
 });
 StringWriter writer = new StringWriter();

 hexDump.dump(inputStream, writer);

 assertEquals("""
 2550 4446 2d31 2e37 0d0a 25b5 b5b5 b50d %PDF-1.7..%.....
 0a31 2030 206f 626a 0d0a 3c3c 2f54 7970 .1 0 obj..<</Typ""", writer.toString());
}

esteco.com

Thank you!

https://www.facebook.com/ESTECO-166776810033909/
https://twitter.com/esteco_mF
https://it.linkedin.com/company/esteco-s-p-a
https://www.youtube.com/user/estecosrlsoftware/featured
https://vimeo.com/channels/1050665
https://www.esteco.com/corporate/esteco-copyright-policy

	Introduction
	Slide 1: Programming in Java – Part 06 - Basics of Input and Output
	Slide 2

	Input and Output streams
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

	Data streams
	Slide 21
	Slide 22
	Slide 23
	Slide 24

	Readers and Writers
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

	Console I/O
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Thank you!

