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Least-Squares Estimation - Linear Regression

Linear regression

• This is the typical context suited to the use of the least-squares (LS) estimator
• We have q + 1 variables y(t), u1(t), . . . , uq(t) over the time-window t = 1, 2, . . . , N
• We want to compute (if possible) q parameters ϑ1, ϑ2, . . . , ϑq such that

y(t) = ϑ1 u1(t) + · · ·ϑq uq(t) , t = 1, . . . , N (⋆)

• Relationship (⋆) is defined as the linear regression of the variable y(t) on the
variables u1(t), . . . , uq(t)
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Least-Squares Estimation - Linear Regression (cont.)

• The problem can be equivalently stated in vector form letting

ϑ =


ϑ1
...
ϑq

 φ(t) =


u1(t)
...

uq(t)


and hence getting

y(t) = φ(t)⊤ ϑ

• Clearly, in case of real data, an error ε(t) is always present:

ε(t) = y(t)− φ(t)⊤ ϑ
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Least-Squares Estimation - Linear Regression (cont.)

• The goal of the linear regression problem is to minimize the error ε(t) by
determining an optimal vector ϑ◦ such that such a minimum is achieved

• We introduce the quadratic cost function:

J(ϑ) =

N∑
t=1

[ε(t)]2 =
N∑
t=1

[
y(t)− φ(t)⊤ϑ

]2
• Therefore, the Least-Squares Estimator is given by

ϑ◦ = arg min
ϑ

J(ϑ)

DIA@UniTS – 267MI –Fall 2023 TP GF – L9–p4



Least-Squares Estimation - Linear Regression (cont.)

• Denoting by ϑi the i-th component of the vector ϑ , one has:

∂J

∂ϑi
=

∂

∂ϑi

{
N∑
t=1

[
y(t)− φ(t)⊤ϑ

]2}

= −2
N∑
t=1

[
y(t)− φ(t)⊤ϑ

]
ui(t) , i = 1, 2, . . . , q

and noticing that
∂J

∂ϑ
=

[
∂J

∂ϑ1

∂J

∂ϑ2
· · · ∂J

∂ϑq

]
it follows that

∂J

∂ϑ
= −2

N∑
t=1

[
y(t)− φ(t)⊤ϑ

]
φ(t)⊤
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Least-Squares Estimation - Linear Regression (cont.)

• Imposing ∂J

∂ϑ
= [0 0 · · · 0] one gets:

−2
N∑
t=1

[
y(t)− φ(t)⊤ϑ

]
φ(t)⊤ = [0 0 · · · 0] =⇒

N∑
t=1

y(t)φ(t)⊤ =

N∑
t=1

φ(t)⊤ϑφ(t)⊤

and converting the equality between row-vectors into an equality between
column-vectors:

N∑
t=1

φ(t) y(t) =

[
N∑
t=1

φ(t)φ(t)⊤

]
ϑ

Least-Squares
Normal Equations

(q equations, q unknowns)

• If
N∑
t=1

φ(t)φ(t)⊤ is non-singular, it finally follows that:

ϑ̂N =

[
N∑
t=1

φ(t)φ(t)⊤

]−1 N∑
t=1

φ(t) y(t) Least-Squares Formula
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Least-Squares Estimation - Geometric Interpretation

Let:

εNϑ =


εϑ(1)
...

εϑ(N)

 yN =


y(1)
...

y(N)

 ΦN =


φ(1)⊤

...
φ(N)⊤


Then, we write:

J(ϑ) =

N∑
t=1

[
y(t)− φ(t)⊤ϑ

]2
=

∥∥yN − ΦN ϑ
∥∥2

Clearly
∥∥yN − ΦN ϑ

∥∥ is minimum when
yN − ΦN ϑ is orthogonal to ΦN ϑ
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Least-Squares Estimation (cont.)

• Let’s verify that ϑ̂N is a minimum by evaluating the definiteness of the symmetric
matrix [

d2J

dϑ2

]
i,j

=
∂2J

∂ϑi∂ϑj
, i, j = 1, . . . , q

We have (
∂J

∂ϑ

)⊤

= 2
{[

N∑
t=1

φ(t)φ(t)⊤

]
ϑ−

N∑
t=1

φ(t) y(t)

}
and hence:

d2J

dϑ2
= 2

[
N∑
t=1

φ(t)φ(t)⊤

]
Clearly, this matrix is symmetric and positive semi-definite and thus ϑ̂N is a local
minimum of J(ϑ) .
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Least-Squares Estimation (cont.)

• Therefore, considering the quadratic form

J(ϑ)− J(ϑ̂) =
1
2 (ϑ− ϑ̂)⊤

d2J

dϑ2

∣∣∣∣
ϑ̂

(ϑ− ϑ̂)

two possible scenarios may occur:

det

[
N∑
t=1

φ(t)φ(t)⊤

]
̸= 0 det

[
N∑
t=1

φ(t)φ(t)⊤

]
= 0
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Least-Squares Estimation (cont.)

• Then:

• If det

[
N∑
t=1

φ(t)φ(t)⊤
]
̸= 0 =⇒ ϑ̂N is the unique

global minimum

• If det

[
N∑
t=1

φ(t)φ(t)⊤
]
= 0 =⇒ ϑ̂N is one among the

infinite global minima

• The condition

det

[
N∑
t=1

φ(t)φ(t)⊤

]
̸= 0

is called Identifiability Condition
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Probabilistic Properties of the Least-Squares Estimator

• Suppose that the identifiability condition is verified:

det

[
N∑
t=1

φ(t)φ(t)⊤

]
̸= 0

and then

ϑ̂N =

[
N∑
t=1

φ(t)φ(t)⊤

]−1 N∑
t=1

φ(t) y(t)

• Assumption: y(t) = φ(t)⊤ ϑ◦ + ξ(t) where the process is uncorrelated with u(·) and
E[ξ(t)] = 0
Therefore:
We are assuming that the true relationship between y(t) and u1(t), . . . , uq(t) is
linear + uncorrelated zero-mean noise
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Probabilistic Properties of the Least-Squares Estimator (cont.)

Bias:
ϑ̂N =

[
N∑
t=1

φ(t)φ(t)⊤

]−1 N∑
t=1

φ(t) y(t)

=

[
N∑
t=1

φ(t)φ(t)⊤

]−1 N∑
t=1

φ(t)
[
φ(t)⊤ ϑ◦ + ξ(t)

]
= ϑ◦ +

[
N∑
t=1

φ(t)φ(t)⊤

]−1 N∑
t=1

φ(t) ξ(t)

Hence:

ϑ̂N − ϑ◦ =

[
N∑
t=1

φ(t)φ(t)⊤

]−1 N∑
t=1

φ(t) ξ(t)

=⇒ E
(
ϑ̂N − ϑ◦

)
=

[
N∑
t=1

φ(t)φ(t)⊤

]−1 N∑
t=1

φ(t)E[ξ(t)] = 0

=⇒ E
(
ϑ̂N

)
= ϑ◦ The LS estimator is unbiased
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Probabilistic Properties of the Least-Squares Estimator (cont.)

Important Remark:

• In the bias analysis of the LS estimator we have considered the regression vector
φ(t) as known and set (not random any more).

• On the other hand, carrying out the bias analysis considering φ(s, t) as a random
vector (hence a function of the result s of a random experiment), would lead to a
biased LS estimator for any finite value of N .
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Probabilistic Properties of the Least-Squares Estimator (cont.)

Variance:
Further Assumption: ξ(t) ∼ WN(0, λ2)

Let us introduce the symmetric matrix S(N) =

N∑
t=1

φ(t)φ(t)⊤

Hence:
var

(
ϑ̂N

)
= E

[(
ϑ̂N − ϑ◦

)(
ϑ̂N − ϑ◦

)⊤
]

= E


[
S(N)−1

N∑
t=1

φ(t) ξ(t)

][
S(N)−1

N∑
s=1

φ(s) ξ(s)

]⊤
= E

{[
S(N)−1

N∑
t=1

φ(t) ξ(t)

][
N∑
s=1

ξ(s)φ(s)⊤ S(N)−1
]}

= S(N)−1E

[
N∑
t=1

φ(t) ξ(t)

N∑
s=1

ξ(s)φ(s)⊤

]
S(N)−1
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Probabilistic Properties of the Least-Squares Estimator (cont.)

In the product
N∑
t=1

φ(t) ξ(t)

N∑
s=1

ξ(s)φ(s)⊤ we have two kinds of terms:

• φ(t) ξ(t)2 φ(t)⊤ if t = s

• φ(t) ξ(t) ξ(s)φ(s)⊤ if t ̸= s

But:

ξ(t) ∼ WN(0, λ2) =⇒ E [ξ(t)ξ(s)] =

{
λ2 if t = s

0 if t ̸= s

Hence:

E

[
N∑
t=1

φ(t) ξ(t)

N∑
s=1

ξ(s)φ(s)⊤

]
=

N∑
t=1

λ2 φ(t)φ(t)⊤ = λ2 S(N)

and thus
var

(
ϑ̂N

)
= S(N)−1 λ2 S(N)S(N)−1 = λ2 S(N)−1
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Probabilistic Properties of the Least-Squares Estimator (cont.)

Interpretation:
Assume that ϑ◦ is scalar and hence also φ(t) is scalar as well. Then:

y(t) = φ(t)ϑ◦ + ξ(t) = u(t)ϑ◦ + ξ(t)

and hence:

ϑ̂N =

[
N∑
t=1

φ(t)φ(t)⊤

]−1 N∑
t=1

φ(t) y(t) =

1
N

N∑
t=1

u(t) y(t)

1
N

N∑
t=1

u(t)2

But:

• 1
N

N∑
t=1

u(t) y(t) is the sample estimate of the cross-correlation E [u(t)y(t)]

• 1
N

N∑
t=1

u(t)2 is the sample estimate of E
[
u(t)2

]
(variance if E (u) = 0 ).

DIA@UniTS – 267MI –Fall 2023 TP GF – L9–p16



Probabilistic Properties of the Least-Squares Estimator (cont.)

Moreover:
var

(
ϑ̂N

)
= λ2 S(N)−1 =

1
N

λ2

1
N

N∑
t=1

u(t)2

Therefore:

• var
(
ϑ̂N

)
grows with λ2 . Hence, estimate’s uncertainty grows with data uncertainty

• For given N and λ2 , var
(
ϑ̂N

)
decreases when the sample variance of u

increases and this is consistent with intuition: the noise influence on the signal
containing the useful information decreases
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Probabilistic Properties of the Least-Squares Estimator (cont.)

• λ2

1
N

N∑
t=1

u(t)2
is kind of a noise/signal ratio

• If the variance of u is bounded then

lim
N→∞

var
(
ϑ̂N

)
= 0

and, owing to the fact that the estimator is unbiased one has:

lim
N→∞

E

(∥∥∥ϑ̂N − ϑ◦
∥∥∥2) = 0

that is, the LS estimator converges in quadratic mean
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Probabilistic Properties of the Least-Squares Estimator (cont.)

Moreover, we can write

ϑ̂N =
1

N∑
t=1

u(t)2

N∑
t=1

u(t) [u(t)ϑ◦ + ξ(t)] = ϑ◦ +

1
N

N∑
t=1

u(t) ξ(t)

1
N

N∑
t=1

u(t)2
−→ ϑ◦ +

E [u(t) ξ(t)]

E [u(t)2]

• If u is deterministic, one has:

ϑ◦ +
E [u(t) ξ(t)]

E [u(t)2]
= ϑ◦ + u(t)

E [ξ(t)]

E [u(t)2]
= ϑ◦

• If u is stochastic but uncorrelated with ξ , one has:

ϑ◦ +
E [u(t) ξ(t)]

E [u(t)2]
= ϑ◦ +

E [u(t)]E [ξ(t)]

E [u(t)2]
= ϑ◦
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Least-Squares Estimator: Application Examples and Properties

Matlab live script
Given a realization of a white noise stationary stochastic process, the
autocorrelation function and the spectrum can be estimated from the
data. A Matlab live script illustrate how to perform the estimation.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture9,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L9_LSregress ionEX_levelSensors . mlx ' ) ;

• Explore the live script and run it.
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