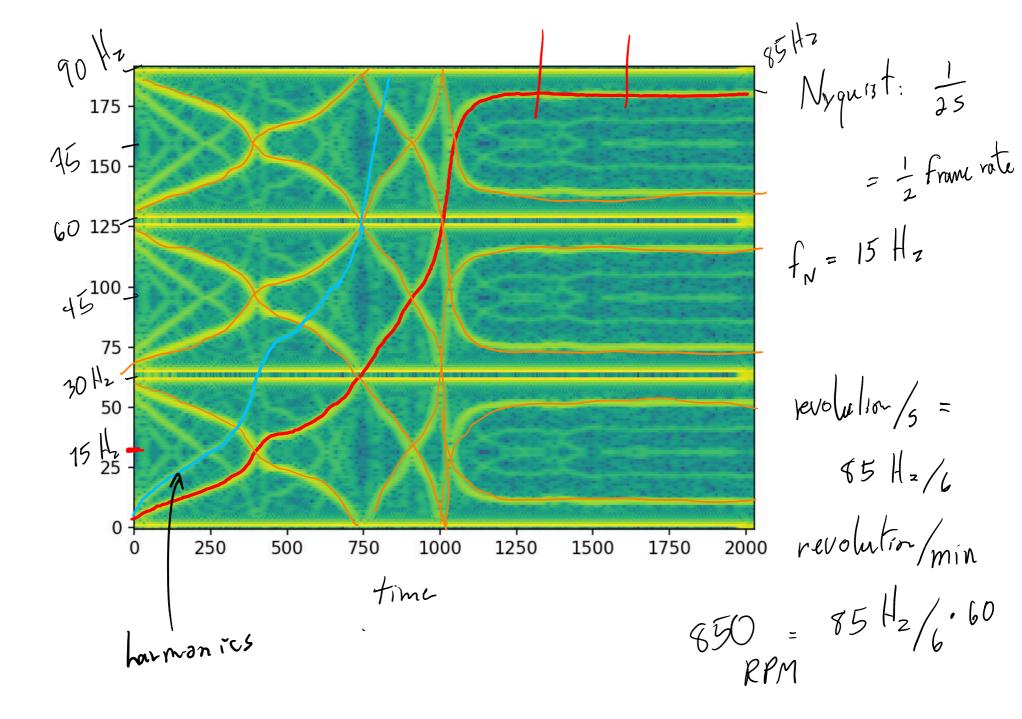
Image Processing for Physicists



Overview

- Definition of resolution
- Imaging systems:
 - Linear transfer model
 - Noise

Resolution

"the smallest detail that can be distinguished"

- No unique definition
- No unique definition

 Numerical aperture

 microscopy/photography, telescopes, ...

 Pixel size

 detector limited imagin

 - Other criteria (PSF, MTF)
- What is "detail"?
- What is "distinguish"?

Imaging systems

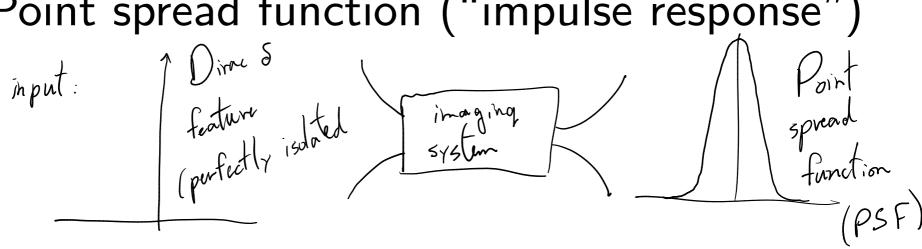
Resolution

1280 x 1280 640 x 640

- not simply given by pixel size (i.e. sampling rate)
- light quality, optics quality, detector quality, algorithm quality, noise, ...

Linear translation-invariant systems

Point spread function ("impulse response")



↑ LTI system: convolution with PSF

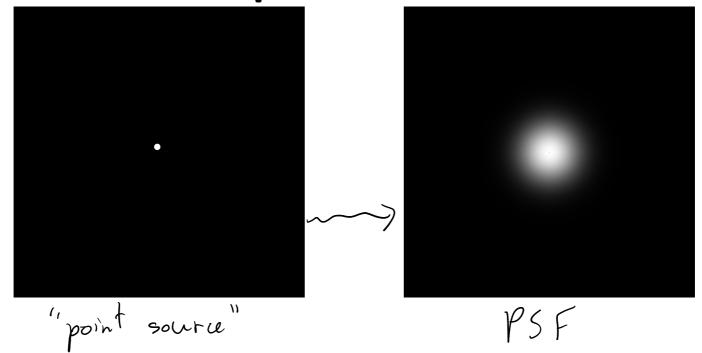
$$f(x,y) = \int dx'dy' f(x',y') \delta(x-x') \delta(y-y')$$

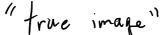
$$\int Imaging system$$

$$psf$$
output $S\{f\} = \int dx'dy' f(x',y') h(x-x',y-y') = f + h$

Imaging systems

Point spread function



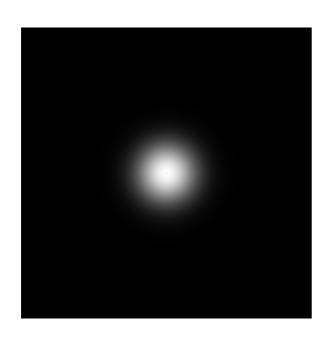


"measured image"

Imaging systems

PSF and resolution

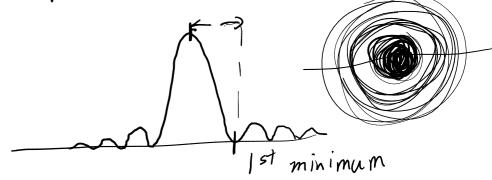
Common way to describe the PSF width is the "Full-width at half-maximum" FWHM





Rayleigh criterion: applies to imaging systems with a circular aperture:

PSF: Airy disc



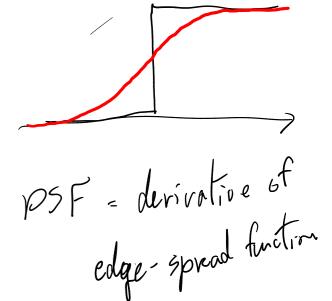
Measurement of the PSF

• Direct measurement from impulse

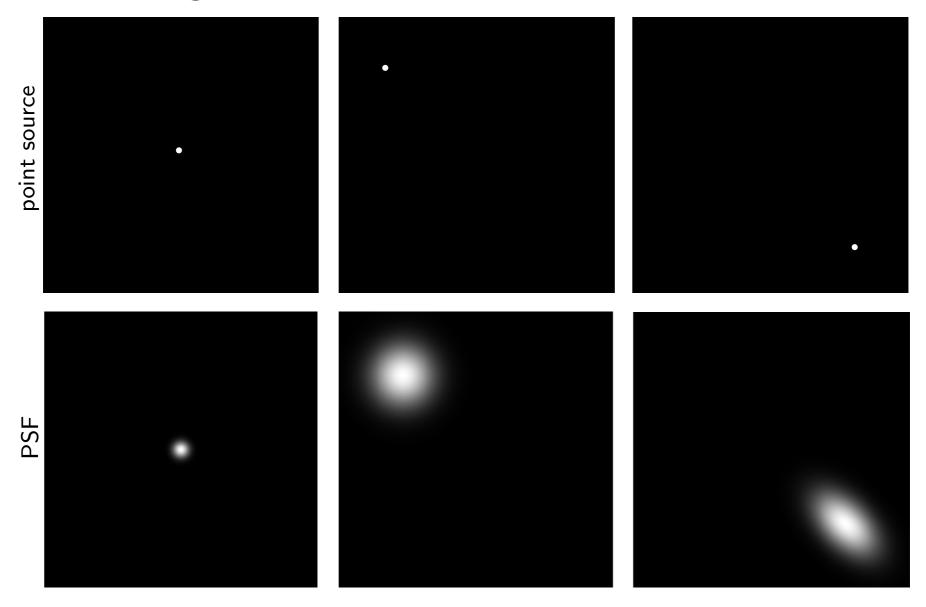
• Line-spread function

sharp edge Imagingh
"knife edge"
$$\sim$$
 system

H(x) = $\begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases}$ $\frac{\partial H}{\partial x} = \delta(x)$



PSF and translation invariance



- Not translation invariant o PSF depends on position o not a convolution
- Useful to model system imperfections, lens aberrations, ...

The Fourier picture

 $\int_{\mathbb{R}} \{f * h\} = F(u), H(u)$ II "Optical transfer function" Consider a single spatial frequency U. Ae 2 Tillo X

Sydin

H(No) Ae

2 Tillo X modulated amplitude (reduced original amplitude of by some amount most likely, this spalial frequency and possibly with a phase a observation: pare oscillations of the form e^{2πiνο}χ are eigenfunctions of a LTI imaging system

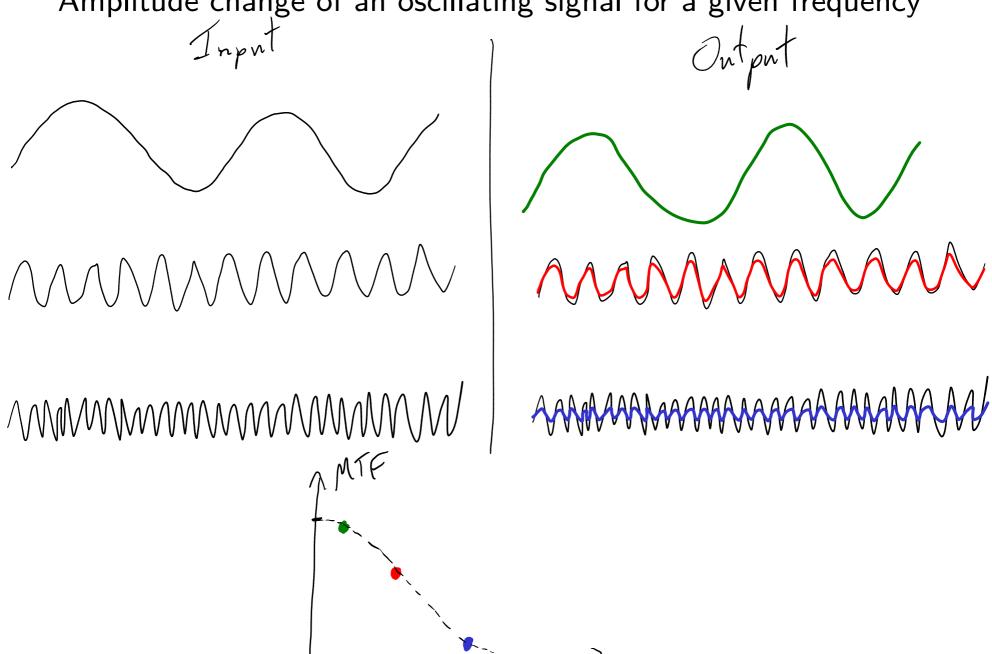
Optical transfer function

Response of a system to an oscillating signal with well-defined frequency

"phase transfer function"

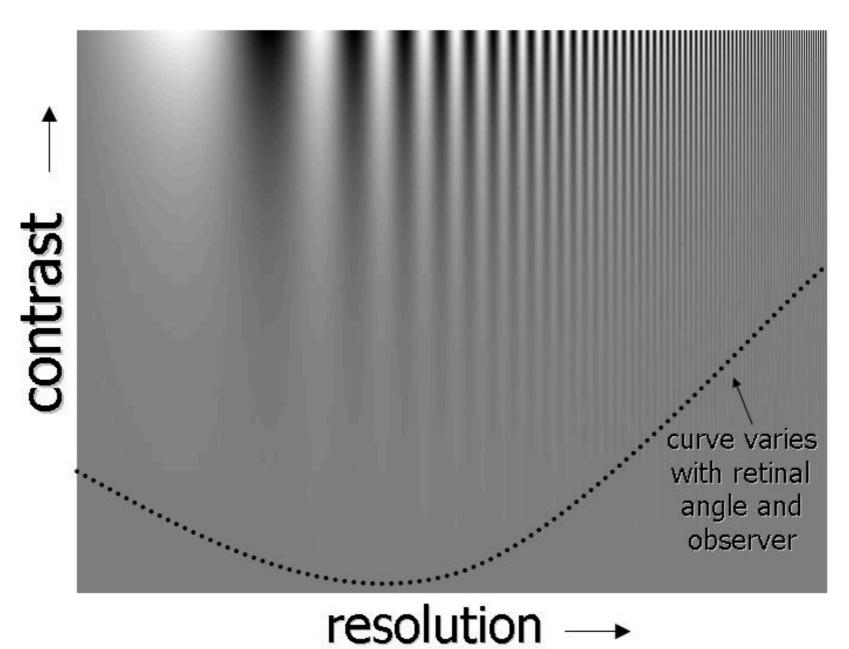
Modulation transfer function

Amplitude change of an oscillating signal for a given frequency



Imaging systems

Eye MTF



Campbell-Robson curve

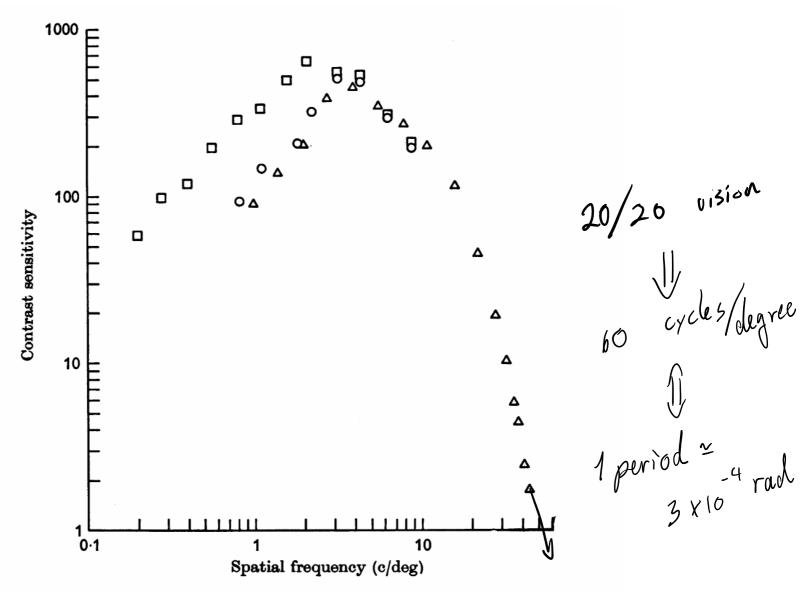
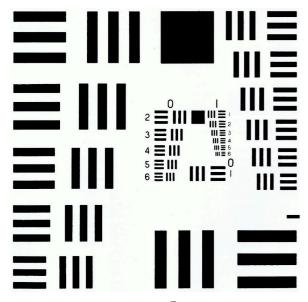
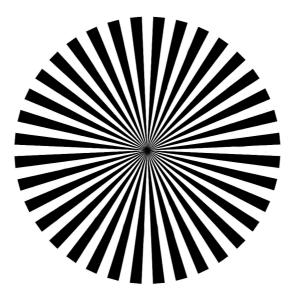
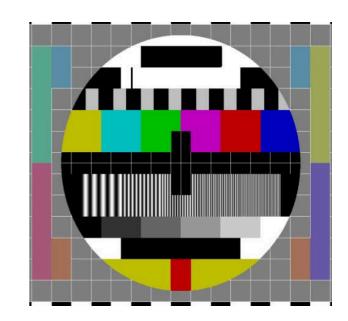


Fig. 2. Contrast sensitivity for sine-wave gratings. Subject F.W.C., luminance 500 cd/m^2 . Viewing distance 285 cm and aperture $2^{\circ} \times 2^{\circ}$, \triangle ; viewing distance 57 cm, aperture $10^{\circ} \times 10^{\circ}$, \square ; viewing distance 57 cm, aperture $2^{\circ} \times 2^{\circ}$, \bigcirc .

Measurement of MTF

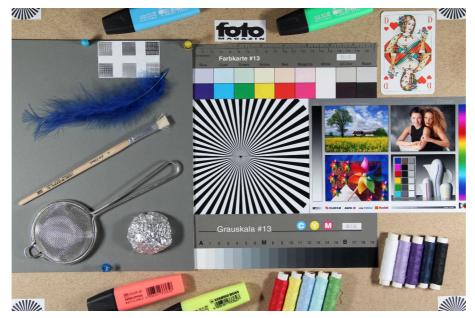






USAF resolution reference

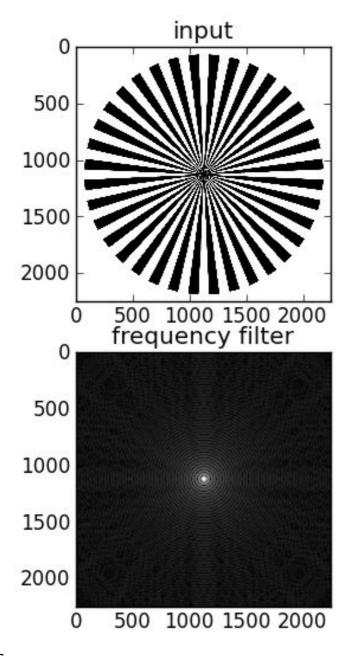
Siemens star

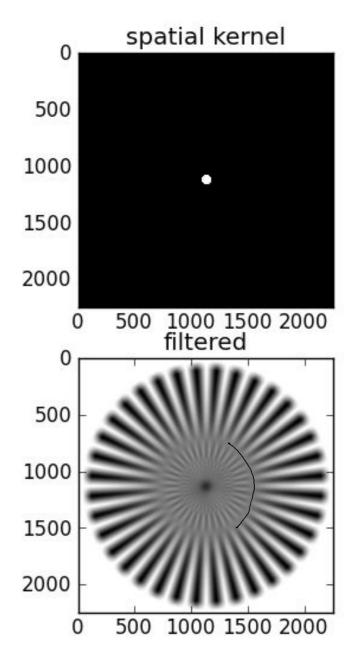


source: http://fotomagazin.de

Phase transfer function

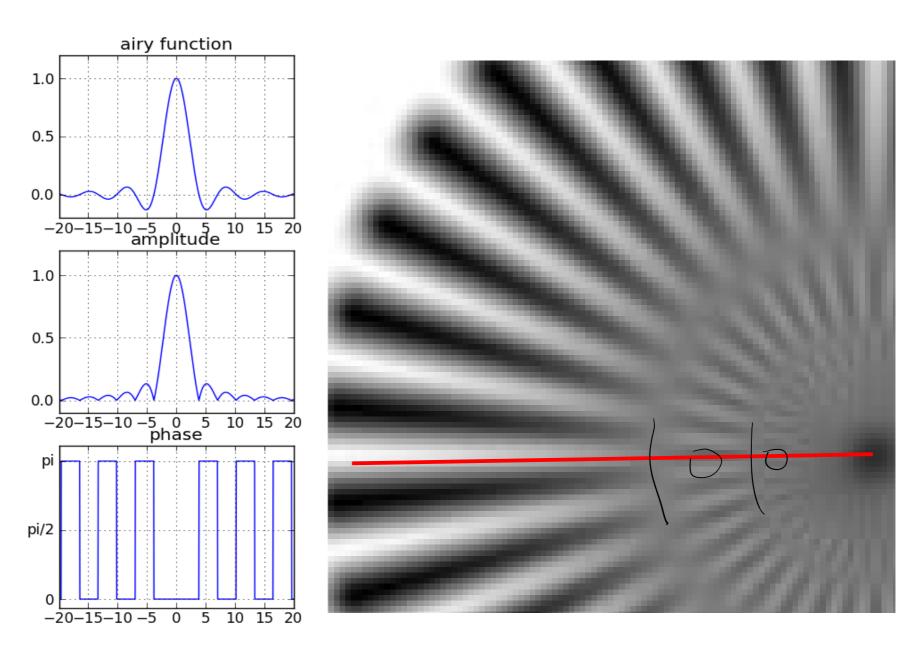
describes how an oscillating signal changes in phase due to system



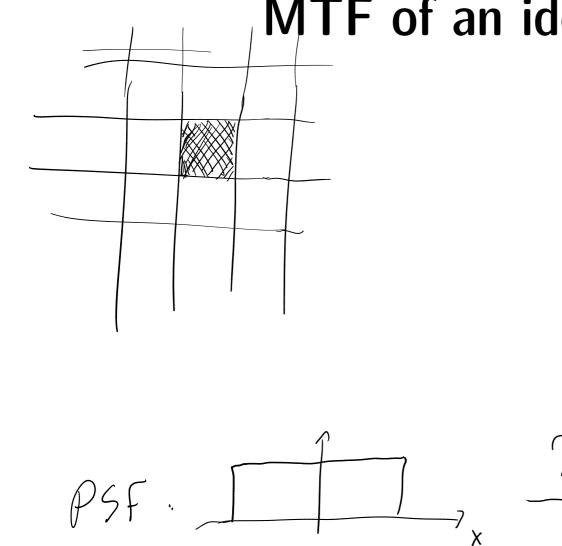


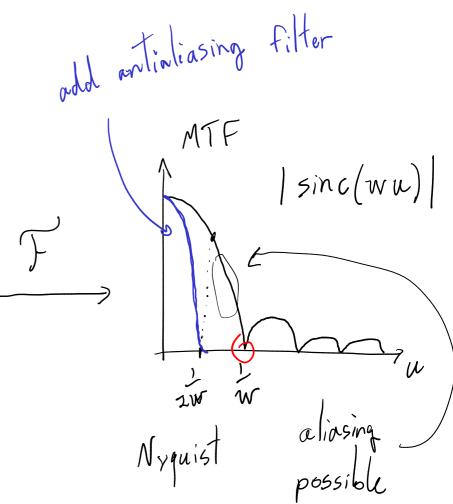
Phase transfer function

describes how an oscillating signal changes in phase due to system



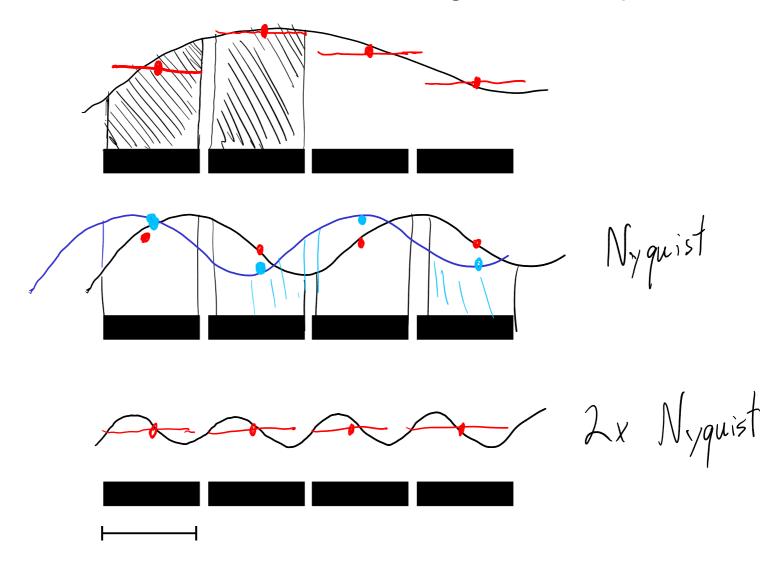
MTF of an ideal pixel





Pixel MTF

Modulation transfer function of a single detector pixel

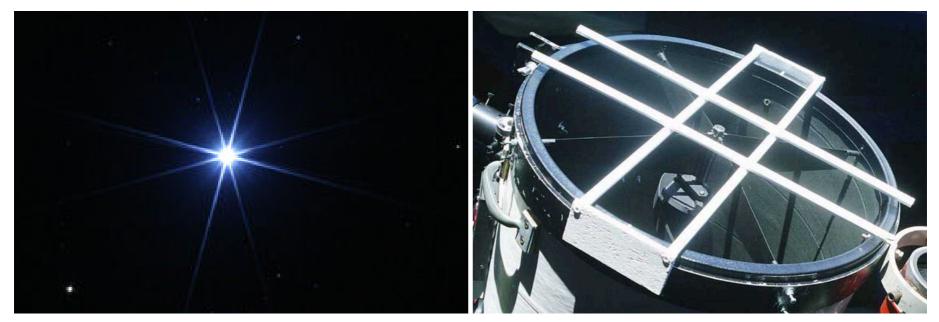


Imaging as a linear filter

PSF examples

images of PSFs

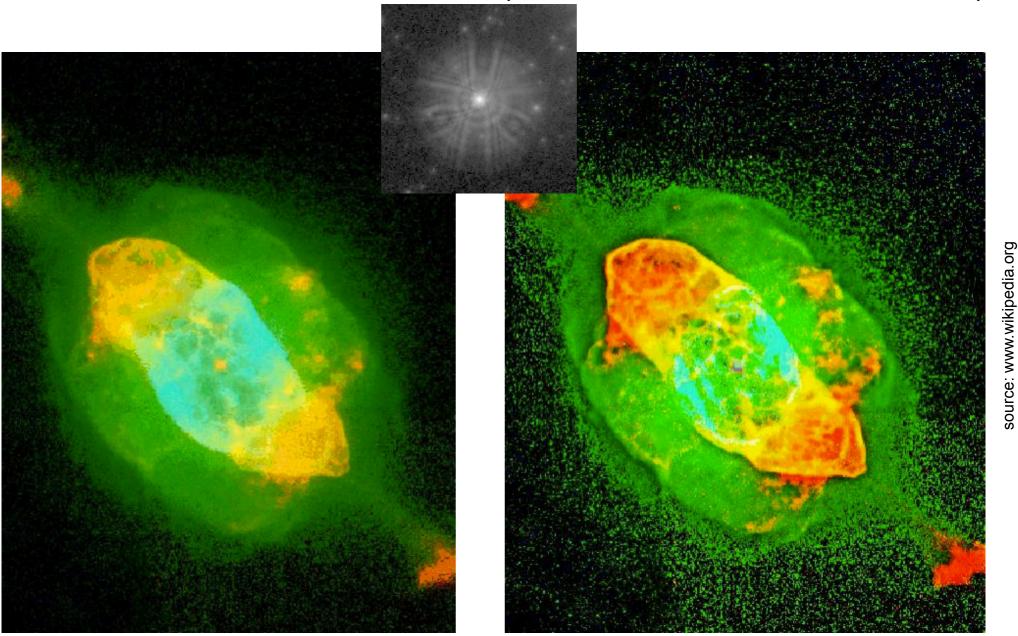
• isolated stars are essentially PSFs



source: www.apod.nasa.gov

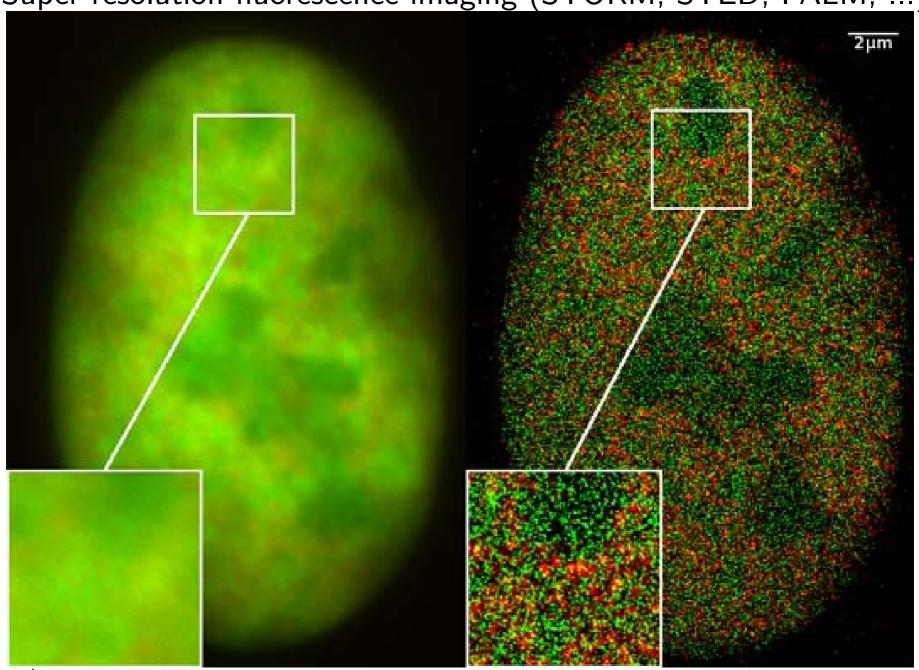
PSF examples

Hubble flawed mirror deconvolution (correction for spherical aberration)



PSF examples

Super-resolution fluorescence imaging (STORM, STED, PALM, ...)



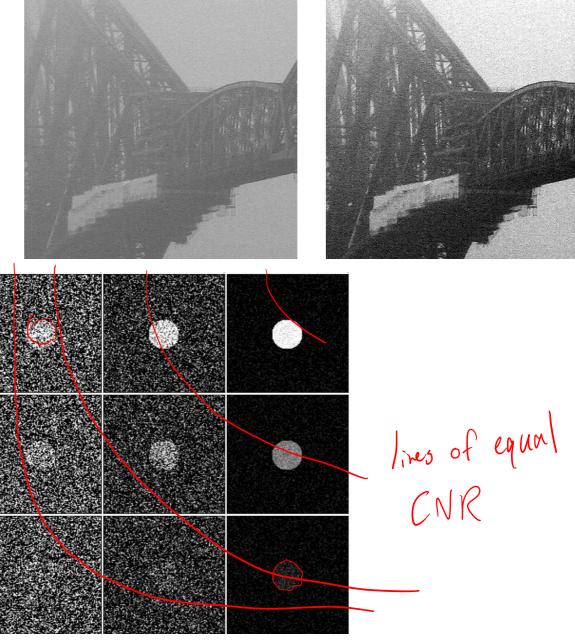
Imaging systems

Contrast and noise

 Intensity operation: higher contrast, higher noise

 Contrast-to-noise remains constant

Increasing signal



Random variables

random variable, sample space

probability of measuring
$$X: p(x)$$

probability density function

pability density function
$$p(a(x < b)) = \int_{a}^{b} \rho(x) dx$$

$$\int p(x) dx = 1$$

 $\langle f \rangle = \left\langle f(x) f(x) dx \right\rangle$

special case:
$$\langle x \rangle = \int x f(x) dx$$

variance

$$\sqrt{ar}(x) = \langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$$

Uniform distribution

probability density function

$$f(x) = \begin{cases} \frac{1}{b-a} & a \leq x \leq b \\ 0 & a \leq x \leq b \end{cases}$$

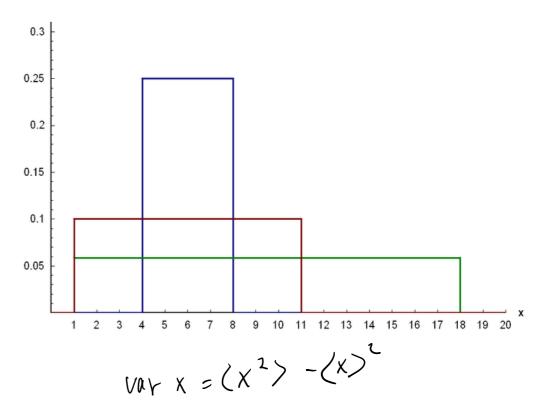
expectation value (mean)

$$\langle x \rangle = \frac{1}{2}(a+b)$$

variance

$$\sqrt{a} \times x = \left(\frac{b-a}{12}\right)^{2}$$

· occurrence not very common in imaging, but useful to build other probability distributions

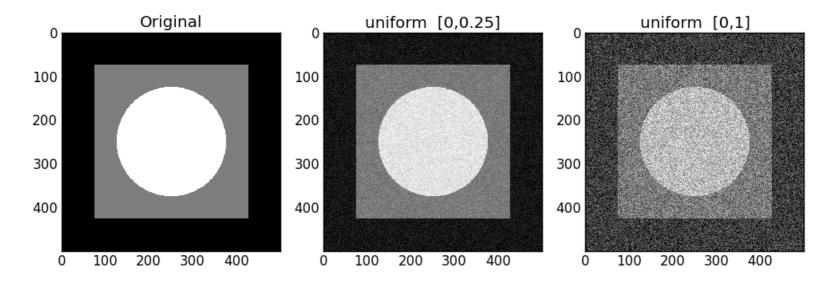


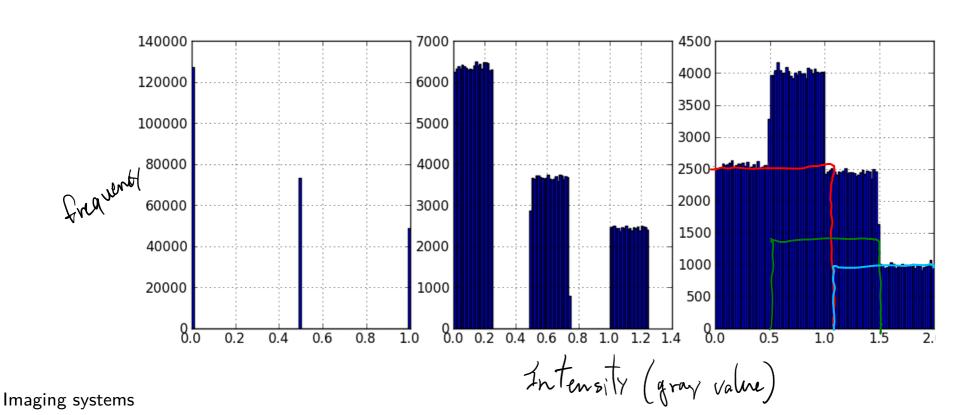
$$X = (X)$$

$$= \int_{0}^{b} x^{2} \int_{0}^{a} (x) dx - \frac{1}{4} (axb)^{2}$$

$$= \frac{x^{3}}{3} \Big|_{0}^{b} \frac{1}{b-a}$$

Uniform distribution



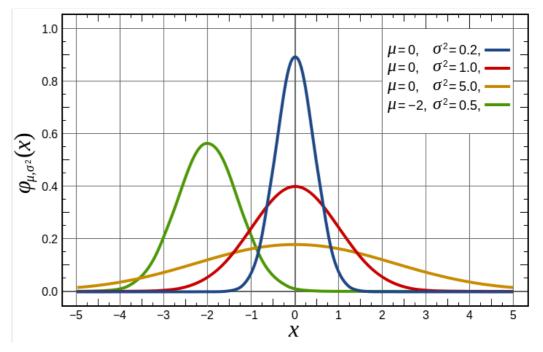


Gaussian distribution

probability density function

$$\int_{0}^{1} (x) = \int_{0}^{1} \int_{0}^{2\pi} dx$$

expectation value



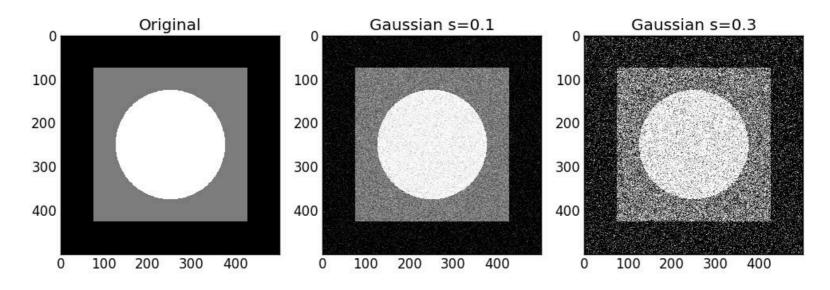
variance

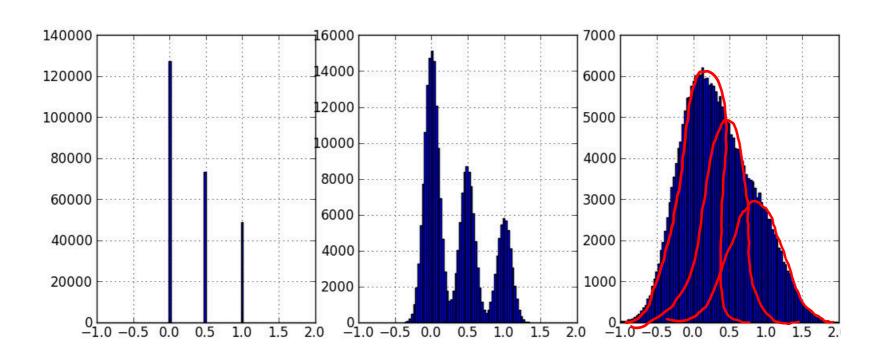
$$var X = \sigma^2$$

occurrence

very common (central limit theorem)

Gaussian distribution





Poisson distribution

probability mass function

$$p(n) = \frac{1}{n!} \lambda^n e^{-\lambda}$$

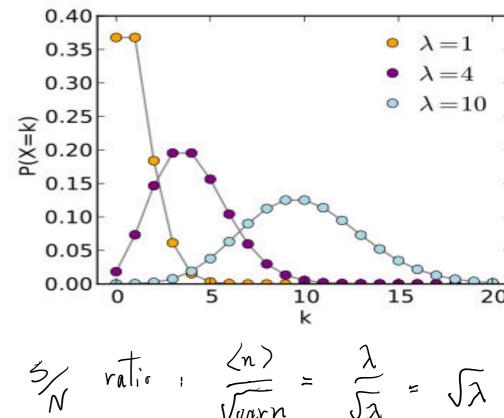
$$\lambda : only parameter$$

expectation value

variance

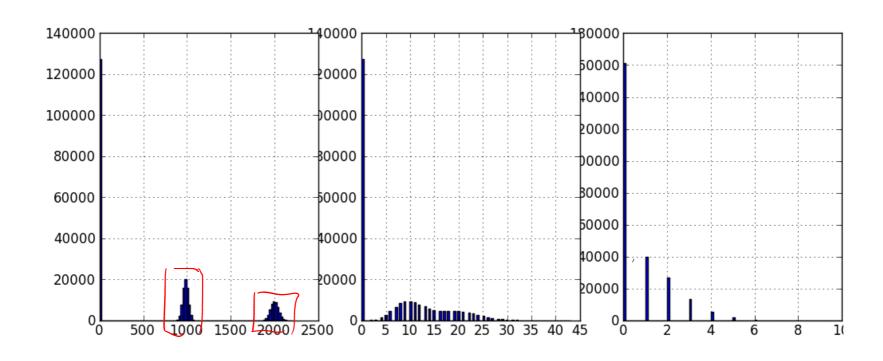
$$var n = \lambda$$

counting process occurrence



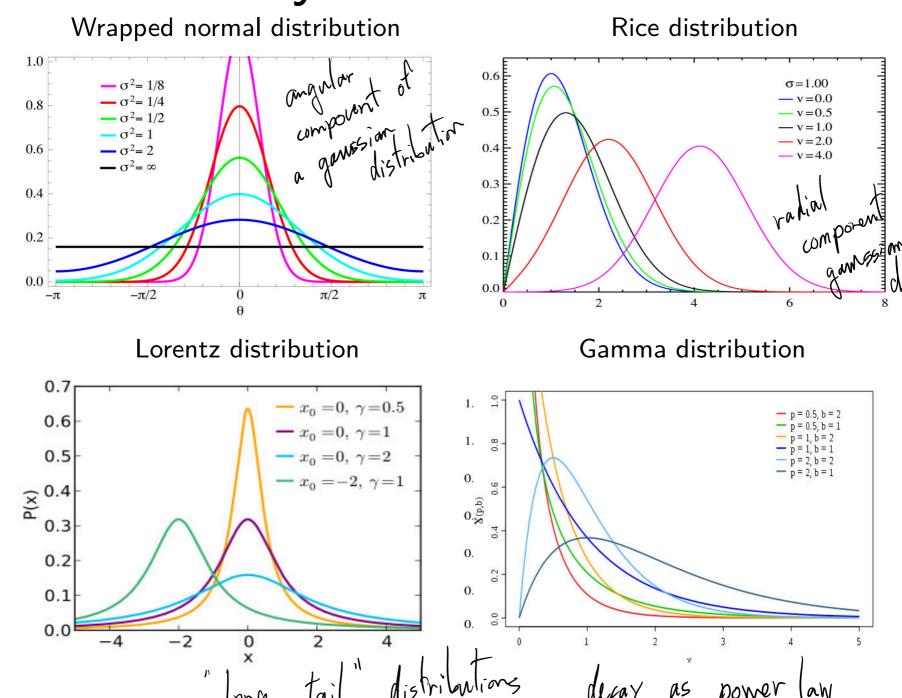
$$\frac{3}{N}$$
 ratio: $\frac{\langle n \rangle}{\sqrt{varn}} = \frac{\lambda}{\sqrt{\lambda}} = \sqrt{\lambda}$

Poisson distribution Poisson N=2000 Poisson N=20 Poisson N=2



Poisson distribution

Many other distributions



Imaging systems

Detector noise (CCD)

- Various sources:
 - shot noise (photon statistics, Poisson)
 - dark current (thermal electronic fluctuations in semiconductor, Poisson)
 - readout noise (fluctuations during amplification and digitization, Gauss)
 - many other imperfections ...
- dark frame measures detector noise, hot pixels, dead pixels
- [bright frame] measures gain differences and imperfections (dust, etc)

 "flat"

 "flat"

dark frame bright frame raw image calibrated image

Correlation & Convolution

Convolution:
$$f * g = \int_{-\infty}^{\infty} f(x') g(x-x') dx'$$
Convolution
$$\int \{f * g \} = F \cdot G$$
theorem

Correlation
$$f \otimes g = \int_{-\infty}^{\infty} f(x') g(x+x') dx'$$

$$f \otimes g = \int_{-\infty}^{\infty} dx' \int_{-\infty}^{\infty} F(u) e^{-2\pi i u x'} du \int_{-\infty}^{\infty} G(u') e^{2\pi i u'(x+x')} du'$$

$$= \iint du dn' F(u) G(u') e^{2\pi i u' x} \int dx' e^{2\pi i x' (u'-u)} \delta(u'-u)$$

$$= \int_{-\infty}^{\infty} du \, F'(u) \, G(u) e^{2\pi i u x} \Rightarrow F\{f \otimes g\} = F'' G$$

Noise power spectrum

power spectrum of pure noise image

NPS: noise power spectrum

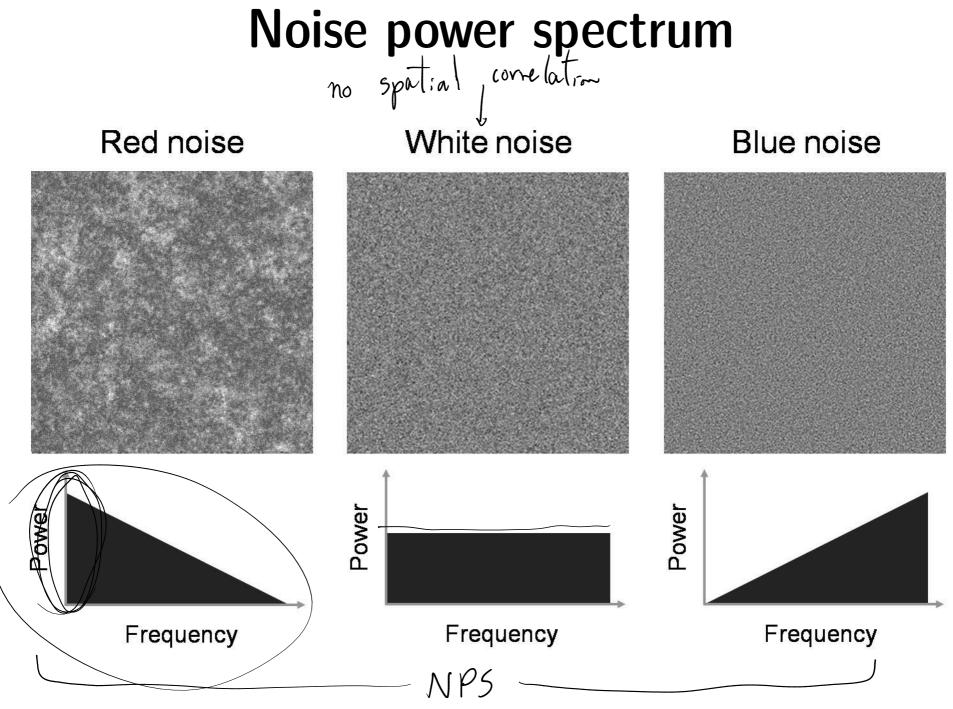
NPS =
$$\langle T\{n(x,y)\}\rangle^2$$
 ensemble average multivariate random variable $T\{n(x,y)\}=N(u,v)$

connection to auto-correlation

$$|N(u,v)|^2 = N^*(u,v) N(u,v)$$

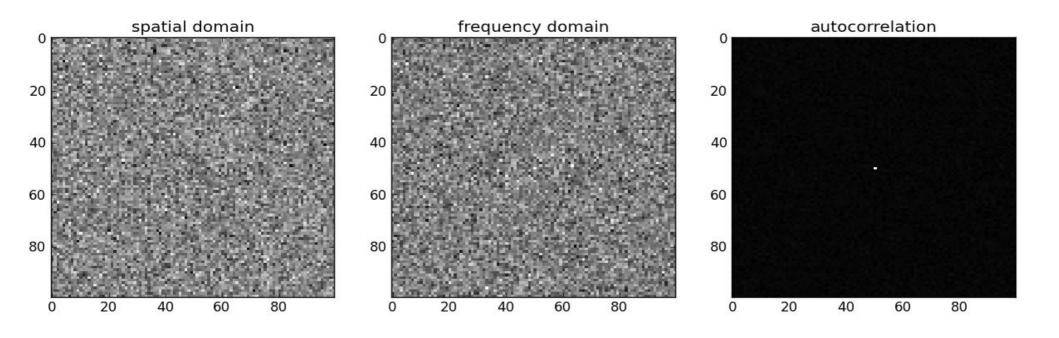
$$\int_{-\infty}^{\infty} \{|N(u,v)|^2\} = (n \otimes n) = \text{auto-correlation of } n$$

Procedure for noise characterization: 1) measure multiple realizations of the remdom variable n(x,y) Les take many dank frames $n_i(x,y)$ 2) $N_{i}(u,v) = \mathcal{T}\left\{n_{i}(x,y)\right\}$ 3) $\langle |N(u,v)|^2 \rangle \simeq \frac{1}{M} \sum_{i=1}^{n} |N_i(u,v)|^2 = NPS$ 4) 7 TNPS 3 -> estimate of noise autocorrelation

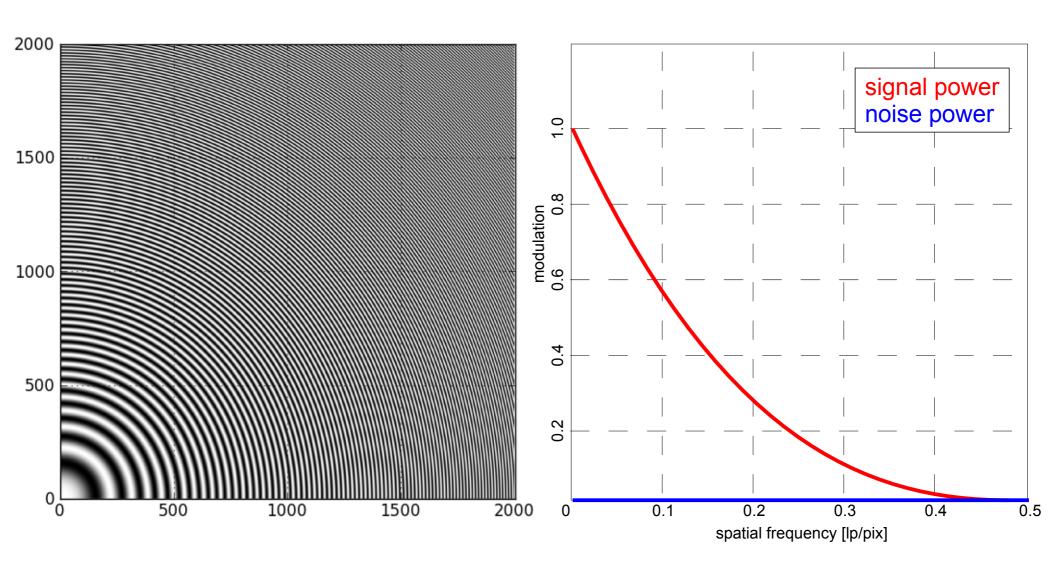


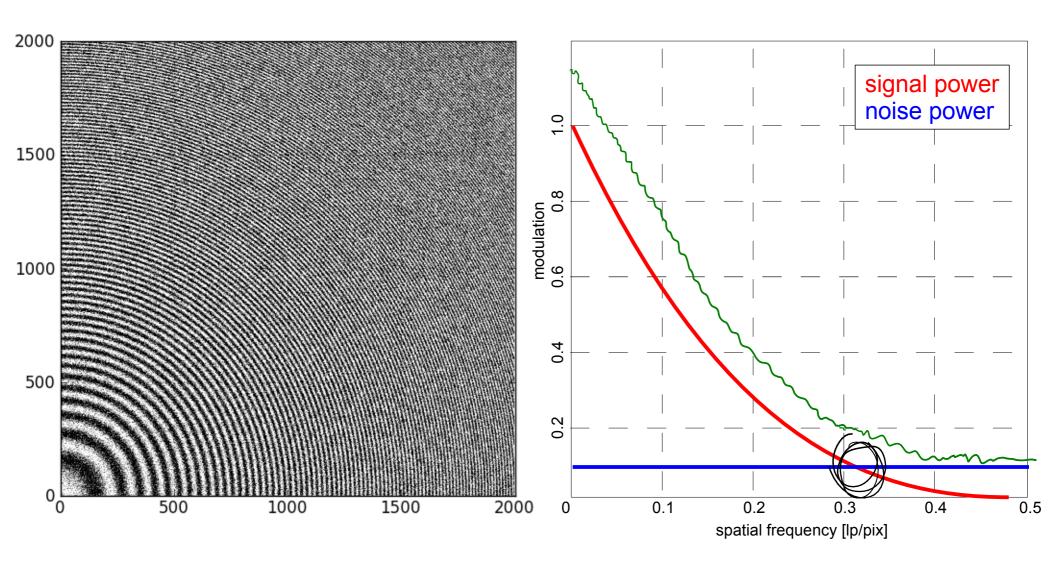
source: http://scien.stanford.edu/pages/labsite/2008/psych221/projects/08/AdamWang/project_report.htm

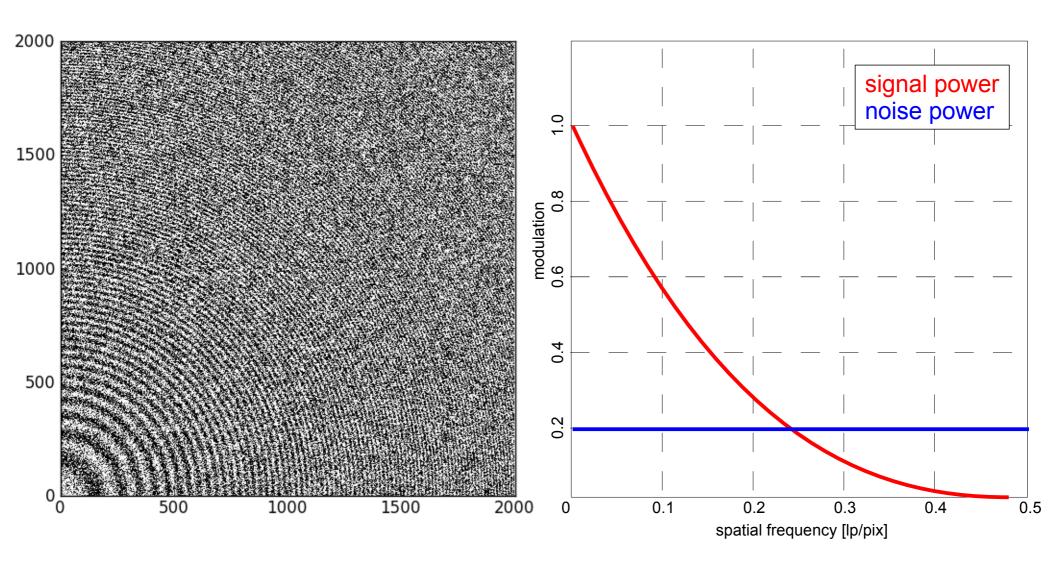
White noise

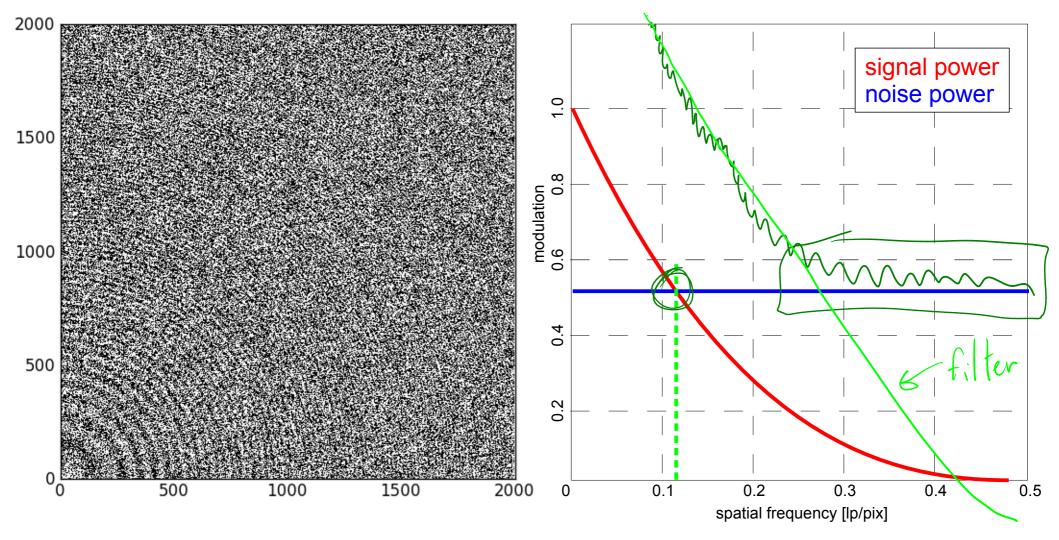


- white noise in spatial domain equals white noise in frequency domain
- white noise is perfectly uncorrelated
- all other types of noise are correlated to some degree
- white noise is an idealization

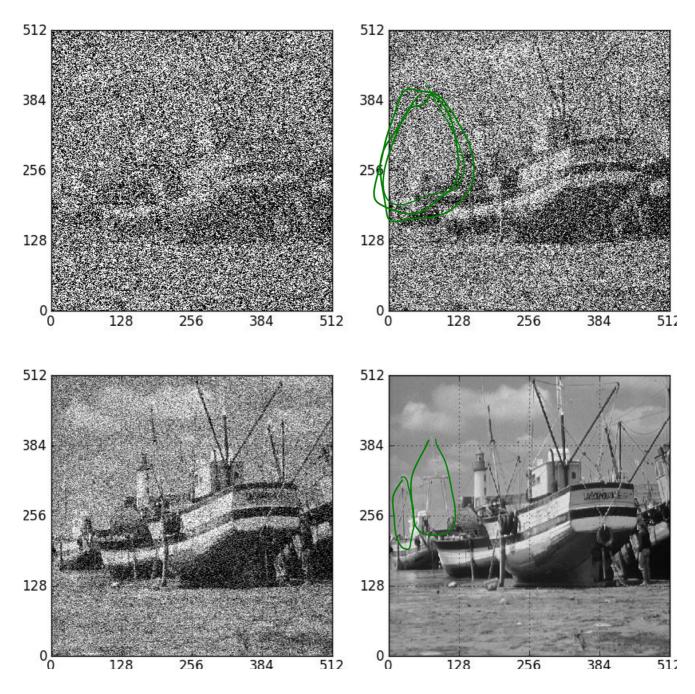






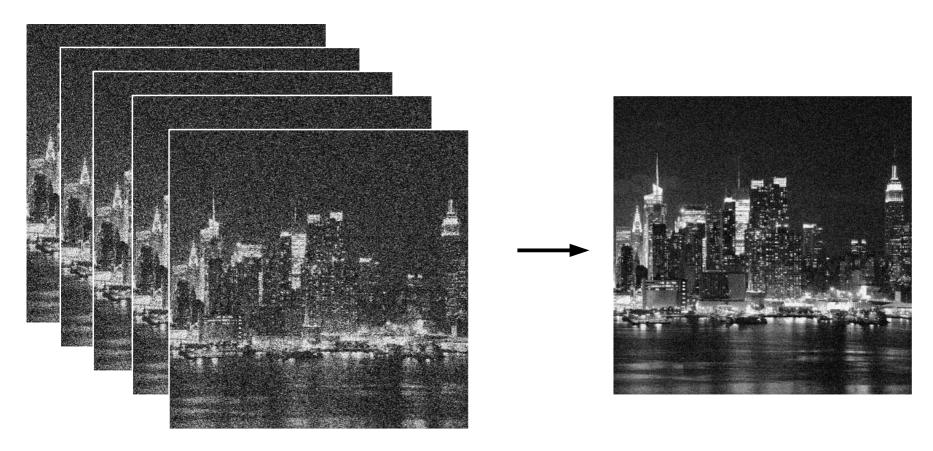


- Noise power exceeds signal power for high frequencies
- Small scale image details are lost in noise first



Noise reduction by averaging

Average multiple images



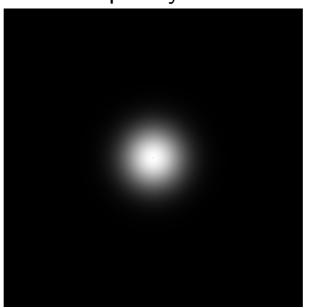
requirement: additive noise, zero mean

Denoising by linear filtering

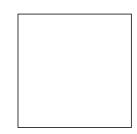
- use spatial convolution or frequency filtering to reduce noise
- noise reduction
 possible, but at cost
 of sharpness
- trade-off between noise reduction and resolution
- need fancier methods

original

frequency filter



convolution kernel



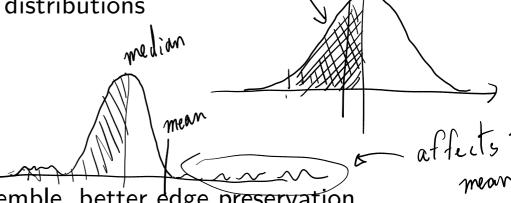
Resulting image

Median filtering

integral = 0.5

Use median as estimator for fat tail distributions

applied on pixel
reighborhood nor-litear!



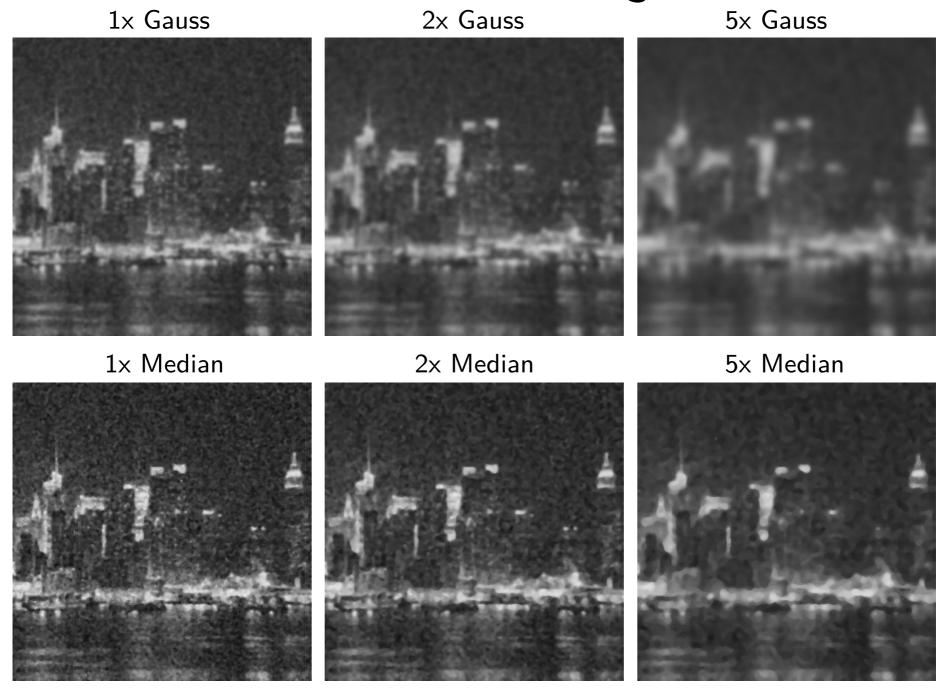
less sensitive to outliers in pixel ensemble, better edge preservation

Salt and pepper noise

Gauss sigma=1 pixel

Median 1 pixel

Median filtering



Common abbreviations

Abbreviation	Name	Definition
IRF	Impulse response function	Linear operator map of delta function
PSF	Point spread function	Image of point object (optical IRF)
OTF	Optical transfer function	Fourier transform of PSF
PTF	Phase transfer function	Phase part of OTF
MTF	Modulation transfer function	Amplitude of OTF
CTF	Contrast transfer function	MTF for non-sinusoidal objects
PDF	Probability density function	Probability distribution for a given random variable
SPS	Signal power spectrum	Amplitude squared of signal F.T.
NPS	Noise power spectrum	Amplitude squared of noise F.T.
SNR	Signal to noise ratio	Mean signal / mean noise
CNR	Contrast to noise ratio	Mean contrast / mean noise