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Metropolis Algorithm

by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)

done, previous lecture

|) to generate ramaorm points with a given distribution

2) to calculate averages with importance sampling

3) in particular: in the canonical ensemble



Metropolis Algorithm

I) w generate random POlntS W|th 2 civan Arme UtiOn
p(z) done, previous lecture

Idea: produce a random walmts {ZEZ}
whose asymptotic probability distribution pn(Xx)
of the occupied positions approaches p(r) after
a large number N of steps

A random walk in general is defined by specifying a
transition probability T'(x; — ;) from one value x;
to another value x; and the distribution of points

To, T1, Ty, ... converges to a certain p(x)
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The detailed balance

Choose a transition probability T'(x; — ;) from
one value g ; to another value z; (from one
configuration C; to another one Ci+|) such that the
distribution of points xg, 1, T2, ... (of configurations)
converges to the desired p(x).

It is sufficient (not necessary) to satisfy the condition:

p(zi)T(z; — ;) = p(z;)T(x; — ;)

A simple choice (not unique!) is:

T(x; — x;) = min |1,




Summarizing: P(Xj’)

probability
distribution

Xj (%) %
move with probability <€— 77— GO! since p(x)/p(xi) > |

p()/p(x) < | 1

initial possition

T(z; — x;) = min [1,p(‘rf)]



The Metropolis algorithm

P (Qj) 1s given,

If the “walker” is at position x; and we wish to generate x;,1, we can implement this choice of
T(x; — x;) by the following steps:

1. Choose a trial position xyia1 = x; + d;, where d; is a random number in the interval [—4, J].

2. Calculate w = p(ia1) /p(T;).

3. If w > 1, accept the change and let ;11 = T{yal-
else

4. If w < 1, generate a random number r.

5. If r < w, accept the change and let x;11 = T¢yial-

6. If the trial change is not accepted, then let z; 11 = x;.

The algorithm from |) to 6) has to be repeated until
the distribution p(x) of the points {z;} is reached.
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example of application of the
Metropolis algorithm

|) to generate random points with a given distribution
2) to calculate averages with importance sampling

3) in particular: in the canonical ensemble



example of application of the
Metropolis algorithm

|) to generate random points with a given distribution

2) to calculate averages with importance sampling

weighted average m

of the form <{}> — fp}i)(£§3;l)md$

where the probability distribution p(x) does not need

to be normalized

(here: ID, but generally useful also for multidimensional integrals)
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example of application of the
Metropolis algorithm

A special case of importance sampling where certain
possible sampling attempts are rejected.

- generate points according p(x)

- importance sampling of | () | using p(SIZ‘)




reminder from LectureV:

“importance sampling”

consider a distribution function p(z) easy to integrate
and close to f(x) :

/abf(a:)d:c:/ab [%} p(:v)da::<£(_§))>/abp(x)dx

where <%> ~ %i L];g;]

with {Z; } distributed according to p(x).

 Jp@)f () da
[p(x)dx

f(z)

p(x)

Here : substituting — f(x) and rewriting, we have : <f>
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Some programs:

in moodle2.units.it:

gauss_metropolis.f90

metropolis_sampling.f90
direct_sampling.f90
boltzmann_metropolis.f90



Metropolis Sampling

Using a method to generate a distribution p(z),
we can efficiently sample integrals of the form

_ Jp(x) f(x) dx
(f) = [p(2) da

example of application:
See metropolis sampling.£90 for Ex. | :

example of estimate of average position, average
kinetic, potential and total energies in the ground
state of the harmonic oscillator:

f(z) : physical quantity; p(z) = [¢(x)]?
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Metropolis Sampling

gy @) (@) d

[p(x)dz
f(x) : physical quantity; p(z) = [¢ ()|’
1 o here is a given

input parameter

1
Consider the hamiltonian : H = —§V2 + 5:1:2

Consider a wavefunction (not necessarily the ground state) : 1 (z) = exp(—z°/40?)
?

Interesting physical quantities are related to Epot, Exin, Etot 41is ok
The potential energy can be considered as f(x) (it is a multiplicative operator); kinetic and
total energy can not, but their expectation value can be related to the average value of x2:

elbal) _ [ Pl (a) P
(W) [ () 2dx
(- 192y S (a - i) e(@)Pda

\Bhin) = 1y = [ (z)2dx

13
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Metropolis Sampling

B fp(iv)f(l‘) dx
f) = Tp(2)

f(x) : physical quantity; p(z) = |¢( )|’

1
Consider the hamiltonian : H = —§V2 + 5:1:2

Consider a wavefunction (not necessarily the ground state) : 1 (x) = exp(

—z?/407)

In this exercise, the numerical results can be checked by calculating <Epoc> and <Eiin> also

analytically:

W) [Pl 1
oot =010y = [To@)Pdr 2

|
By = 3VE) S (@ — ) W@Pdz 5
T Wy [ i (x)[2de - 80

14
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lccecececececececececcecececccccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccccecece

! metropolis sampling.f90

|

! METROPOLIS sampling of physical observables for the hamiltonian:

! h= -1/2\nabla”2 + x"2/2 on psi®2(x), with psi(x)=exp(-x"2/(4\sigma”2))
start from a given x=x0...

do i=1,n

lccecececececececececececcccccCCCCCCCCCCCee
expx = - x**2 /(2*sigma**2) !
call random number (rnd) !
Xp = X + delta * (rnd-0.5 dp) !
expxp = - xp**2 /(2*sigma**2) ! metropolis
p = exp (expxp-expx) ! algorithm
call random number (rnd) !
if (p > rnd) then !

X = Xp !
lccecececececececececcccccccCCCCCCCCCCCee

endif
enddo I5



!cceccecececcecece
! metropol

! METROPOL
! h= -1/2\
start

do i=1,n
ekin
epot
etot

X1l =

X2 =
X3

X4 =
lcccec
expx
call

Xp =
expxp

p = e
call
if (p

X

lcccec

ac

endif

enddo

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeecece
is sampling.£f90

IS sampling of physical observables for the hamiltonian:

nabla”2 + x72/2 on psi®2(x), with psi(x)=exp(-x"2/(4\sigma”2))
from a given x=x0...

= ekin - 0.5 dp * ((x/(2*sigma**2))**2 — 1/(2*sigma**2))

= epot + 0.5 dp * x**2 . .

- ekin + epot data accumulation on all points!
X1l + X

X2 + X**2

= X3 + x**3

x4 + x**4

CCCCCCCCCCCCcCcCccecceccecececcececece

= - X**2 /(2*sigma**2) !

random number (rnd) !

x + delta * (rnd-0.5 dp) !

= - Xp**2 /(2*sigma**2) ! metropolis
Xp (expxXp-expx) ! algorithm
random number (rnd) !

> rnd) then !

= Xp !
CCCCCCCCCCCCcCcCccccececececcececece

c=acc+1.0 dp



Correlations

Consider a random sequence of configurations.

How many Monte Carlo steps are required between two
configurations to be considered uncorrelated?
=> study the autocorrelation function:

C(]) _ <.CI?7;_|_j$7;> o <ZEZ>2

(27) — (:)?

(...): average over the random sequence (index i)
C(ij=0)=1
C'(7 # 0) = 0 expected for totally uncorrelated points,

since in that case <szCL‘J> = <£L‘Z><CC]> — <$z>2
17

where:



Correlations

Consider a random sequence of configurations.

How many Monte Carlo steps are required between two
configurations to be considered uncorrelated?
=> study the autocorrelation function:

o) = o)
(7) = ()
It is not always the case, but at least for ergodic
simulations we should expect that the

autocorrelation function approaches 0 as j — ,

C'(7 # 0) = 0 expected for totally uncorrelated points,

since in that case <CC7,$3> = <£L‘Z><CE]> — <$z>2
18



Origin of correlations

Metropolis algorithm:
necessarily the points of the walker are correlated
each other over a short “time” scale (measured in

terms of Monte Carlo steps; at least 1 time step!)

Correlation exponentially decaying with a certain
characteristic “time” 1

Only points separated by 2t or 3T can be
considered statistically independent



example of a sequence of points randomly (Gaussian) distributed
generated according Metropolis

"fort.3’
rr +

e ;0 ;B ;0 ;0 100
I
by its nature, Metropolis method introduces (at least short-range) correlations
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Ex.2 . Correlations

[a very simple calculation 1f the array points(n) 1s stored]

do J = 0, jmax

si=0._dp ; si2=0._dp ; sij=0._dp C(]) —

do 1 =1,n-7

s1 = s1 + points(1i)

s12 = s12 + points(i1)**2

si] = sij + points(i)*points(i+])
end do

si = si1/(n-3)

s12 = s12/(n-73)

sij = si13/(n-3)

write(2,*), j, (sij-si**2)/(si2-si**2)

end do

21
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Calculation of correlations

In Metropolis simulations, the autocorrelation time is often
measured when the simulation is running:

e Create an array, say “‘corr” with j elements and initialize it
to zero.

® Maintain a list of the j most recently computed values of
the observable C.This can be an array of length j in which the
value of C, is stored at index “n mod j”’.

® At each step n = j accumulate the values of C,-jCy-j+i for i =
O, 1,...j — | in the array elements corr[i].

e At the end of the run, divide each corr[i] by n — j, subtract
(C)2, and divide by corr[0] to normalize.

(do the code yourself!)
Calculate C(j) for different 7 and check when it approaches 0

22



Correlations - Box-Muller algorithm

-1+

value of the random number generated

"fort.3”

T
"fort,3”
rr

108

no correlations

, index in the sequence
800 16000

1 T

"fort,2” +

6.8
8.6
8.4
8.2

9|+ =+ *?*?‘A*A**A*?, +’§+++Y+*Af
-8.2




Correlations - Metropolls algorlthm
S

H
J

200 400 600 8ee 1000

T ARPUSTT

value of the random number generated

the first 1000 points  histogram over 10000 points

‘fort,2” ——

0.8
the short-term behavior
of the Markov chain .
0 ~\ { explains the correlations

-




Correlations - Metropolis algorithm

Autocorrelazione al variare del rapporto /0

Random number 1 : . : v
sequence 3005
generated with the 0.8 g;g:;g —
Metropolis 5/0=50 ——
algorithm and 06 H \ _
different values of
o/o0 5‘/ 0.4 i

0.2 i

0 _
-02 | 1 ] ]
0 20 40 60 80 100

j
Figura 11: Andamento della funzione di autocorrelazione tra i punti generati con 1’algoritmo Me-
tropolis al variare di alcuni valori del parametro §/o

for values of the parameter &/0 that are too low (< 5) or too high (> 10) the autocorrelation function
decays very slowly: to effectively generate random numbers that are not correlated with each other it is
therefore necessary to choose a ratio d/0 such that 5 < 8/0 < 10, which corresponds to the acceptance
ratio range between = |/3 and = |/3

25



Notes - |

* Correlation may cause fictitiously a variance of the
averages much smaller than the actual error!

* The relationship
O\ R O 2 04 \5

is based on the assumption of uncorrelated data

(at least, for the block average, uncorrelated among
different blocks)

26



Notes - ||

Not good to use correlated points...

How to estimate correlations? How to estimate 7 ?
How to control the reliability of the statistical sampling?

Use block averages with different block size and
compare the numerical error estimates o./vsand o, /V's' .
If they coincides, the correlation time is smaller than

the smallest block size used.

Suppose n=1000 data.
|) do blocking of s=20 sets with 50 points and calculate averages and errors
2) do blocking of s’=10 sets of 100 points and calculate averages and errors

50 is therefore the smallest block size used.
If 020/V20 = 019/V 10, this means that 7 << 50
27



let’s recall slide n. 28:

Metropolis Sampling

Using a method to generate a distribution p(z),
we can efficiently sample integrals of the form

_ Jp(@)f(z)dx
f) = [p(z) da

Particularly useful integrals (or averages) are those
related to ensemble averages

28



Metropolis algorithm

|) to generate random points with a given
distribution

2) to calculate averages with importance sampling

3) in particular: in the canonical ensemble

29



Review of some
concepts of
statistical mechanics

(microstate /| macrostate / trajectory / statistical ensemble;
statistical and temporal averages)

30



Microstates

|) Examples of a microstate: characterized by:

o |U,) (v index related to N particles) in
the Hilbert space in Quantum Mechanics

® a point in the phase space (large number of
variables) in Classical Mechanics

examples of microstates:

o O
O—e
o O

O—@

distribution of spins on a lattice
(open circles: spin up;
closed circles: spin down)

®
O
®

O

O
@
Q

distribution of particles in a box
(list of positions)



Macrostate and Trajectory

2) For a classical system, the temporal evolution (with

possible changes of microstates) is a trajectory (a
line) in the phase space:

® along the trajectory, some parameters or variables
such as N,orV,or T ....are fixed (constraints -
macrostate)

® others do change

The trajectory is on a certain surface in the phase

space (typically still high-dimensional), determined by
the constraints

32



examples of changes of microstates:

o6 [

oé—(% @

——@-

e . .
AR AR &
flip of one spin in a lattice

(open circles: spin up;
closed circles: spin down)

moving one particle in a box

(the macrostate here is
characterized by the
temperature T and
by the total number of lattice sites)

(the macrostate here is
characterized by the
number of particles N)

(random choice of spin flip/particle move in case of Markov chain)
33



Stochastic processes and Markov chains
o6
® é—o— .. @ :

——@- A

¥

Stochastic process:

evolves through a series (a Markov chain) of well defined

configurations (microstates in a given ensemble)

C={C|, Cy, ... CN } stochastically generated, i.e. Ci+is

obtained from the previous one, Ci, by making some
random changes on the former.

34



Statistical averages

3) which info from the trajectory in the phase space!?

After a sufficiently long time, the system will assume all
possible microstates compatible with the constraints i.e.
with the macrostate : the ensemble of such microstates

is a statistical ensemble

Suppose to make N independent measurements of an observable G:
N
1 . .
Gops = N g (G,«— the measure is on a microstate
a=1
1 # of times in which the (M is the number of the
— E [N ) (microstateS is observed )]GS possible different

microstates s)

° statistical average (Ps depends of the

S
M

— E PsGs —< G > or microstate s but also
s=1

on the macrostate)
ensemble average
35



statistical average = temporal average

is a fundamental assumption of the statistical mechanics;
OK if:

® the system is ergodic (after a sufficient long time,
the trajectory visits all the possible microstates)

® observation time is long (T >> Trelax or eqw;l)

® observations are independent (d >> d.oyrei)

36



The canonical ensemble

(N,V,T) fixed. The probability that the system is in the
microstate S with energy F/, is given by:

(here the energy identifies different microstates, it is not a characteristic of the macrostate)

1
P, = ie_ﬁ Es , (Boltzmann distribution )

where 3 = 1/kT, and Z is a normalization constant. Because ) P, =1,

M
—E,/kT . .
Z = Z e~ el partition function
s=1

(M: all accessible microstates of the system)
characterized by different F

Ensemble averages (e.g. for the energy):

M 1 M
(E) =) E,P, = ~ Y E e P
s=1 s=1

37



Averages in the canonical
ensemble

We can generate only a finite number m of the total

number M of accessible microstates; we hope that:

S AgePEs
(A) = A, = = ()
Z e—PEs (Note: m, not M !)
s=1

A crude MonteCarlo procedure:

>k
generate a microstate s at random calculate F,, A,, and e ?Fs and evaluate ( )

Poorly efficient! Ps for the generated microstates could be
rather small. An importance sampling method is better!

38




Importance sampling in the
canohical ensemble

m
g Ase_/BEs
1 m 6_BES
Y —_ S= _ . L
§ 6_/8E3 s=1 j :e_BES
(*) NO importance sampling:
s=1 generate m configurations s=1

with uniform random distribution, ( N ote : T # PS ' )

then make a weighted average of A)

If we generate microstates according to ms, the calculation of A,,, reduces to:

1 with importance sampling
A — Z A (generate m configurations
m m S with random distribution 7,
s=—1 then make a simple average of A)

(much more efficient than (*))
39



Importance sampling in the
canohical ensemble

Therefore, summarising: we aim at calculating

m

1
<A>Sx — Z A, with microstates s generated according to 7y

m
s=1

The transition matrix that generates microstates s according to my is :

Told new = MIN [1, Wnew] = min [1, pnew] = man [1

e_BEnew ]
Told Pold

" e—PEoia

hence, using Metropolis, the procedure 1s as following:
40



Metropolis algorithm in the
canonical ensemble

. Establish an initial microstate.

. Make a random trial change in the microstate. For example, choose a spin at random and

flip it. Or choose a particle at random and displace it a random distance.

. Compute AE = FEi;ia1 — Eolq, the change in the energy of the system due to the trial change.

4. If AFE is less than or equal to zero, accept the new microstate and go to step 8.

© ® 3 @

10.

If AFE is positive, compute the quantity w = e P2F.

Generate a random number r in the unit interval.

If » < w, accept the new microstate; otherwise retain the previous microstate.
Determine the value of the desired physical quantities.

Repeat steps (2) through (8) to obtain a sufficient number of microstates.

Periodically compute averages over microstates.

41




Metropolis algorithm in the
canonical ensemble

Steps 2 to 7 give really the desired distribution using:
T(i — j) = min(1, e ?2¥) (Metropolis algorithm),
where AE = E; - Fj.

A few remarks:

|) ERGODICITY implicitly assumed!

2) TEMPERATURE:

If Ep > Ea, accept the new (higher energy) configuration with probability p =
e~ (EB—EA) lsT This means that when the temperature is high, we don’t mind taking
steps in the “wrong” direction, but as the temperature is lowered, we are forced to
settle into the lowest configuration we can find in our neighborhood.

42



Metropolis algorithm in the
cahohnical ensemble:
other remarks

| ) Because it is necessary to evaluate only the ratio P;/P; = e PAE.

it is not necessary to normalize the probability.

(Pj/ P =mj/m;)

43



2) Other choices of 74 are possible. Instead of writing:

m

<A>zAm:8:1 _Z@WS__

— (no importance (w1th importance
rewrite: 5 sampling) sampling)
(As/ms) e PEoym,
s=1 . .
A, = .(no importance sampling)

If we generate microstates with probability 7., eq. becomes:

5" (Ay/ms) e PEs

A, == .(importance sampling)

S (1/m,) e~BE-

s=1

—

44



3) If T(i— j)e PP =T(j —i)e P¥ (detailed balance),

Metropolis algorithm generates states with Boltzmann distribution

(we will prove it empirically : see exercise)

45



Some programs:

in moodle2.units.it:

gauss_metropolis.f90
metropolis_sampling.f90

direct_sampling.f90
boltzmann_metropolis.f90

46



Boltzmann distribution
in the canonical ensemble

The Metropolis algorithm really produces microstates
with the Boltzmann distribution:
application to ideal classical I D gas (exercise n. 4)

1

1 free particle: Energy: E = émv2

in this case, velocity or energy labels a microstate

(the energy with a factor of 2 , due to +/- sign of v);

we generate different microstates by random variations of the velocity and
we accept/reject with Metropolis

Important quantities are the probabilities:
P(v)dv that the system has a velocity between v and v+dv
or P(E)dE that the system has an energy between E and E+dE

47



ideal classical 1D gas

A particle moving randomly has in each direction a distribution of the compo-
nent of the velocity:

m 1/2
_ —muv2 /2kgT
f(vz) (QWkBT> c (1)
+oo
kgT
2\ _ 2 _
(vg) = /_oo v f(vg)dv, = e (2)
In 1D:
f(v)2dv = P(E)dE
that gives: P(E) = 1 1 o~ E/ksT
| (rksT)'/?2 VE
In 3D:

P(E) = 2 L __VE exp (—i) (3D)




<EO0>
<v0>
dvmax
deltaE
nbin

H OH H HH

Boltzmann distribution
in the canonical ensemble

1.00000
.000000
.000000
2.00000
5.000000E-02
79

==> boltzmann.1lK <==

# nMCsteps:
<E> :
<v>
accept.

sigma

H H H ®

1000

.501263
7.456664E-02
.692000
.713780

==> boltzmann.1l0K <==

# nMCsteps:
<E> :

<v>

accept.

sigma

H O H H

10000
.507580
3.366172E-02
.707700
.726145

==> boltzmann. 1M <==

+*

nMCsteps:
<E> :
<v>
accept.
sigma

H H H

NOTE:

- Accuracy of
NOT ENOUGH to well reproduce the BOLTZMANN DISTRIBUTION!
ACCEPTANCE RATIO: constant, depends only on dvmax
SIGMA also

1000000
.500138
1.833840E-04
.693837
.707472

T

o/Vn

o/vn

o/Vn

~ 1% on <E> and 10% on <v> :

1 — (E)(expected) = 0.5

= (0.022

(a is the variance of the energy)

= 0.007

= 0.0007

NMCS=1000 is enough
(1M needed!)
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Boltzmann distribution
in the canonical ensemble

many particles: Energy: E =" lm;?

in this case, the energy is NOT a label of a microstate
(there are several microstates with the same total energy)

Note: the energy histogram is NOT the distribution of microstates!

1
P(E)= Y P, with P,=—e 7P

Z
states s
with Eg=E
—(E—(E))? | ,
P(E) x=e 202  with (E) average over all the microstates

What Is P(E)? (exercise)



P{(SE>/N)

8.25

8,2

8.15

P(E), distribution of the kinetic energy of the system for different T

=1, N=18, dvmnax=1, nMCsteps=18~",..

T T T T 8,12 T T T
’bi1-18allad.dat” + ’b2-18allad.dat”
’bi1-18alla5.dat” + ’b2-18alla5.dat”
’bi-1B8alla7.dat’” ¥ ’b2-18alla7.dat”
+
+
+
4 St ¥
£ % ke
*
+ 0.08 -
* o
X ] +¥
2 *
4 .86 % %
N *
& #®
1 +
. 8.04 ¥
¥ ¥
" i + #
% 8.02 #
+ T
w + Ry
* +
W + *¥q¥
L . X ¥ w » g R 1 ook R OOM i ke KRR KRR KRR
8.5 1 1.5 2 2,5 1 2 3 4
<E>/N <E>/N
P(E) —— 200K
— 300K
— 400 K
[
4d 1o [y
{Ecin) (Ecin) (Ecin) E ..
200K 300K 400K e

T=2, N=18, dvnax=1, nHCsteps=18",..
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