Esercizio 1

Da 100 misurazioni ripetute del tempo di transito tra due sensori si ricava la velocità di un componente di una macchina. Noto che i sensori sono posti a una distanza di 36.6 cm, misurata con nastro metallico di risoluzione 1 mm, e che le misure di tempo hanno fornito un valore medio di 5.86934 s e uno scarto tipo di 0.002579 s, si scriva la misura della velocità quando si desideri un livello di confidenza del 95%.

Esercizio 2

La seguente tabella riporta i dati relativi al numero Y di pezzi prodotti ed al numero X di addetti di 108 imprese di un certo settore economico:

	Y = 10	Y = 15	Y = 20	Totale
$X=0\div 4$	12	12	0	24
$X = 5 \div 11$	12	12	24	28
$X = 12 \div 30$	0	36	0	36
Totale	24	60	24	108

- a) Stabilire se esiste indipendenza in media di Y da X (si suggerisce il test ANOVA);
- b) valutare il grado di correlazione lineare tra X e Y (assumere una distribuzione uniforme per X_i nell'intervallo);
- c) calcolare i parametri della retta a minimi quadrati di Y in funzione di X;
- d) con riferimento alla retta ottenuta al punto precedente si calcoli da devianza spiegata e si scomponga opportunamente la devianza totale;
- e) si valuti la bontà di adattamento della retta individuata.

Utilizzare sia la formulazione analitica che le funzioni matlab.

Esercizio 3

Analizzare la serie temporale presente nel file dati matlab timeseriesE3.mat

Link utili al manuale di Matlab:

Probability Distributions

Hypothesis Tests

Time series