
Kalman Filtering



What is state estimation?

• Given a “black box” component, we can try to use a linear or nonlinear 
system to model it (maybe based on physics, or data-driven)

• Model may posit that the plant has  internal states, but we typically have 
access only to the outputs of the model (whatever we can measure using a 
sensor)

• May need internal states to implement controller: how do we estimate 
them?

• State estimation: Problem of determining internal states of the plant



Deterministic vs. Noisy case

Typically sensor measurements are noisy (manufacturing imperfections, environment 
uncertainty, errors introduced in signal processing, etc.)
In the absence of noise, the model is deterministic: for the same input you always 
get the same output

Can use a simpler form of state
estimator called an observer
(e.g. a Luenberger observer)

In the presence of noise, we use a state estimator, such as a Kalman Filter

Kalman Filter is one of the most fundamental algorithm that you will see in 
autonomous systems, robotics, computer graphics, …



u For random variable $,  % $ : expected value of $, also known as mean

u Suppose %['] = * : then var(w) : variance of $, is % $ − * G

u For random variables ' and 1, cov ', 1 : covariance of ' and 1
� cov C, D = E (C − E(C)(D − E D

u For random vector 5, % 5 is a vector

u For random vectors, 5 ∈ ℝH and 8 ∈ ℝI , cross-covariance matrix is 9×;
matrix: cov 5, 8 = % 5 − % 5 8 − % 8 J

u $ ∼ = *, >G : $ is a normally distributed variable with mean * and 
variance >

Random variables and statistics refresher
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u Using radar and a camera to estimate the distance to the lead car:

� Measurement is never free of noise

� Actual distance: )

� Measurement with radar: K" = ) + L" (L" ∼ N O", P"# is radar noise)

� With camera: K# = ) + L# (L# ∼ N(O#, P##) is camera noise)

� How do you combine the two estimates?

u Use a weighted average of the two estimates, prioritize more likely 

measurement

� QO =
⁄(*! +!") - ⁄(*" +"")
⁄(" +!")- ⁄(" +"")

= =K" + 1 − = K#, where = =
+""

+!"-+""

� QP# = +!"+""
+!"-+""

u Observe: uncertainty reduced, and mean is closer to measurement with 

lower uncertainty

Data fusion example
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E" = 2, G"
" = 0.5

E# = 1, G#
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Ê = 1.67, G"" = 0.33
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u Instead of estimating one quantity, we want to estimate ; quantities, then:

u Actual value is some vector 5

u Measurement noise for ?RS sensor is @T ∼ = AT , ΣT , where AT is the mean 
vector, and ΣT is the covariance matrix 

u Λ = ΣUV is the information matrix
u For the two-sensor case:

� F) = Λ= + Λ?
L=(Λ=H= + Λ?H?), and IΣ = Λ= + Λ?

L=

Multi-variate sensor fusion
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u What if we have one sensor and making repeated measurements of a 
moving object?

u Measurement differences are not all because of sensor noise, some of it is 
because of object motion

u Kalman filter is a tool that can include a motion model (or in general a 
dynamical model) to account for changes in internal state of the system

u Combines idea of prediction using the system dynamics with correction
using weighted average (Bayesian inference)

Motion  makes things interesting
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u We assume that the plant (whose state we are trying to estimate) is a 
stochastic discrete dynamical process with the following dynamics:

5W = D5WUV + EFW +GW (Process Model)

HW = I5W + JW (Measurement Model)

Stochastic Difference Equation Models
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M$, M$%# State at time N,N − 1

O$ Input at time N

P$ Random vector representing noise in the plant, P ∼ R(S, T$)

U$ Random vector representing sensor noise, U ∼ R(S, V$)

W$ Output at time N

# Number of states
$ Number of inputs
% Number of outputs
& #×# matrix
( #×$ matrix
) %×# matrix



Kalman Filter



Step I: Prediction

• We assume an estimate of 5 at time K − 1, fusing information 
obtained by measurements till time K − 1: this is denoted M5WUV|WUV
• We also assume that the error between the estimate M5WUV|WUV and 

the actual 5WUV has 0 mean, and covariance NWUV|WUV
• Now, we use these values and the state dynamics to predict the value 

of 5W
• Because we are using measurements only up to time K − 1, we can 

denote this predicted value as M5W|WUV, and compute it as follows:
M5W|WUV ≔ DM5WUV|WUV + EFW



Step I: Prediction

• Thus, the state and error covariance prediction are:

NW|WUV = cov 5W − M5W|WUV = cov D5WUV + EFW +$W − DM5WUV|WUV − EFW

= Dcov 5WUV − M5WUV|WUV D
Y + PQ@($W)

= DNWUV|WUVD
Y + RW

!"!|!#$ ≔ $!"!#$|!#$ + &'!
(!|!#$ ≔ $(!#$|!#$$% + )!



Kalman Filter



Step II: Correction

• This is where we basically do data fusion between new measurement 
and old prediction to obtain new estimate

• Note that data fusion is not straightforward like before because we 
don’t really observe/measure 5W directly, but we get measurement 
HW, for an observable output!

• Idea remains similar: Do a weighted average of the prediction M5W|WUV
and new information

• We integrate new information by using the difference between the 
predicted output and the observation 



Step II: Correction

• Predicted output: &'% = )% *+%|%'(
• We denote the error in predicted output as the innovation 

,% ≔ .% −)% *+%|%'(
• Covariance of innovation 

0% = co3 ,% = 453()%+% + 8% −)% *+%|%'() = :% +)%;%|%'()%)
• Then to do data fusion is given by:

&<%|% ≔ &<%|%'( + =%>%
• Where, =% = ;%|%'()%)0%'( is the (optimal) Kalman gain. It minimizes the 

least square error

• Finally, the updated error covariance estimate is given by:

;%|% ≔ ? − =%)% ;%|%'(



Innovation !! ≔ #! − %! &'!|!#$
Innovation Covariance (! ≔ )! + %!+!|!#$%!%
Optimal Kalman Gain ,! ≔ +!|!#$%!%(!#$
State estimate at time k -.!|! ≔ -.!|!#$ +,! !!

Covariance estimate at time k +!|! ≔ +!|!#$ / − ,!%!

Step II: Correction



Kalman Filter



u Let’s take a simple one-dimensional example

u Kalman filter prediction equations become:

� FCX|XL= ≔ LFCXL=|XL= + MN ; OX|XL=
? ≔ L?OXL=|XL=

? +
P
OZ
?

u Also, the correction equations become:

� Innovation: QX ≔ DX − FCX|XL=,   S[ = O\
? + OX|XL=

?

� Optimal gain: S = TOX|XL=
? (O\

? + OX|XL=
? ), 

� Updated state estimate: FCX|X ≔ FCX|XL= + S(DX − FCX|XL=)

� I.e. updated state estimate: FCX|X ≔ 1− S FCX|XL=+ SDX (Weighted average!)

one-dimensional example

prior uncertainty
in estimate

uncertainty
in process

prior uncertainty
in estimate



Extended Kalman Filter

• We skipped derivations of equations of the Kalman filter, but a fundamental 
property assumed is that the process model and measurement model are both 
linear.

• Under linear models and Gaussian process/measurement noise, a Kalman filter is 
an optimal state estimator (minimizes mean square error between estimate and 
actual state)

• In an EKF, state transitions and observations need not be linear functions of the 
state, but can be any differentiable functions

• I.e., the process and measurement models are as follows:
)X = _ CXL=, NX +`X
DX = ℎ CX + bX



• Functions S and ℎ can be used directly to compute state-prediction, 
and predicted measurement, but cannot be directly used to update 
covariances
• So, we instead use the Jacobian of the dynamics at the predicted 

state
• This linearizes the non-linear dynamics around the current estimate
• Prediction updates:

EKF updates

!"!|!#$ ≔ *(!"!#$|!#$, '!)
(!|!#$ ≔ .!(!#$|!#$.!% + )!

0! ≔ 123
2' &'(&*|*+,,*'**



• Correction updates:

EKF updates

%! ≔ 12ℎ
2' &'(&*|*+,

Innovation !! ≔ #! − ℎ(&'!|!#$)
Innovation Covariance (! ≔ )! + %!+!|!#$%!%
Near-Optimal Kalman Gain ,! ≔ +!|!#$%!%(!#$
A posteriori state estimate -.!|! ≔ -.!|!#$ + ,!#!
A posteriori error covariance estimate +!|! ≔ +!|!#$ / − ,!%!



Simulink Example - Cartpole

• Full-state estimation (Luenberger, Kalman)
• Optimal Control

f = [h, i]


