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Introduction to the Bayes
Estimation



Bayes Estimation

Considerations

• We look for an estimation method allowing to embed the possible a-priori
knowledge on the unknown quantity to be estimated

• In the framework of Bayes estimation also the unknown vector is interpreted as a
random vector

• The probability density function p(ϑ) in absence of observed data is the a-priori
probability density function embedding the available information on ϑ before
collecting the data.

• Hence, in the absence of data, the a-priori estimator could be

ϑ̂ = E(ϑ) =

∫
ϑ p(ϑ) dϑ

and the uncertainty var(ϑ) of the estimate would be the a-priori estimate
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Bayes Estimation (cont.)

• Clearly, as soon as new data are collected, the probability density function p(ϑ)

changes.
• As a consequence, E(ϑ) and var(ϑ) change as well.
• In particular, we expect var(ϑ) to decrease
• Summing up, the basic idea is to consider a joint random experiment with respect
to d and ϑ and this is the conceptual peculiarity of the Bayes estimation approach.
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The Optimal Bayes Estimator



Bayes Estimation (cont.)

• Consider the generic estimator as function of the data

ϑ̂ = h(d)

and define the cost functional

J [h(·)] = E
[
∥ϑ− h(d)∥2

]
• The goal is to determine an estimator h◦(·) such that J [h(·)] is minimised, that is
we have to determine

h◦(·) : E
[
∥ϑ− h◦(d)∥2

]
≤ E

[
∥ϑ− h(d)∥2

]
, ∀h(·)

where the expected values are computed with reference to the joint random
experiment
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Bayes Estimation (cont.)

• Assume for simplicity that d and ϑ are scalar:

E
[
∥ϑ− h(d)∥2

]
= E

[
ϑ2 − 2ϑd+ h(d)2

]
and setting f(d, ϑ) = ϑ2 − 2ϑd+ h(d)2 one gets:

E [f(d, ϑ)] =

∫
x,y

f(x, y) p(x, y) dxdy

where x and y are the current values taken on by d and ϑ and p(d, ϑ) is the joint
probability density of d and ϑ

• Recall the Bayes formula (of very general validity):

p(x, y) = p(y |x) p(x)
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Bayes Estimation (cont.)

• Hence:
E [f(d, ϑ)] =

∫
x,y

f(x, y) p(y |x) p(x) dxdy

=

∫
x

[ ∫
y

f(x, y) p(y |x) dy
]
p(x) dx

• On the other hand, by definition one has:∫
y

f(x, y) p(y |x) dy = E [ f(d, ϑ) | d = x ]

and thus:

E [ f(d, ϑ) | d = x ]

= E [ϑ2 | d = x ]− 2E [ϑh(d) | d = x ] + E [h(d)2 | d = x ]
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Bayes Estimation (cont.)

• Setting d = x implies that h(d) becomes a deterministic quantity and hence

E [ f(d, ϑ) | d = x ] = E [ϑ2 | d = x ]− 2h(x)E [ϑ | d = x ] + h(x)2

• Adding and subtracting {E [ϑ | d = x ]}2 one gets (completing the squares)

E [ f(d, ϑ) | d = x ] = {E [ϑ | d = x ]}2 − 2h(x)E [ϑ | d = x ] + h(x)2

+E [ϑ2 | d = x ]− {E [ϑ | d = x ]}2

= ∥E [ϑ | d = x ]− h(x)∥2 + E [ϑ2 | d = x ]− {E [ϑ | d = x ]}2
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Bayes Estimation (cont.)

• Therefore:

E
[
∥ϑ− h(d)∥2

]
=

∫
x

[ ∫
y

f(x, y) p(y |x) dy
]
p(x) dx

=

∫
x

[
∥E [ϑ | d = x ]− h(x)∥2 + E [ϑ2 | d = x ]

−{E [ϑ | d = x ]}2
]
p(x)dx

=

∫
x

∥E [ϑ | d = x ]− h(x)∥2︸ ︷︷ ︸
≥0

+var [ϑ | d = x ]︸ ︷︷ ︸
≥0

 p(x)dx

• Hence, one concludes that:
h◦(x) = E (ϑ | d = x)
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Bayes Estimation (cont.)

Optimal Bayes Estimator
The optimal Bayes estimator is the expected value conditioned to the actual observed
data:

ϑ̂ = h◦(δ) = E (ϑ | d = δ)

where δ is the specific value taken on by d as outcome of the random experiment

Remark. The generalisation to the vector case is trivial
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The Optimal Bayes Estimator

Optimal Bayes Estimation in the
Gaussian Case



Bayes Estimation in the Gaussian Case

Assume that d and ϑ are marginally and jointly Gaussian random variables:[
d

ϑ

]
∼ G

([
0
0

]
,

[
λdd λdϑ

λϑd λϑϑ

])

and

p(d, ϑ) = C exp

−12 [d ϑ]

[
λdd λdϑ

λϑd λϑϑ

]−1 [
d

ϑ

]
Letting λ2 = λϑϑ − λ2ϑd/λdd and recalling that λdϑ = λϑd one gets:[

λdd λϑd

λϑd λϑϑ

]−1
=

1
λdd(λϑϑ − λ2ϑd/λdd)

[
λϑϑ −λϑd

−λϑd λdd

]

=
1
λ2

[
λϑϑ/λdd −λϑd/λdd

−λϑd/λdd 1

]
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Bayes Estimation in the Gaussian Case (cont.)

Therefore:

1
2 [d ϑ]

[
λdd λϑd

λϑd λϑϑ

]−1 [
d

ϑ

]
= · · · = 1

2λ2
(
λϑϑ

λdd
d2 − 2λϑd

λdd
dϑ+ ϑ2

)

Moreover, by assumption: p(d) = C ′ exp

(
− 1
2λdd

d2
)
. Hence:

p(ϑ | d) = p(d, ϑ)

p(d)
=

C

C ′ exp

[
− 1
2λ2

(
λϑϑ

λdd
d2 − 2λϑd

λdd
dϑ+ ϑ2 − λ2d2

λdd

)]
=

C

C ′ exp

{
− 1
2λ2

[
d2

λdd

(
λϑϑ − λ2

)
− 2λϑd

λdd
dϑ+ ϑ2

]}
=

C

C ′ exp

[
− 1
2λ2

(
λ2ϑd
λ2dd

d2 − 2λϑd

λdd
dϑ+ ϑ2

)]
=

C

C ′ exp

[
− 1
2λ2

(
ϑ− λϑd

λdd
d

)2]
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Bayes Estimation in the Gaussian Case (cont.)

Optimal Bayes Estimator in the Gaussian Case

p(ϑ | d) = C

C ′ exp

[
− 1
2λ2

(
ϑ− λϑd

λdd
d

)2]
p(ϑ | d) is Gaussian with:

• Expected value: λϑd

λdd
d

• Variance: λ2 = λϑϑ − λ2ϑd
λdd

Thus, the Optimal Bayes Estimator is given by: ϑ̂ = h◦(x) = E (ϑ | d = x) =
λϑd

λdd
d

and
var (ϑ− ϑ̂) = E

[
(ϑ− ϑ̂)2

]
= λϑϑ − λ2ϑd

λdd
= λ2
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The Optimal Bayes Estimator

Optimal Linear Estimator



Optimal Linear Estimator

• Let us remove the assumption that d and ϑ are marginally and jointly Gaussian
random variables

• Let againE(d2) = λdd , E(ϑ2) = λϑϑ , E(ϑd) = λϑd

• Impose that the estimator takes on a linear structure:

ϑ̂ = αd+ β

where α and β are suitable parameters to be determined.
• Introduce the cost function:

J = E

[(
ϑ− ϑ̂

)2]
= E

[
(ϑ− αd− β)

2
]
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Optimal Linear Estimator (cont.)

Thus, one gets:
J = E

(
ϑ2 + α2d2 + β2 − 2αϑd− 2βϑ+ 2αβd

)
= λϑϑ + α2λdd + β2 − 2αλϑd − 2βE(ϑ) + 2αβE(d)

Hence: 
∂J

∂α
= 2αλdd − 2λϑd =⇒ α =

λϑd

λdd
∂J

∂β
= 2β =⇒ β = 0

thus getting the Optimal Linear Estimator:

ϑ̂ =
λϑd

λdd
d

Its variance is given by:

var (ϑ− ϑ̂) = E
[
(ϑ− ϑ̂)2

]
= λϑϑ + α2λdd + β2 − 2αλϑd = · · · = λ2
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Optimal Linear Estimator (cont.)

Remarks:

• The optimal linear estimator is formally equal to the Bayes one.
• If the Gaussian assumption on the random variables holds, then the optimal linear
estimator actually is the best possible in the minimum variance sense

• If the Gaussian assumption on the random variables does not hold, then the linear
estimator is sub-optimal, but still it is the best estimator constrained to take on a
linear structure in the case in which no further assumptions are introduced on the
probabilistic characteristics of the random variables
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Generalisation, Interpretations
and Remarks



Bayes Estimation: Generalisations

• If E(d) = dm , E(ϑ) = ϑm , then:
ϑ̂ = ϑm +

λϑd

λdd
(d− dm)

var (ϑ− ϑ̂) = λϑϑ − λ2ϑd
λdd

• If d and ϑ are vectors with E(d) = dm , E(ϑ) = ϑm and

var

([
d

ϑ

])
=

[
Λdd Λdϑ

Λϑd Λϑϑ

]
Λdϑ = Λ⊤

ϑd

Then: {
ϑ̂ = ϑm + Λϑd Λdd

−1 (d− dm)

var (ϑ− ϑ̂) = Λϑϑ − Λϑd Λdd
−1Λdϑ
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Bayes Estimation: Interpretations and Remarks

• Consider for simplicity the Bayes estimator in the case:

ϑ̂ = ϑm +
λϑd

λdd
(d− dm)

Then:
• ϑm = E(ϑ) is the a priori estimate: in case of no availability of observations , it is the
“more reasonable” estimate. In this case, we have:

var (ϑ− ϑ̂) = λϑϑ = var (ϑ)

• Instead, when observations are available, we have:

ϑ̂ = ϑm︸︷︷︸
a-priori estimate

+
λϑd

λdd
(d− dm)︸ ︷︷ ︸

correction due to the observation
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Bayes Estimation: Interpretations and Remarks (cont.)

• Clearly:
• If λϑd = 0 then ϑ̂ = ϑm and this is correct: it means that the data observation d is
uncorrelated with ϑ and hence it does not convey useful information for the estimate:
the a-posteriori estimate coincides with the a-priori one.

• If λϑd ̸= 0 then the estimate is corrected on the basis of the observed data:
• If λϑd > 0 then ϑ̂− ϑm and d− dm in the average keep the same sign and the correction is
more likely to keep the same sign as well

• If λϑd < 0 then ϑ̂− ϑm and d− dm in the average have a different sign and the correction
is more likely to change the same sign as well
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Bayes Estimation: Interpretations and Remarks (cont.)

• It also very important to enhance the role played by the variance λdd that
“quantifies” the degree of uncertainty of the observed data:

ϑ̂ = ϑm +
λϑd

λdd
(d− dm)

Hence: the larger λdd , the smaller the applied correction, that is, the update is
“more cautious”

• Moreover:
var (ϑ− ϑ̂) = λϑϑ − λ2ϑd

λdd
= λϑϑ

(
1− λ2ϑd

λϑϑλdd

)
and thus var (ϑ− ϑ̂) ≤ var (ϑ) and

var (ϑ− ϑ̂) < var (ϑ) if λϑd ̸= 0

The estimate cannot but improve whenever the observed data convey useful
information
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Geometric Interpretation



Bayes Estimation: Geometric Interpretation

• Assume that d and ϑ are marginally and jointly Gaussian random variables:[
d

ϑ

]
∼ G

([
0
0

]
,

[
λdd λdϑ

λϑd λϑϑ

])

Hence d and ϑ can be interpreted as vectors in a vector space
• Define the scalar product (ϑ, d) = E(ϑ · d)
• The usual properties of vector spaces equipped with scalar product hold true. In
particular:

∥ϑ∥ =
√

(ϑ, ϑ)

∥d∥ =
√
(d, d)

(ϑ, d) = ∥ϑ∥ ∥d∥ cosα

• Uncorrelated random variables: orthogonal vectors
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Bayes Estimation: Geometric Interpretation (cont.)

• Now:
ϑ̂ =

λϑd

λdd
d =

E(ϑ · d)
E(d · d)

d =
(ϑ, d)

∥d∥2
d =

(ϑ, d)

∥d∥2
∥ϑ∥
∥ϑ∥

d

=
(ϑ, d)

∥ϑ∥∥d∥
∥ϑ∥ d

∥d∥
= ∥ϑ∥ cosα

d

∥d∥

The optimal estimate ϑ̂ is the
projection of ϑ on the data vector
d

• Consider the vector ϑ− ϑ̂ . It follows that:
∥ϑ− ϑ̂∥2 = ∥ϑ∥2 − ∥ϑ̂∥2 = ∥ϑ∥2 − ∥ϑ∥2 (cosα)2

= λϑϑ − λϑϑ
λ2ϑd

λddλϑϑ
= λϑϑ − λ2ϑd

λdd

The square of the length of vector ϑ− ϑ̂ is the variance of the estimation error and
is minimal.
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Hands-On: Bayes Estimation of a Constant Parameter
Matlab live script
A Matlab live script illustrates an application of the Bayesian statistics
for parameter estimation in which uncertainties about models and
measurements are translated into uncertainties in estimates of
parameters.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture10,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L10_Bayes_Estimation_Example . mlx ' ) ;

• Explore the live script and run it.
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Hands-On: Bayes Estimation - an Interactive Experiment
Matlab live script
Given a Bayes estimation problem, what if the variance of one of the
observations becomes much smaller than the others? What if it
becomes much larger?
A Matlab live script allows us to modify the variance of one of the
observations and to analyse the resulting estimate properties.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture10,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L10_Bayes_Experiment . mlx ' ) ;
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