
Refactoring, Code Smells, 
Coupling and Cohesion

Dario Campagna

Head of Research and Development



Code Smells
Symptoms of a problem



A code smell is a surface indication that usually corresponds 
to a deeper problem in the system.

▪ Quick to spot 
▪ Provide feedback on our decisions 
▪ Don’t always indicate a problem worth solving

Code Smells



Categories of code smells

Bloaters 
• Long Method 
• Large Class 
• Primitive Obsession 
• Long Parameter List 
• Data Clumps

Couplers 
• Feature Envy 
• Inappropriate Intimacy 
• Message Chains 
• Middle Man

Object-orientation abusers 
• Switch Statements 
• Temporary Fields 
• Refused Bequest 
• Alternative Classes with Different Interfaces

Change preventers 
• Divergent Change 
• Shotgun Surgery 
• Parallel Inheritance Hierarchies

Dispensables 
• Lazy Class 
• Data Class 
• Duplicated Code 
• Dead Code 
• Speculative Generality 
• Comments

Have a look at https://refactoring.guru/refactoring/smells.

https://refactoring.guru/refactoring/smells


Use of primitive types instead of small 
objects for simple tasks.

▪ Replace data value with object 
▪ Replace type code with class 
▪ Replace array with object 
▪ …

Primitive Obsession



A method accesses the data of another 
object more than its own data.

▪ Move method 
▪ Extract method

Feature Envy



A message chain occurs when a client 
requests another object, that object requests 
yet another one, and so on.

▪ Hide delegate 
▪ Extract method 
▪ Move method

Message Chains

master.getModelisable()
.getDockablePanel()
.getCustomizer()
.getSaveItem()
 .setEnabled(Boolean.FALSE.booleanValue());



A message chain occurs when a client 
requests another object, that object requests 
yet another one, and so on.

▪ Hide delegate 
▪ Extract method 
▪ Move method

Message Chains

master.getModelisable()
.getDockablePanel()
.getCustomizer()
.getSaveItem()
 .setEnabled(Boolean.FALSE.booleanValue());

master.allowSavingOfCustomizations();



Five additional code smells described in the book “Refactoring 
to Patterns”.

▪ Conditional Complexity 
▪ Indecent Exposure 
▪ Solution Sprawl 
▪ Combinatorial Explosion 
▪ Oddball Solution

More Code Smells



Let’s find some code smells.

https://github.com/nicoleorzan/berlin_clock/blob/master/src/
main/java/berlinclock

Exercise

https://github.com/nicoleorzan/berlin_clock/blob/master/src/main/java/berlinclock
https://github.com/nicoleorzan/berlin_clock/blob/master/src/main/java/berlinclock


Coupling and Cohesion
Metrics that (roughly) describe how easy it will be to change the behavior of 
some code.



Measures the degree of interdependence between software 
components.

▪ Elements are coupled if a change in one forces a change in the 
other. 

▪ We want to make changes in a component without impacting 
other components. 

▪ We want coupling to be as low as possible, but not lower.

Coupling



Measures how strongly related and focused the 
responsibilities of a software module are.

▪ Indicates a component’s functional strength and how much it 
focuses on a single point. 

▪ Low cohesion results in behavior being scattered instead of 
existing in a single component. 

▪ We want high cohesion.

Cohesion

LIFE Magazine (March 4, 1946)



Indicators of possible high coupling.

Cohesion, coupling and code smells

High coupling
Indicators of possible low cohesion.
Low cohesion

• Data Class 
• Lazy Class 
• Middle Man 
• Primitive Obsession 
• Shotgun Surgery 

• Divergent Change 
• Feature Envy 
• Inappropriate Intimacy 
• Message Chains 
• Middle Man 
• Shotgun Surgery 



A TicTacToe implementation with quite a few code smells. 

https://github.com/dario-campagna/CodeSmells

▪ Start by identifying the smells. 
▪ Then slowly refactor the code.

Smelly Tic Tac Toe

https://github.com/dario-campagna/CodeSmells

