
Exercises Lecture IX
Ising Model

1. Ising Model on a square lattice
Write a code for a 2D Ising model on a square lattice in equilibrium with a thermal bath,
without external magnetic field, using the spin flip dynamics (considered as an actual
temporal evolution process), and periodic boundary conditions (PBC). See for instance the
code ising.f90.
A useful reference paper is D.P. Landau, Phys. Rev. B 13, 2997 (1976).
Input parameters are:

• L (linear lattice dimension, which gives the number of spins: N=L*L),

• nmcs (number of total MC steps per spin)

• nequil (number of equilibration MC steps per spin)

• T (temperature of the thermal bath).

Quantities of interest are: the magnetization per spin:

M

N
=

1

N

N∑
i=1

si;

the energy per spin, with < i, j > all over the nearest neighbor pairs:

E

N
= − J

N

∑
<i,j>

sisj ;

and quantities related to them, such as time (ensemble) averages, that we denote with ⟨⟩,
and response functions, i.e., the heat capacity per spin:

c = (< E2 > − < E >2)/kBT
2N,

and the magnetic susceptibility per spin, in absence of an external magnetic field:

χ = (< M2 > − < M >2)/kBTN.

Consider units such that kB=1, J=1.

(a) Choose L=30, T=2, and initially spin=±1 randomly. Calculate and plot the instan-
taneous values of energy E/N and magnetization M/N per particle as a function of
Metropolis-Monte Carlo steps: how much time (i.e. how many nequil MC steps) is
necessary to equilibrate the system? Plot the final snapshot of the spin pattern: does
the system appear ordered or disordered? Calculate also c and χ.

(b) Choose T=4 and repeat (a).

(c) For fixed T, e.g. for T=1 or T=2, change the initial condition of magnetization (choose
for instance some typical ordered configurations -all spins up, all spins down, alternati-
vely up or down as on a chessboard, all left hand side spins up and all right hand side
down, . . .). Does the equilibration time change?

1

(d) Change the temperature T by varying it from 1 to 4 with steps of ∆T = 0.5. Consider
runs long enough, so that the equilibrium has been reached and enough statistical data
are collected. Calculate ⟨E⟩/N, ⟨M⟩/N, c and χ; plot these quantities as functions
of T . Can you estimate from the plots the critical temperature (whose value Tc =
2.269 J/kB for 2D is known in case L → ∞)? Calculate numerically c both in terms of
energy fluctuations and doing the numerical derivative with respect to the temperature.
Compare the results.

(e) Repeat now (d) with L=4. Comment the results.

(f) Consider the case with open boundary conditions. (Modify the relevant parts of the
code concerning the calculation of the energy.) Repeat some runs with L=30 and L=4.
Comment the results.

(g) In ising.f90 the numerical estimate of E and M is implemented by updating E at each
MC step over the whole lattice, i.e. after one (on average) trial move for all the spins,
chosen randomly one at a time. Choose for instance L=30 and a certain value of T.
Can you see any difference if you choose the spins to flip in an ordered sequence?

(h) Instead of updating E after each MC step over all the spins, do it for each configuration,
i.e. after each single MC step per spin. Compare some results obtained with the two
methods, and discuss whether the two methods are equivalent or not.

(i) (optional) It is interesting also to visualise the variation of the spin pattern during the
evolution. It can be done using gnuplot. (Example available on moodle)

!cc

!c ising.f90

!c

!c Metropolis algorithm to calculate <E>, <M>, in the canonical ensemble

!c (fix T,N,V) with a 2D Ising model

!c

!c Here: K_B = 1

!c J = 1

!c

!cc

module common

implicit none

public :: initial,metropolis,DeltaE

public :: data,output

integer, public, parameter :: double = selected_real_kind(13)

real (kind = double), public :: T,E,M

integer, public, dimension(:,:), allocatable :: spin

real (kind = double), public, dimension(-8:8) :: w

integer, public, dimension(4) :: seed % CHANGE DIMENSION IF NEEDED

integer, public :: N,L,nmcs,nequil

integer, public :: accept

2

contains

subroutine initial(nequil,cum)

integer, intent (out) :: nequil

real (kind = double), dimension(5), intent (out) :: cum

integer :: x,y,up,right,sums,i,dE

real :: rnd

print *, "linear dimension of lattice L ="

read *, L

allocate(spin(L,L))

print *, "reduced temperature T ="

read *, T

N = L*L

print *, "# MC steps per spin for equilibrium ="

read *, nequil

print *, "# MC steps per spin for averages ="

read *, nmcs

print *, "seed (1:4) ="

read *, seed

call random_seed(put=seed)

M = 0.0_double

! random initial configuration

! compute initial magnetization

do y = 1,L

do x = 1,L

call random_number(rnd)

if (rnd < 0.5) then

spin(x,y) = 1

else

spin(x,y) = -1

end if

M = M + spin(x,y)

end do

end do

! compute initial energy

E = 0.0_double

do y = 1,L

! periodic boundary conditions

if (y == L) then

up = 1

else

up = y + 1

end if

do x = 1,L

if (x == L) then

right = 1

3

else

right = x + 1

end if

sums = spin(x,up) + spin(right,y)

! calculate the initial energy summing all over pairs

! (for a given spin, consider only the up NN and the right NN

! - NOT the down and the left NN - : each interaction is counted once

E = E - spin(x,y)*sums

end do

end do

!

! calculate the transition probability according

! to the Boltzmann distribution (exp(-deltaE/KT).

! Choosing the interaction parameter J=1, ***ONLY IN CASE OF P.B.C.***

! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4

w(dE) = exp(-dE/T)

end do

accept = 0

cum = 0.0_double

end subroutine initial

subroutine metropolis()

! one Monte Carlo step per spin

integer :: ispin,x,y,dE

real :: rnd

do ispin = 1,N

! random x and y coordinates for trial spin

call random_number(rnd)

x = int(L*rnd) + 1

call random_number(rnd)

y = int(L*rnd) + 1

dE = DeltaE(x,y)

call random_number(rnd)

if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)

accept = accept + 1

M = M + 2*spin(x,y) ! factor 2 is to account for the variation:

E = E + dE ! (-(-)+(+))

end if

end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)

! periodic boundary conditions

integer, intent (in) :: x,y

4

integer :: DeltaE_result

integer :: left

integer :: right

integer :: up

integer :: down

if (x == 1) then

left = spin(L,y)

right = spin(2,y)

else if (x == L) then

left = spin(L-1,y)

right = spin(1,y)

else

left = spin(x-1,y)

right = spin(x+1,y)

end if

if (y == 1) then

up = spin(x,2)

down = spin(x,L)

else if (y == L) then

up = spin(x,1)

down = spin(x,L-1)

else

up = spin(x,y+1)

down = spin(x,y-1)

end if

DeltaE_result = 2*spin(x,y)*(left + right + up + down)

! also here the factor 2 is to account for the variation

end function DeltaE

subroutine data(cum)

! accumulate data after every Monte Carlo step per spin

real (kind = double), dimension(5), intent (inout) :: cum

cum(1) = cum(1) + E

cum(2) = cum(2) + E*E

cum(3) = cum(3) + M

cum(4) = cum(4) + M*M

cum(5) = cum(5) + abs(M)

end subroutine data

subroutine output(cum)

real (kind = double), dimension(5), intent (inout) :: cum

real (kind = double) :: eave,e2ave,mave,m2ave,abs_mave

real :: acceptance_prob

acceptance_prob = real(accept)/real(N)/real(nmcs+nequil)

eave = cum(1)/real(N)/real(nmcs)

e2ave = cum(2)/real(N*N)/real(nmcs)

5

mave = cum(3)/real(N)/real(nmcs)

m2ave = cum(4)/real(N*N)/real(nmcs)

abs_mave = cum(5)/real(N)/real(nmcs)

print *, "temperature =", T

print *, "acceptance probability =", acceptance_prob

print *, "mean energy per spin =", eave

print *, "mean squared energy per spin =", e2ave

print *, "mean magnetization per spin =", mave

print *, "mean squared magnetization per spin =", m2ave

print *, "mean |magnetization| per spin =", abs_mave

end subroutine output

end module common

program ising

! metropolis algorithm for the ising model on a square lattice

use common

integer :: imcs,ispin,jspin

real (kind = double), dimension(5) :: cum

call initial(nequil,cum)

! equilibrate system

do imcs = 1,nequil

call metropolis()

end do

! accumulate data while updating spins

do imcs = 1,nmcs

call metropolis()

call data(cum)

end do

call output(cum)

! write the coordinates of spins up and down on files for plotting

open(unit=8,file=’ising-up.dat’,status=’replace’)

open(unit=9,file=’ising-down.dat’,status=’replace’)

do jspin = 1,L

do ispin = 1,L

if(spin(ispin,jspin)==1)write(8,*)ispin,jspin

if(spin(ispin,jspin)==-1)write(9,*)ispin,jspin

end do

end do

close(8)

close(9)

deallocate(spin)

end program ising

6

