Configurazione elettronica fondamentale (a più bassa energia) degli atomi I gusci di valenza contengono gli elettroni più esterni, a più alta energia e che formano i legami **1s** 2px 2pz 3px 2py 3py 3pz Н He Li Be В N F Ne Na Mg Al Si S Cl Ar

Tabella 1.5 Valori di elettronegatività di alcuni atomi (scala di Pauling)

1 A	2 A							H 2.1				3 A	4A	5 A	6 A	7 A
Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0
Na 0.9	Mg 1.2	3B	4B	5B	6 B	7 B	_	8B	_	1 B	2 B	Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
Cs 0.7	Ba 0.9	La 1.1	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	T1 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2
	<1. 1.0	0 - 1.4] 1.5 -			2.5 – 2 3.0 – 4									

Tioli

-SH gruppo solfidrilico

CH₃CH₂SH etantiolo CH₃CH₂CH₂SH 1-propantiolo CH₃
CH₃CHCH₂CH₂SH
3-metil-1-butantiolo

HSCH₂CH₂OH 2-mercaptoetanolo

 Si seguono le regole della nomenclatura IUPAC usate per gli alcoli

Na⁺ -SH idrosolfuro di sodio

H₂S solfuro di idrogeno (acido solfidrico)

Il gruppo -SH come sostituente

2-mercaptoetanolo

acido 2-mercaptoetanoico

Solfuri

 $CH_3 - S - CH_3$

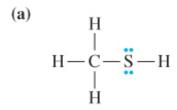
S-CH₃

NOMI COMUNI

Dimetil solfuro

Fenil metil solfuro

IUPAC


Metiltio metano

Metiltio benzene

Nomenclatura IUPAC dei solfuri: Si segue il principio usato per gli eteri. Il gruppo etereo non ha mai priorità, è sempre considerato sostituente alcossialcano

Etossietano

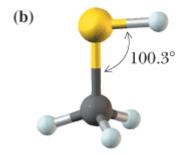


Figura 10.4

Metantiolo, CH₃SH.

- (a) Struttura di Lewis e
- (b) modello a sfere e bastoncini.

Tioli:

proprietà chimico fisiche

-SH gruppo solfidrile

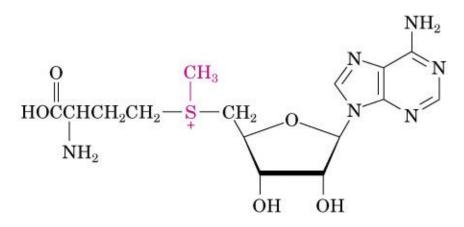
Tioli: proprietà chimico fisiche

Tabella 10.3	Punti di ebollizione di tioli e alcoli con lo stesso numero di atomi di carbonio							
Tiolo	p.e. (°C)	Alcol	p.e. (°C)					
Metantiolo	6	Metanolo	65					
Etantiolo	35	Etanolo	78					
1-Butantiolo	98	1-Butanolo	117					

Interazioni intermolecolari più deboli rispetto agli alcoli (S meno elettronegativo, legami meno polari)

Tioli: acidità I tioli sono acidi più forti degli alcol

$$CH_3CH_2OH + H_2O \Longrightarrow CH_3CH_2O^- + H_3O^+ \qquad pK_a = 15.9$$
 $CH_3CH_2SH + H_2O \Longrightarrow CH_3CH_2S^- + H_3O^+ \qquad pK_a = 8.5$


$$CH_3CH_2SH + Na^+OH^- \longrightarrow CH_3CH_2S^-Na^+ + H_2O$$

$$pK_a = 8.5 \qquad pK_a = 15.7$$
(Acido più forte) (Base più forte) (Base più debole) (Acido più debole)

RS- più stabile degli ioni alcossidi: la carica negativa è distribuita su un volume maggiore date le dimensioni dell'atomo di S

Sintesi tioli (Sn2): vedi capitolo *alogenuri alchilici*

Nucleofilicità dei solfuri: Sn2 con formazione di Sali di solfonio

S-Adenosilmetionina (un sale di solfonio)

Ossidazione dei tioli: formazione di disolfuri

2 RSH +
$$\frac{1}{2}$$
O₂ → RSSR + H₂O

Un tiolo Un disolfuro

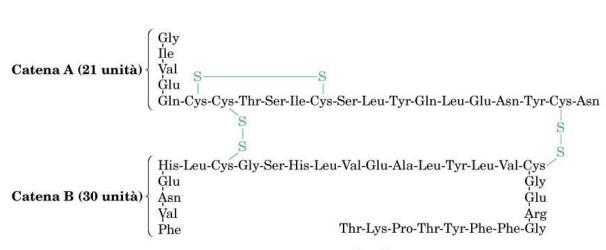
2 RSH + I₂ → RSSR + 2 HI

Un tiolo Un disolfuro

Formazione di ponti disolfuro: importanti nelle proteine

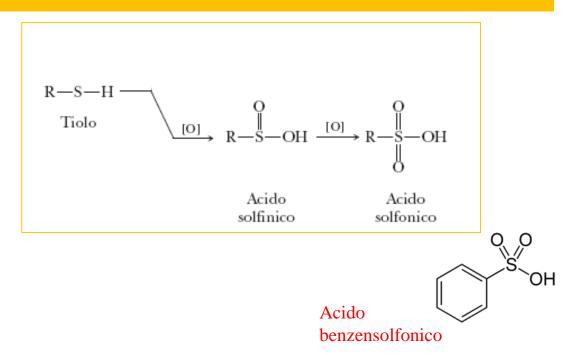
Ponti disolfuro tra cisteine.

Sono questi ponti che vengono manipolati nel processo della permanente (proteine dei capelli!).


$$\begin{array}{c} H H_2N \\ H \\ C \\ C \\ CH_2 \\ \end{array}$$

$$+ \\ C \\ CH_2 \\ C \\ H \\ NH_2 \\ H$$

$$+ \\ C \\ CH_2 \\ C \\ N \\ \end{array}$$


$$+ \\ C \\ CH_2 \\ CH_2$$

Ponti disolfuro nell'insulina

Insulina

Ossidazione dei tioli ad acidi solfonici:

Solfonammidi: farmaci sulfammidici

- Farmaci di sintesi derivati
- dell'ammide dell'acido solfonico

• Usati in terapia contro i batteri

Ossidazione dei solfuri a solfossidi e solfoni

$$\begin{array}{c} O \\ \parallel \\ S \\ H_3C \end{array} \begin{array}{c} \textbf{Dimetil solfossido} \\ \textbf{(solvente polare aprotico)} \end{array}$$

$$R - \ddot{S} - R \xrightarrow{ossidazione} \begin{bmatrix} :O: & :\ddot{O}: - \\ \| & | \\ R - \ddot{S} - R & \longrightarrow R - \overset{\circ}{S} - R \end{bmatrix} \xrightarrow{ossidazione} \begin{bmatrix} :O: & :\ddot{O}: - \\ \| & | \\ R - \overset{\circ}{S} - R & \longrightarrow R - \overset{\circ}{S} + \overset{\circ}{Z} + R \\ \| & :O: & :O: - \end{bmatrix}$$
un solfone

(11.69)