
INFORMATION
RETRIEVAL
Laura Nenzi 
lnenzi@units.it

Lecture 3-4

mailto:lmanzoni@units.it

LECTURE OUTLINE

PRACTICAL PART 
A PYTHON IMPLEMENTATION

OF A SIMPLE BOOLEAN
RETRIEVAL SYSTEM

Data Structures 
for dictionaries

*
Wildcard Queries

Spelling Correction

CATT

DO YOU MEAN “CAT”?

SEARCH

+ IMPLEMENTATION

DATA STRUCTURES FOR DICTIONARIES

HASH TABLES & TREES

HOW IS A DICTIONARY ACTUALLY REPRESENTED?

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONED

ABANDONING

ABANDONMENT

• It is necessary to search in a dictionary 
that can be quite large

• Something more efficient than a linear  
scan is needed

• Two main approaches:

• Hash tables

• Trees (binary trees, b-trees, tries, etc.)

A BRIEF RECAP

HASH TABLES

HASH 
FUNCTION

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONED

ABANDONING

ABANDONMENT

0

1

2

3

4

5

6

7

8

9

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDONED

ABANDON
ABANDONING

ABANDONMENT

SOME EXAMPLES

HASH FUNCTIONS

Traditional for integers: where is the size of the tableh(x) = x mod m m

How to manage strings? H E L L O

Component sum 
split the string into chunks and 
sum (or xor) them.

H E L L O

104 + 101 + 108 + 108 + 111 = 532

Polynomial accumulation 
consider each chunk as a coefficient of 
a polynomial, then evaluate it for a fixed 
value of the unknown

H E L L O

104 + 101x + 108x2 + 108x3 + 111x4

for x = 33 it evalues to 135639476

A BRIEF RECAP

HASH TABLES

• A hash function assign to each input (term) an integer number,
which is the position of the term in a table.

• Collisions: sometimes for two different inputs the hash function
returns the same value.

• Load factor: .

• Lower load factor: higher memory usage but less risk of collisions

• Higher load factor: lower memory usage but higher risk of
collisions

elements
size of the table

MANAGING COLLISIONS

HASH TABLES

• Open addressing. All entries are stored in the table, in case of
collision the first free slot according to some probe sequence is
found (e.g., linear or quadratic probing).

• Chaining. Each “cell” is a list of all entries with the same hash.

• Perfect hashing. For a fixed set it is possible to compute an
hashing function with no collisions.

• Other collision resolution techniques, like cuckoo hashing. It
shares some characteristic of perfect hashing while allowing
updates.

THE GOOD, THE BAD, AND THE UGLY

HASH TABLES

• Finding an element in a hash table requires expected time.

• In some cases (e.g., perfect hashing) this can also be the worst
case time.

• Adding new elements might require rehashing (i.e., reinsertion of
all elements into a bigger table) which is costly. This is needed to
keep the load factor low enough.

• Some kind of searches are not possible, like looking for a prefix.
In general anything that requires something different form the
exact term.

O(1)

A BRIEF RECAP

BINARY TREES

A binary tree is a tree in which 
each node has at most two 
children

Each node has an associated value 
(a term in our case)

A binary search tree has the property 
that the left subtree has only vales 
smaller than the value in the root and the right subtree only values
that are larger.

This means that, if the tree is balanced, search can happen in
 steps.O(log n)

AN EXAMPLE OF BINARY SEARCH TREE

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONMENT

ABANDONING

ABANDONED

THE GOOD, THE BAD, AND THE UGLY

BINARY TREES

Binary search trees solve most of the problems of hash tables:

• Insertion (and deletion) are not expensive.

• Searching a prefix is possible.

• As long as the tree is kept balanced, search il efficient.

• But binary trees do no play well with disk access.
accesses to the main storage might be costly.

• A way to reduce the number of disk accesses while still using
trees is via B-trees.

O(log n)

B-TREES

ABANDONAACHEN

A ABABA

ABANDONED ABANDONING ABANDONMENT

ABABAS ABACK ABADAN

B-trees can be seen as a generalisation of binary search trees in
which each node has between and children.a b

STRUCTURE OF A B-TREE NODE

a1 a2 a3 a4

The node can contain up to four values 
and five pointers to subtrees each respecting 
a “generalised” version of the BST property

x < a1 a1 < x < a2 a2 < x < a3 a3 < x < a4 x > a4

The size of a node is usually selected to be a “block”

AND NOT SIMPLY BINARY SEARCH TREES?

WHY B-TREES?

• If you have to search across elements then you need to go
through at most:

• nodes in a binary search tree.

• nodes in a B-tree, where is the size of the block.
Suppose , then .

• This number corresponds to the number of disk accesses, which
are the ones dominating the running time.

106

⌈log2(106)⌉ = 20

⌈logB(106)⌉ B
B = 100 ⌈log100(106)⌉ = 3

ALSO KNOWN AS PREFIX TREES

TRIES

A trie is a special kind of tree based on the idea of searching 
by looking at the prefix of a key

The key itself (the term in our case) provides the path along 
the edges of the trie

Access time: worst case where is the size of the key. 
This is optimal because we must read the key.

Insertion is still possible and efficient.

O(m) m

TRIES: AN EXAMPLE

A

ACHEN BA

BA CK DAN NDON

S
ED ING MENT

There isn’t key corresponding to the path from the root to this node

There is a key corresponding to the path from the root to this node

Where are the terms?
They are encoded 
in the paths from the 
root of the tree to a node

TRIES: PROS AND CONS

• Tries have access time that is as good as hash tables 
(the time for hash tables assumes a constant-length key)

• Differently from hash tables, there cannot be collisions.

• Insertion is still efficient.

• Search inside a range of key is very efficient.

• There can still be problems of too many accesses to disk.

• There ara variants of tries for external storage that mitigate the
problem

O(1)

WILDCARD QUERIES

SEARCHING AN ENTIRE SET OF WORDS

WHAT ARE WILDCARD QUERIES?

• Examples of wildcard queries:

• Car*: captures “car”, “cars”, “cart”, “carbon”, etc.

• *e*a*: captures “flea”, “ear”, “head”, “Eva”, etc.

• The uses might use wildcard queries when he/she:

• Is uncertain of the spelling of a word.

• Knows that a word has multiple spellings.

• Want to catch all variants of term 
(which might also be “captured” by stemming).

In a binary tree/b-tree or 
a variant (as shown below) 

all terms are inside 
a collection of subtrees

THE SIMPLEST CASE

TRAILING WILDCARDS

term* Trailing wildcard 
there is only one wildcard  
and it is at the end of the word

CAT DOG DRONEBOX CARBON CARTBART

Let us consider the query CA*
We can retrieve the posting lists 

of all of them and perform 
a union of the results

Then the “leading wildcard” is 
like an “inverse wildcard” 

for the reverse B-tree

AND REVERSE (B-)TREES

LEADING WILDCARDS

*term Leading wildcard 
there is only one wildcard  
and it is at the beginning of the word

CATDOGDRONE BOXCARBON CARTBART

Let us consider the query *T

We can build an additional B-tree 
with the words ordered in reverse

MANAGING GENERAL WILDCARD QUERIES

PERMUTERM INDEX

• Now we can answer all queries with leading and trailing wildcards.

• What about queries like “word1*word2”?

• Can we reformulate the problem of “one wildcard” as a leading or
trailing wildcard problem?

• Yes, using the “permuterm index”

• We can also extend the solution to queries with more than one
wildcard.

MANAGING GENERAL WILDCARD QUERIES

PERMUTERM INDEX

C A T $ Special “end of word” symbol

CA T $

C AT $

C A T$

Rotations of the word

We insert all the rotations of the word (including the “end of word”) 
in the dictionary.

All the rotations of the same word points to the same postings list

MANAGING GENERAL WILDCARD QUERIES

PERMUTERM INDEX

C*TOur query:

C*T$ Put the “end of word” at the end

T$C* Rotate the word to have the wildcard at the end

We can have a trailing wildcard, that we 
know how to solve!

POSTINGS LIST FOR
“CAT”

POSTINGS LIST FOR
“CART”

Term in the dictionary

T$CAR

T$CA

WHAT ABOUT MULTIPLE WILDCARDS?

PERMUTERM INDEX

*A*TOur query:

*A*T$ Put the “end of word” at the end

*T$ Consider the more general query where everything 
between the first and last wildcard is “folded” 
inside a single wildcard

T$* Rotate to have a trailing wildcard query

CATCARTBART BORT
Collect all the terms matching the 
simplified query

Scan the list to remove the ones not matching the original query

ADVANTAGES AND DISADVANTAGES

PERMUTERM INDEX

• We can now answer wildcard queries with any number of
wildcards!

• Even if for more than one wildcard a linear scan of a list of terms
is still needed.

• There is an interesting interplay between the algorithm that we
use and the data structures employed.

• The main problem of permuterm indices: the amount of space
needed to store all rotations of a word. A word with letters will
have rotations (due to the “end of word” symbol).

n
n + 1

ANOTHER WAY TO MANAGE WILDCARD QUERIES

K-GRAM INDEXES

k-gram: a sequence of charactersk

DRONE

DRO
RON

ONE

3-grams of “DRONE”

We create a dictionary of -grams 
obtained from all the terms

k

DRO
RON

ONE

We actually use the 
“$” symbol to denote  
the beginning and end 
of the word

$DR

NE$

AN EXAMPLE

K-GRAMS INDEXES

CARBON

CARTBART

DRO

RON

ONE

DOG

CAR

ARB

RBO

BON

CAT

BAR

ART

BOX

All 3-grams in 
the dictionary

BART

CARBON

BOX

CARBON CART

CAT

DOG

DRONE

DRONE

CARBON

DRONE

Each 3-gram points to the list 
of terms containing it.

-GRAMSk

TERMS

POSTINGS

The current structure 
of the system:

+
be

gi
nn

in
g

an
d

en
d

of
 s

tr
in

gs

HOW TO USE THEM TO ANSWER QUERIES

K-GRAMS INDEXES

CARBON

CARTBART

CAR

ARB

BON

BAR

ART

BOX

BART

CARBON

BOX

CARBON CART

CA*ONOur query:

$CA CARBON CART CAT

$CA*ON$Add “$”:

$CAExtract 3-grams: ON$

ON$ CARBON

…
…

Search each one of the 3-grams

Intersect the results: CARBON

HOW TO USE THEM TO ANSWER QUERIES

K-GRAMS INDEXES

CARBON

CARTBART

CAR

ARB

BON

BAR

ART

BOX

BART

CARBON

BOX

CARBON CART

CA*ONOur query:

$CA CARBON CART CAT

$CA*ON$Add “$”:

$CAExtract 3-grams: ON$

ON$ CARBON

…
…

Search each one of the 3-grams

Intersect the results: CARBON

ADVANTAGES AND DISADVANTAGES

K-GRAMS

• They allow to answer wildcard queries

• A filtering step might still be needed:

• Query: GOL*

• 3-grams: $GO and GOL

• Possible element of the intersection: GOGOL, which does not respect
the original query.

• -grams can also be used to help in spelling correction

• Most commonly, the capability is hidden behind an interface (say an
“Advanced Query” interface) that most users never use

k

SPELLING CORRECTION

BASICS OF SPELLING CORRECTION

• There are two main principle behind spelling correction:

• If a word is misspelled, then find the nearest one.

• If two or more words are tied (or nearly tied) select the most
frequent word (in the collection).

• Which means that we need to define what “nearest” means.

• Two main approaches for addressing the isolated-term correction:

• Edit (or Levenshtein) distance

• -grams overlapk

AKA LEVENSHTEIN DISTANCE

EDIT DISTANCE

• The idea is that the distance between two words and is
given by the smallest number of edit operations that must be
performed to transform in .

• The possible edit operations are:

• Insert a character in a string (e.g, from brt to bart).

• Delete a character from a string (e.g., from caar to car).

• Replace a character in a string (e.g., from arx to art).

w1 w2

w1 w2

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

• How to compute efficiently the edit distance?

• There is a classical dynamic programming algorithm the runs in
time , where denotes the length of a word.

• We are now going to detail the idea formally and then with an
example

O(|w1 | × |w2 |) | ⋅ |

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

• Let and with characters and words.

• The main idea is that you know the edit distance
between and is the minimum between:

• if (i.e., we replace by)

• if (i.e., the distance does not increase)

• (i.e., we remove from the first word)

• (i.e., we add in the second word)

w1 = v1a w2 = v2b a, b v1, v2

d(w1, w2)
w1 w2

d(v1, v2) + 1 a ≠ b a b

d(v1, v2) a = b

d(v1, v2b) + 1 a

d(v1a, v2) + 1 b

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

H O M Eε

ε

H

O

U

S

E

Distance between “HOM” and “H”

Distance between “HOUS” and “HO”

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

H O M Eε

ε

H

O

U

S

E

0 1 2 3 4

2

4

1

3

5

The distance between a word 
and an empty string is simply 
the length of the word

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

H O M Eε

ε

H

O

U

S

E

0 1 2 3 4

2

4

1

3

5

This is the minimum between:

d(ε, H) + 1 = 2

d(H, ε) + 1 = 2

d(ε, ε) + 0 = 0

0

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

H O M Eε

ε

H

O

U

S

E

0 1 2 3 4

2

4

1

3

5

This is the minimum between:

d(HO, ε) + 1 = 3

d(H, H) + 1 = 1

d(H, ε) + 1 = 2

0 1

WITH DYNAMIC PROGRAMMING

COMPUTING THE EDIT DISTANCE

H O M Eε

ε

H

O

U

S

E

0 1 2 3 4

2 1 0 1 2

4 3 2 2 2

2 31

2 1 1 23

4 3 3 25

We compute each element of 
the matrix

The result is in the bottom right 
corner of the matrix

Computing the value for one cell 
requires constant time…

…and there are cellsO(|w1 | × |w2 |)

0 1

ADVANTAGES AND DISADVANTAGES

THE EDIT DISTANCE

• By computing the edit distance we can find the set of words that
are the closest to a misspelled word.

• However, computing the edit distance on the entire dictionary can
be too expensive.

• We can use some heuristics to limit the number of words, like
looking only at words with the same initial letter (hopefully this
has not been misspelled).

• Or we can use -grams to retrieve terms with low edit distance
from the misspelled word.

k

THIS TIME FOR SPELLING CORRECTION

K-GRAM INDEXES

• We can try to retrieve terms with “many” -grams in common with
a word.

• We hypothesise that having “many” -grams in common is
indicative of a low edit distance.

• This might not be true. Consider the the word “cata”:

• it has all of its 2-grams in common with “catastrophic”, but it is
not a “good” correction.

• “cats”, which has has fewer 2-gram in common, is a more
reasonable correction

k

k

MEASURING THE OVERLAP OF TWO SETS

THE JACCARD COEFFICIENT

|A ∩ B |
|A ∪ B |

The Jaccard coefficient of two sets and is defined as:A B

We can use the Jaccard coefficient to select the terms 
obtained by looking at the -grams in common.k

In this “cata” and “catastrophe” have a Jaccard coefficient 
of , while “cata” and “cats” of .3/10 1/2

To compute the Jaccard coefficient, we only need the length
of the strings, n_common/(n_bg1 + n_bg2 - n_common).

IN PRACTICE

EDIT DISTANCE AND K-GRAMS

• For Smaller Datasets: Edit distance might be preferred due to its
accuracy in finding closely related words.

• For Larger Datasets or Faster Performance: K-grams might be
chosen for their efficiency and ability to handle a broader range of
misspellings.

• Hybrid Approaches: Some systems use both methods in
conjunction, first using k-grams to narrow down the list of
candidate corrections and then applying edit distance to find the
best match among those candidates.

IN PRACTICE

EDIT DISTANCE VS K-GRAMS

• For Smaller Datasets: Edit distance might be preferred due to its
accuracy in finding closely related words.

• For Larger Datasets or Faster Performance: K-grams might be
chosen for their efficiency and ability to handle a broader range of
misspellings.

• Hybrid Approaches: Some systems use both methods in
conjunction, first using k-grams to narrow down the list of
candidate corrections and then applying edit distance to find the
best match among those candidates.

SOMETIMES CONTEXT IS IMPORTANT

CONTEXT-SENSITIVE CORRECTION

• Sometimes all the words of a query are spelled correctly… 
…but one is actually the wrong word.

• Consider “Flights form Malpensa”. 
The correct query should have been “Flights from Malpensa”.

• How can we mitigate the problem?

• Substitute one at a time the words of the query with the most
similar in the dictionary, perform the modified queries and look at
the variants with most results.

• Can be expensive, but some heuristics can help (e.g., looking at
common pairs of words)

WHEN A WORD IS WRITTEN “AS IT SOUNDS”

PHONETIC CORRECTION

• Sometimes the user does not know how to spell a word…

• …so he/she tries to write it based on the sound…

• …and gets the result wrong.

• We can try to correct this kind of error by using specific
algorithms that tries to put similar-sounding words in the same
equivalence class.

• These algorithms are language-specific (or, at least, non universal).

• For English we will see the Soundex algorithm.

SOUNDEX ALGORITHM

Keep the first letter unchanged through the algorithmMARSHMALLOW

Change all occurrences of A, E, I, O, U, H, W, Y to 0 M0RS0M0LL00

Convert the letters according to the following table: 
1) B, F, P, V 
2) C, G, J, K, Q, S, X, Z 
3) D,T  
4) L 
5) M, N 
6) R

M0620504400

Remove all occurrences of 0 and pad the string with 0M6254400000

M625 Return the first four positions (1 letter, 3 digits)

HOW TO USE IT

THE SOUNDEX ALGORITHM

• We can search for words with the same “phonetic hash” as the
ones in the query.

• The mains ideas that make the Soundex algorithm work are:

• Vowels are seen as interchangeable.

• Consonants are assigned to different equivalence classes
depending on how they sound.

• The algorithm, however, is not perfect. There can be words that
sound similar with different “phonetic hashes” and vice versa.

