
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

I Semestre 2023

Lecture 13: Automata and Temporal Logic

[Many Slides due to J. Deshmukh, USC, LA,USA]

2

□ !,# 𝑥 > 0 ⇒ à !,# (𝑦 > 0 ∧ à $,$.$$! 𝑦 < 0 ⇒ 𝑥 > 1 ∨ (𝑥 < −1)

□ !,#
𝑥 >

0 ∧ à $,$
.$$
!
𝑦 <

0 ⇒
𝑥 >

1 ∨ (𝑥
< −

1)

□
!,#
𝑥 >

0
∨	(𝑥 <

−1)

□ !,#
𝑥 >

0
∧ à

$,$
.$$
!
𝑦 <

0
⇒
𝑥 >

1
∨ (
𝑥 <

−1
)

u Specifications for most programs: functional
�Program starts in some state 𝑞, and terminates in some other state 𝑟,

specification defines a relation between all pairs (𝑞, 𝑟) given 𝑞, 𝑟 ∈ 𝑄

u Specifications for reactive systems:
�Program never terminates!
�Starting from some initial state (say 𝑞), all infinite behaviors of the program

should satisfy certain property

Specifications/Requirements

3

Small detour

4

u Most programmers have used regular expressions
u Regular Expressions (RE) are sequences of characters that specify

(acceptable) pattern of finite length
u Example:

� [a-z][a-z 0-9] : strings starting with a lowercase letter (a-z) followed by one
lowercase letter or number

� [a-z][0-9]*[a-z] : strings starting with a lowercase letter, followed by finitely
many numbers followed by a lowercase letter

Detour to automata and formal languages

5

Famous equivalence between FSA and regular expressions:
� For every regular expression 𝑅! , there is a corresponding FSA 𝐴! that accepts the set of

strings generated by 𝑅! .
� For every FSA 𝐴! there is a corresponding regular expression that generates the set of

strings accepted by 𝐴! .

Finite State Automata (FSA)

6

𝑞! 𝑞"
a-z

𝑞#
a-z,0-9

[a-z][a-z 0-9]

𝐴!

State

Accepting
state

u What strings are accepted by 𝐴$?
�ab, zy, s2r, q123s, u3123123v, etc.

u What strings are not accepted by 𝐴$?
�2b, 334a, etc.

Language of a finite state automaton

7

𝑞! 𝑞"a-z

𝑞#
a-z

0-9

𝐴"

𝑞%

*

0-9

How does a Finite State Automaton work?

8

u Starts at the initial state 𝑞"
u In 𝑞", if it receives a letter in a-z, goes to 𝑞#

else, it goes to 𝑞$
u In 𝑞#, if it receives a number in 0-9, it stays in 𝑞#

else, it goes to 𝑞% (as it received a-z)
u In 𝑞$, no matter what it gets, it stays in 𝑞$
u 𝑞% is an accepting state where computation halts

u Any string that takes the automaton from 𝑞" to 𝑞% is
accepted by the automaton

𝑞! 𝑞"a-z

𝑞#
a-z

0-9

𝐴"

𝑞%

*

0-9

[a-z][0-9]*[a-z]

u The set of all strings accepted by 𝐴$ is called its language

u The language of a finite state automaton consists of strings, each of which
can be arbitrarily long, but finite

Language of a finite state automaton

9

LTL

10

u Temporal Logic (literally logic of time) allows us to specify infinite sequences
of states using logical formulae

u Amir Pnueli in 1977 used a form of temporal logic called Linear Temporal
Logic (LTL) for requirements of reactive systems: later selected for the 1996
Turing Award

u Clarke, Emerson, Sifakis in 2007 received the Turing Award for the model
checking algorithm, originally designed for checking Computation Tree Logic
(CTL) properties of distributed programs

Temporal Logic

11

u Syntax: A set of operators that allow us to construct formulas from specific
ground terms

u Semantics: A set of rules that assign meanings to well-formed formulas
obtained by using above syntactic rules

u Simplest form is Propositional Logic

What is a logic in context of today’s lecture?

12

u Simplest form of logic with a set of:
� atomic propositions:

𝐴𝑃 = 𝑝, 𝑞, 𝑟, …
�Boolean connectives:

∧,∨, ¬,⇒,≡

u Syntax recursively gives how new
formulae are constructed from
smaller formulae

Propositional Logic

13

Syntax of Propositional Logic

𝜑 ∷= 𝑡𝑟𝑢𝑒 | the true formula

𝑝 | 𝑝 is a prop in AP

¬𝜑 | Negation

𝜑 ∧ 𝜑 | Conjunction

𝜑 ∨ 𝜑 | Disjunction

𝜑 ⇒ 𝜑 | Implication

𝜑 ≡ 𝜑 | Equivalence

u Semantics (i.e. meaning) of a formula
can be defined recursively

u Semantics of an atomic proposition
defined by a valuation function 𝜈

u Valuation function assigns each
proposition a value 1 (true) or 0
(false), always assigns the 𝑡𝑟𝑢𝑒
formula the value 1, and for other
formulae is defined recursively

Semantics

14

Semantics of Prop. Logic

𝜈(𝑡𝑟𝑢𝑒) 1

𝜈 𝑝 1 if 𝜈 𝑝 = 1

𝜈 ¬𝜑
1 if 𝜈 𝜑 = 0
0 if 𝜈 𝜑 = 1

𝜈(𝜑# ∧ 𝜑&)
1 if 𝜈 𝜑# = 1 and 𝜈 𝜑& = 1,
0 otherwise

𝜑# ∨ 𝜑& 𝜈 ¬(¬𝜑# ∧ ¬𝜑&)

𝜑# ⇒ 𝜑& 𝜈 ¬𝜑# ∨ 𝜑&

𝜑# ≡ 𝜑& 𝜈 𝜑# ⇒ 𝜑& ∧ 𝜑& ⇒ 𝜑#

u 𝑝 : There is an upright bicycle in the
middle of the road

u r: the bicycle has a rider
u 𝑝 ⇒ 𝑟: If there is an upright bicycle in

the middle of the road, the bicycle has
a rider

u 𝑞 : There is car in the field of vision
u 𝑜&: Car 𝑖 is in the intersection
u 𝑜# ∧ ¬𝑜$ ∨ (¬𝑜# ∧ 𝑜$)

Examples

15

u 𝜈: 𝑝# ↦ 1, 𝑝$ ↦ 0, 𝑝' ↦ 0. What is 𝜈 𝑝# ∧ 𝑝$ ⇒ 𝑝' ?
u 𝜈 𝑝# ∧ 𝑝$ ⇒ 𝑝' =1

u 𝜈: 𝑝# ↦ 1, 𝑝$ ↦ 0, 𝑝' ↦ 0. What is 𝜈 (𝑝#⇒ 𝑝') ∧ 𝑝$ ⇒ 𝑝'
u 𝜈 (𝑝#⇒ 𝑝') ∧ 𝑝$ ⇒ 𝑝' =0

u Is this true? 𝜈 𝑝# ∧ 𝑝$ ⇒ 𝑝' ≡ 𝑝# ⇒ 𝑝' ∧ 𝑝$ ⇒ 𝑝' = 1?
(For all valuations)?

Interpreting a formula of prop. logic

16

u Propositional Logic is interpreted over valuations to atoms
u Temporal Logic is interpreted over traces/sequences/strings
u Trace is an infinite sequence of valuations
u 𝜌:

Temporal Logic = Prop. Logic + Temporal Operators

17

0 1 2 3 4 42⋯ ⋯
𝑝,	
𝑞

𝑝,	
¬𝑞

¬𝑝,	
¬𝑞

𝑝,	
𝑞

¬𝑝,	
𝑞

𝑝,	
𝑞

u Can also write as: (0,1,1), (1,1,0), (2,0,0), (3,1,1),(4,0,1),… ,(42,1,1), …

u LTL is a logic interpreted over infinite traces

u Temporal logic with a view that time evolves in a linear fashion
� Other logics where time is branching!

u Assumes that a trace is a discrete-time trace, with equal time intervals

u Actual interval between time-points does not matter : similar to rounds in synchronous
reactive components

u LTL can be used to express safety and liveness properties!

Linear Temporal Logic

18

u LTL formulas are built from
propositions and other smaller
LTL formulas using:
�Boolean connectives
�Temporal Operators

u Only shown ∧ and ¬, but can
define ∨,⇒,≡ for convenience

LTL Syntax

19

Syntax of LTL

𝜑 ∷= 𝑝 | 𝑝 is a prop in AP

¬𝜑 | Negation

𝜑 ∧ 𝜑 | Conjunction

𝐗𝜑 | NeXt Step

𝐅𝜑 | Some Future Step

𝐆𝜑 | Globally in all steps

𝜑 𝐔 𝜑 | In all steps Until in
some step

u Semantics of LTL is defined by a valuation function that assigns to each
proposition at each time-point in the trace a truth value (0 or 1)

u We use the symbol ⊨ (read models) to show that a trace-point satisfies a
formula

u 𝜌, 𝑛 ⊨ 𝜑 : Read as trace 𝜌 at time 𝑛 satisfies formula 𝜑
u If we omit 𝑛, then the meaning is time 0. I.e. 𝜌 ⊨ 𝜑 is the same as 𝜌, 0 ⊨ 𝜑
u Semantics is defined recursively over the formula
u Base case: Propositional formulas, Recursion over structure of formula

LTL Semantics

20

u 𝜌, 𝑛 ⊨ 𝑝 if 𝜈(𝑝 = 1,
� i.e. if 𝑝 is true at time 𝑛

u 𝜌, 𝑛 ⊨ ¬𝜑 if 𝜌, 𝑛 ⊭ 𝜑,
� i.e. if 𝜑 is not true for the trace starting time 𝑛

u 𝜌, 𝑛 ⊨ 𝜑# ∧ 𝜑$ if 𝜌, 𝑛 ⊨ 𝜑# and 𝜌, 𝑛 ⊨ 𝜑$
� i.e. if 𝜑# and 𝜑$ both hold starting time 𝑛

Recursive semantics of LTL: I

21

u 𝜌, 𝑛 ⊨ 𝐗𝜑 if 𝜌, 𝑛 + 1 ⊨ 𝜑
� i.e. if 𝜑 holds starting at the next time point

u 𝜌, 𝑛 ⊨ 𝐅 𝜑 if ∃𝑚 ≥ 𝑛 such that 𝜌,𝑚 ⊨ 𝜑
� i.e. 𝜑 is true starting now, or there is some future time-point 𝑚 from

where 𝜑 is true
u 𝜌, 𝑛 ⊨ 𝐆 𝜑 if ∀𝑚 ≥ 𝑛 : 𝜌,𝑚 ⊨ 𝜑

� i.e. 𝜑 is true starting now, and for all future time-points 𝑚, 𝜑 is true
starting at 𝑚

u 𝜌, 𝑛 ⊨ 𝜑#𝐔𝜑$ if ∃𝑚 ≥ 𝑛 s.t. 𝜌,𝑚 ⊨ 𝜑$ and ∀ℓ s.t. 𝑚 ≤ ℓ < 𝑛, 𝜌, ℓ ⊨ 𝜑#
� i.e. 𝜑$ eventually holds, and for all positions till 𝜑$ holds, 𝜑# holds

Recursive semantics of LTL: II

22

u 𝐗𝑝 : NeXt Step
Visualizing the temporal operators

23

0 1 2 3 4 42
¬𝑝	 𝒑 ¬𝑝 ¬𝑝 ¬𝑝 𝑝

u 𝐅𝑝	: Some Future step

0 1 2 3 4 42⋯ ⋯
¬𝑝	 ¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 𝒑

0 1 2 3 4 42⋯ ⋯
𝒑	 ¬𝑝 𝑝 ¬𝑝 ¬𝑝 𝑝

u 𝐆𝑝: Globally 𝑝 holds

Visualizing the temporal operators

24

0 1 2 3 4 42⋯ ⋯
𝒑	 𝒑 𝒑 𝒑 𝒑 𝒑

u 𝑝	𝐔	𝑞: 𝑝 holds Until 𝑞 holds

0 1 2 3 4 42⋯ ⋯
𝒑	
¬𝑞

𝒑	
¬𝑞

𝒑	
¬𝑞

𝒑	
¬𝑞

𝑝
𝒒

u What does 𝐗𝐅 𝑝 mean?
�Trace satisfies 𝐗𝐅𝑝 (at time 0) if at time 1, 𝐅𝑝 holds. I.e. 𝑝 holds at some

point strictly in the future

You can nest operators!

25

⋯ ⋯0 1 2 3 4 42
¬𝑝	 ¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 𝒑

u What does 𝐆𝐅	𝑝 mean?
�Trace satisfies 𝐆𝐅𝑝 (at time 0) if at 𝑛, there is always a 𝒑 in the future

0 1 2
¬𝑝	 ¬𝑝 𝒑

⋯ 14 ⋯15
𝒑¬𝑝

65
𝒑

⋯

u What does 𝐅𝐆𝑝 mean?

More operator fun

26

10 11 12 13 14 42⋯ ⋯
𝒑	 𝒑 𝒑 𝒑 𝒑 𝒑

0
¬𝑝

⋯

u What does 𝐆 𝑝 ⇒ 𝐅𝑞 mean?

0 1 2
𝒑 𝒒

14 15
𝒒

65
𝒒𝒑

54
𝒑

⋯ ⋯⋯

u What does the following formula mean: 𝑝# ∧ 𝐗 𝑝$ ∧ 𝐗 𝑝' ∧ 𝐗(𝑝)∧ 𝐗𝑝* ?

More, more operator fun

27

0 1 2 3 4 5
𝑝#	 𝑝& 𝑝' 𝑝(𝑝)

u Is this true? 𝐅(𝑝 ∧ 𝑞) is the same as 𝐅𝑝 ∧ 𝐅𝑞?

0 1 2 3 4 42⋯ ⋯
𝑝,	
¬𝑞

¬𝑝,	
𝑞

𝑝,	
¬𝑞

¬𝑝,	
𝑞

𝑝,	
¬𝑞

𝑝,	
¬𝑞

Linear Temporal Logic (LTL) specification

28

It is a logic interpreted over infinite discrete-time traces

E.g. It is always true that the highest temperature will be below 75 degree and the lowest
temperature will be above 60 degree

𝐆(p ∧ q) p = T<75, q=T>60

E.g. For the next 3 days the highest temperature will be below 75 degree and the lowest
temperature will be above 60 degree

X (p ∧ q) ∧ X X (p ∧ q) ∧ X X X (p ∧ q) with p = T<75, q=T>60

Linear Temporal Logic (LTL) specification

29

It is a logic interpreted over infinite discrete-time traces

u 𝐅𝜑 ≡ ¬𝐆¬𝜑
u 𝐆𝐅𝜑 ≡ ¬𝐅𝐆¬𝜑
u 𝐅 𝜑 ∨ 𝜓 ≡ 𝐅𝜑 ∨ 𝐅𝜓
u 𝐆 𝜑 ∧ 𝜓 ≡ 𝐆𝜑 ∧ 𝐆𝜓
u 𝐅𝐅𝜑 ≡ 𝐅𝜑
u 𝐆𝐆𝜑 ≡ 𝐆𝜑
u 𝐅𝐆𝐅𝜑 ≡ 𝐆𝐅𝜑
u 𝐆𝐅𝐆𝜑 ≡ 𝐅𝐆𝜑

Operator duality and identities

30

u Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL

32

Kitchen
(𝑘)

Bedroom (𝑑)

Living Room (ℓ)

Bathroom (𝑏)

Study (𝑠)

u Whenever the robot visits the
kitchen, it should visit the
bedroom after.

𝐆(𝑘! ⇒ 𝐅	𝑑!)
u Robot should never go to the

bathroom.
𝐆¬𝑏!

u The robot should keep working
until its battery becomes low
𝑤𝑜𝑟𝑘𝑖𝑛𝑔	𝐔	𝑙𝑜𝑤_𝑏𝑎𝑡𝑡𝑒𝑟𝑦

TV

u Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL

33

Kitchen
(𝑘)

Bedroom (𝑑)

Living Room (ℓ)

Bathroom (𝑏)

Study (𝑠)

u The robot should repeatedly visit
the living room

𝐆𝐅	ℓ
u Whenever the TV is on and the

living room has no person in it,
then within three steps, the robot
should turn off the TV

𝑜(𝑟):	room occupied by a person

𝐆 ¬𝑜 ℓ ∧ 𝑇𝑉"# ⇒ 𝐅$%(𝑇𝑉"&&)

𝐅$%𝜑 ≡ 𝜑 ∨ 𝐗𝜑 ∨ 𝐗𝐗𝜑 ∨ 𝐗𝐗𝐗𝜑TV

u Hard Requirements: Violation leads to endangering safety-criticality or
mission-criticality
�Safety Requirements: system never does something bad
�Liveness Requirements: from any point of time, system eventually does

something good
u Soft Requirements: Violations lead to inefficiency, but are not critical

� (Absolute) Performance Requirements: system performance is not worst
than a certain level

� (Average) Performance Requirements: average system performance is at a
certain level

Types of Specifications/Requirements

34

u Security Requirements: system should protect against modifications in its
behavior by an adversarial actor
�Failure to satisfy security requirements may lead to a hard requirement

violation
u Privacy Requirements: the data revealed by the system to the external world

should not leak sensitive information
u These requirements will become increasingly important for autonomous

CPS, especially as IoT technologies and smart transportation initiatives are
deployed!

Other kind of requirements

35

u High assurance/safety-critical, or mission-critical systems should use hard requirements.

u Verification check whether the implementation meets the requirements

u A system design meets its requirements if all system executions satisfy all the

requirements.

u There should ideally be clear separation between requirements (what needs to be

implemented) and the design (how should it be implemented).

u Unfortunately, this simple philosophy is often not followed by designers.

(Hard) Requirements

36

u Safety and liveness requirements require fundamentally different classes of model
checking algorithms

u safety requirement: “system never does something bad”

“if something bad happens on an infinite run, then it happens already on some
finite prefix”

Counterexamples no reachable ERROR state

u liveness requirement: “system eventually does something good “

“no matter what happens along a finite run, something good could still happen
later”

Infinite-length counterexamples, loo

(Hard) Requirements

37

u It cannot happen that both processes are in their critical sections simultaneously

u Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter.

u Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

u The elevator will arrive within 30 seconds of being called

u Patient’s blood glucose never drops below 80 mg/dL

38

Requirements example

u It cannot happen that both processes are in their critical sections simultaneously S

u Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most once before
process P1 gets to enter. S

u Whenever process P1 wants to enter the critical section, provided process P2 never stays in the critical
section forever, P1 gets to enter eventually. L

u The elevator will arrive within 30 seconds of being called S (observe the finite prefix of all computation
steps until 30 seconds have passed, and decide the property, therefore safety)

u Patient’s blood glucose never drops below 80 mg/dL. S

39

Requirements example (Safety vs Liveness)

u So far we have seen how we can express
behaviors of individual system traces using LTL

u A system 𝑀 starting from some initial state 𝑞!
satisfies a LTL requirement 𝜑 if all system
behaviors starting in 𝑞! satisfy the requirement 𝜑

u Denoted as 𝑀, 𝑞! ⊨ 𝜑
u E.g. a system is safe w.r.t. a safety requirement 𝜑

if all behaviors satisfy 𝜑
u Does (Blinker, (x↦0,y↦0)) ⊨ 𝐆(x≥0)?

LTL is a language for expressing system requirements

40

nat x := 0; bool y:= 0

A: x := x + 1
B: even(x) →
 y: = 1-y

Blinker

Processes & Fairness

41

nat x := 0; bool y:= 0

A: x := x + 1
B: even(x) →
 y: = 1-y

Blinker

u Liveness property: 𝐅 (x ≥ 10)
� Is this property guaranteed to hold?
�No, task A may be executed less than 10 times.

u Liveness Property: 𝐅 y (eventually y is true)
� Is this property guaranteed to hold?
�No, task B may never be selected for execution!

u But, this seems like a very unrealistic or broken
scheduler!

u For infinite executions involving multiple tasks, it is
important for the execution to be fair to each task

u A fairness assumption is a property that encodes the
meaning of what it means for an infinite execution to
be fair with respect to a task.

u Weak fairness: If a task is persistently enabled, then it
is repeatedly executed.
� I.e. if after some point the task guard is always true,

then the task is infinitely often executed.
u Strong fairness: If a task is repeatedly enabled, then it

is repeatedly executed.
� I.e. if the task guard is infinitely often true, then the

task is infinitely often executed.

Weak vs. Strong fairness

42

nat x := 0; bool y:= 0

A: x := x + 1
B: even(x) →
 y: = 1-y

Blinker

u Fairness assumptions can be expressed in LTL!
u Add a new variable taken that takes value ‘A’, ‘B’
u Weak fairness:wf(A) ≔ 𝐅𝐆 𝑔𝑢𝑎𝑟𝑑_𝑖 ⇒ (𝐆𝐅(taken = 𝑇!))
u Task A: 𝑔𝑢𝑎𝑟𝑑_𝐴 is 𝑡𝑟𝑢𝑒, so this simplifies to:

wf(A) ≔ 𝐆𝐅(taken=A)
u Task B: wf(B) ≔ 𝐅𝐆 (even(x)) ⇒𝐆𝐅 (taken=B)
u Does (wf(A)∧ wf(B)) ⇒ 𝐅 (x ≥ 10)?

�Yes!
u Does (wf(A)∧ wf(B)) ⇒ 𝐅 y?

�No!

Expressing fairness assumptions in LTL: I

43

nat x ∶= 	0; bool y ∶= 	0

A: x := x + 1; taken≔	A
B: even(x) →
 y: = 1-y; taken ≔ B

Blinker

{A,B,∅} taken ≔ 	∅

u Strong fairness: 𝐆𝐅 𝑔𝑢𝑎𝑟𝑑_𝑖 ⇒ (𝐆𝐅(taken = 𝑇!))
u Task A: 𝑔𝑢𝑎𝑟𝑑_𝐴 is 𝑡𝑟𝑢𝑒, so this simplifies to:

sf(A) ≔ 𝐆𝐅(taken=A)
u Task B: sf(B) ≔ 𝐆𝐅 (even(x)) ⇒𝐆𝐅 (taken=B)
u Does (sf(A)∧ sf(B)) ⇒ 𝐅 (x ≥ 10)?

�Yes!
u Does (sf(A)∧ sf(B)) ⇒ 𝐅 y?

�Yes!

Expressing fairness assumptions in LTL: II

44

nat x ∶= 	0; bool y ∶= 	0

A: x := x + 1; taken≔	A
B: even(x) →
 y: = 1-y; taken ≔ B

Blinker

{A,B,∅} taken ≔ 	∅

If a process satisfies a liveness requirement under strong fairness, it satisfies it
under weak fairness: strong fairness is a stronger formula than weak fairness

Open vs. Closed Systems

45

u A closed system is one with no inputs

For verification, we obtain a closed system by composing the system and
environment models

Formal Verification

46

u A safety monitor classifies system behaviors into good and bad
u Safety verification can be done using inductive invariants or analyzing

reachable state space of the system
�A bug is an execution that drives the monitor into an error state

u Can we use a monitor to classify infinite behaviors into good or bad?
u Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi

in 1960

Monitors

47

Büchi Automata

48

u A safety monitor classifies system behaviors into good and bad
u Safety verification can be done using inductive invariants or analyzing

reachable state space of the system
�A bug is an execution that drives the monitor into an error state

u Can we use a monitor to classify infinite behaviors into good or bad?
u Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi

in 1960

Monitors

49

u Extension of finite state automata to accept infinite strings
Büchi automaton Example 1

50

𝑞! 𝑞"

𝐴!𝑥 = 0
𝑥 = 1

u States 𝑄: {𝑞", 𝑞%}
u Input variable 𝑥 with domain Σ: 0,1
u Final state: {𝑞%}
u Transitions: (as shown)
u Given trace 𝜌 (infinite sequence of symbols from

Σ), 𝜌 is accepted by 𝐴#, if 𝑞% appears inf. often

u What is the language of 𝐴#?
�LTL formula 𝐆𝐅(𝑥 = 1)

𝑥 = 1

𝑥 = 0

Büchi automaton Example 2

51

𝑞! 𝑞"

𝐴"𝑥 = 	0|1

𝑥 = 	0|1

𝑥 = 1

u 𝑄: 𝑞", 𝑞% , Σ: 0,1 , 𝐹: {𝑞%}
u Transitions: (as shown)

u Note that this is a nondeterministic
Büchi automaton

u 𝐴$ accepts 𝜌 if there exists a path
along which a state in 𝐹 appears
infinitely often

u What is the language of 𝐴$?
�LTL formula 𝐅𝐆(𝑥 = 1)

Fun fact: there is no deterministic Büchi
automaton that accepts this language

u What is the language of 𝐴'?
�LTL formula:

𝐆 𝑥 = 1 ⇒ 𝐅(𝑦 = 1)
� I.e. always when 𝑥 = 1 , in some

future step, (𝑦 = 1)
� In other words, (𝑥 = 1) must be

followed by (𝑦 = 1)

Büchi automaton Example 3

52

𝑞#

𝐴#𝑥 = 	0 |
𝑦 = 1

𝑥 = 1 & 𝑦 = 0

𝑦 = 0

𝑦 = 1

u 𝑄: 𝑞", 𝑞# , Σ: 0,1 , 𝐹: {𝑞%}
u Transitions: (as shown)

𝑞!

u Theoretical result: Every LTL formula 𝜑 can be converted to a Büchi
monitor/automaton 𝐴"

u Size of 𝐴" is generally exponential in the size of 𝜑; blow-up unavoidable in general
u Construct composition of the original process 𝑃 and the Büchi monitor 𝐴"
u If there are cycles in the composite process that do not visit the states specified by

the liveness property, then we have found a violation.
u Reachable cycles in process composition correspond to counterexamples to

liveness properties
u Implemented in many verification tools (e.g. the SPIN model checker developed at

NASA JPL)

Using Büchi monitors

53

u Reachability analysis is the process of computing the set of reachable states
for a system

u Model checking (MC) is an algorithmic method for determining if a system
satisfies a formal specification expressed in temporal logic

𝑀 ⊨𝜙⟺∀𝐱 ∈𝑡𝑟𝑎𝑐𝑒 (𝑀) 𝛽(𝜑,𝐱,0)=1
Type equation here.

u Monitoring: computing 𝛽 for a single trace 𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀

u Statistical Model Checking (SMC): “doing statistics” on 𝛽 (𝜑, 𝐱, 0) for a
finite-subset of 𝑡𝑟𝑎𝑐𝑒 (𝑀)

Reachability, MC, Monitoring and SMC

54

