Cyber-Physical Systems

Laura Nenzi

Universita degli Studi di Trieste
| Semestre 2023

Lecture 13: Automata and Temporal Logic

[Many Slides due to J. Deshmukh, USC, LA,USA]

Op1,31(x > 0) = O11,31((y > 0) AQpo00011 (¥ <0) = (x > 1DV (x < —-1)

Specifications/Requirements

Specifications for most programs: functional

Program starts in some state g, and terminates in some other state 7,
specification defines a relation between all pairs (q,7) given q,7 € Q

Specifications for reactive systems:
Program never terminates!

Starting from some initial state (say q), all infinite behaviors of the program
should satisfy certain property

Small detour

Detour to automata and formal languages

Most programmers have used regular expressions

Regular Expressions (RE) are sequences of characters that specify
(acceptable) pattern of finite length
Example:

a-z][a-z 0-9] : strings starting with a lowercase letter (a-z) followed by one
owercase letter or number

a-z][0-9]*[a-Z] : strings starting with a lowercase letter, followed by finitely
many numbers followed by a lowercase letter

Finite State Automata (FSA)

Famous equivalence between FSA and regular expressions:
For every regular expression R; , there is a corresponding FSA A; that accepts the set of
strings generated by R; .
For every FSA A; there is a corresponding regular expression that generates the set of
strings accepted by 4; .

Ay

1o 11 la-z][a-z 0-9]

a-z a-z,0-9
State d1

Accepting
state

Language of a finite state automaton

What strings are accepted by 4,7
ab, zy, s2r, q123s, u3123123y, etc.

What strings are not accepted by 4,7
2b, 3343, etc.

How does a Finite State Automaton work?

Starts at the initial state q

Az In qq, if it receives a letter in a-z, goes to g4
else, it goesto g
Qo /a7 df .. . ' . . .
0-9 In q4, if it receives a number in 0-9, it stays in g4
- a-Z
q1 else, it goes to g (as it received a-z)
dr In q,-, no matter what it gets, it stays in g,
0-9 qr is an accepting state where computation halts
*

Any string that takes the automaton from g, to g is
accepted by the automaton

[a-z][0-9]*[a-Z]

Language of a finite state automaton

The set of all strings accepted by A, is called its language

The language of a finite state automaton consists of strings, each of which
can be arbitrarily long, but finite

LTL

Temporal Logic

Temporal Logic (literally logic of time) allows us to specify infinite sequences
of states using logical formulae

Amir Pnueli in 1977 used a form of temporal logic called Linear Temporal

Logic (LTL) for requirements of reactive systems: later selected for the 1996
Turing Award

Clarke, Emerson, Sifakis in 2007 received the Turing Award for the model
checking algorithm, originally designed for checking Computation Tree Logic
(CTL) properties of distributed programs

What is a logic in context of today’s lecture?

Syntax: A set of operators that allow us to construct formulas from specific
ground terms

Semantics: A set of rules that assign meanings to well-formed formulas
obtained by using above syntactic rules

Simplest form is Propositional Logic

Propositional Logic

Simplest form of logic with a set of:

atomic propositions:
AP ={p,q,7, ...}
Boolean connectives:
NV, =, =

Syntax recursively gives how new
formulae are constructed from
smaller formulae

Syntax of Propositional Logic

Q = true ||the true formula
D ||pisapropinAP
—¢ || Negation
@ A\ @ || Conjunction
@ V @ || Disjunction
@ = ¢ || Implication

@ = @ | Equivalence

Semantics

o _ Semantics of Prop. Logic

Semantics (i.e. meaning) of a formula
can be defined recursively v(true) |1
Semantics of an atomic proposition v(p) 1ifv(p) =1
defined by a valuation function v 1ifv(p) = 0
Valuation function assigns each V(=) 0ifv(p) =1
proposition a value 1 (true) or O Ly — L andv —1
(false), always assigns the true V(@1 A @2) 0 I()th(egf\llv)ise andv(gz) =1
formula the value 1, and for other
formulae is defined recursively @1V @z |V(=(=91 A ;)

01 = @2 | V(=@ V@3)

1= @2 V((901 = @) A (@ = 901))

Examples
p : There is an upright bicycle in the
middle of the road
r: the bicycle has a rider

p = r: If there is an upright bicycle in
the middle of the road, the bicycle has
a rider

q : There is car in the field of vision
0;: Car i is in the intersection
(01 /\ _I02) V (—|01 /\ 02)

Interpreting a formula of prop. logic

vip; = 1,p, = 0,p3 = 0. What is v((p; Ap,) = p3)?
v((p1 Apz) = p3) =1

vip; = 1,p, » 0,p3 » 0. What is v((p1=> p3) A (py, = p3))
v((p1= p3) A (p; = p3)) =0

Is this true? v ((pl AD;) = p3 = (p1 = p3) A (P = PB)) =17
(For all valuations)?

Temporal Logic = Prop. Logic + Temporal Operators

Propositional Logic is interpreted over valuations to atoms
Temporal Logic is interpreted over traces/sequences/strings

Trace is an infinite sequence of valuations

; _lp; _lp; p;
q —1q —q q q q

Can also write as: (0,1,1), (1,1,0), (2,0,0), (3,1,1),(4,0,1),... ,(42,1,1), ...

Linear Temporal Logic

LTL is a logic interpreted over infinite traces

Temporal logic with a view that time evolves in a linear fashion
Other logics where time is branching!

Assumes that a trace is a discrete-time trace, with equal time intervals

Actual interval between time-points does not matter : similar to rounds in synchronous
reactive components

LTL can be used to express safety and liveness properties!

LTL Syntax

LTL formulas are built from
propositions and other smaller
LTL formulas using:

Boolean connectives
Temporal Operators

Only shown A and —, but can
define V, =, = for convenience

Syntax of LTL
= 14, p is a prop in AP

-1 Negation

QNQ Conjunction
X NeXt Step
Fo Some Future Step
Go Globally in all steps

o U In all steps Until in

some step

LTL Semantics

Semantics of LTL is defined by a valuation function that assigns to each
proposition at each time-point in the trace a truth value (0 or 1)

We use the symbol & (read models) to show that a trace-point satisfies a
formula

p,n E @ : Read as trace p at time n satisfies formula ¢
If we omit n, then the meaningistime 0. l.e.p E @ isthesameas p,0 E @
Semantics is defined recursively over the formula

Base case: Propositional formulas, Recursion over structure of formula

Recursive semantics of LTL: |

p,nEpifvy(p) =1,
l.e. if pis true at timen

p,n E—@ifp,n k@,
i.e. if @ is not true for the trace starting time n

p,nkE @ ANp,ifp,nE @, andp,n E @,
i.e. if ¢, and @, both hold starting time n

Recursive semantics of LTL: Il

p,nEXpifp,n+1E¢@
i.e. if @ holds starting at the next time point

p,n EFq@ifdm =nsuchthatp,mkE ¢
l.e. @ is true starting now, or there is some future time-point m from
where @ is true

ponEGeifVm=n:pmEq@
l.e. @ is true starting now, and for all future time-points m, @ is true
starting at m

p,n EUp,ifdm=nst.pmeE@,andvVlstm<L<n,pfE @,
i.e. @, eventually holds, and for all positions till ¢, holds, ¢, holds

Visualizing the temporal operators
Xp : NeXt Step

Some Future ste

_I _I

p -p p -p p p

Visualizing the temporal operators
Gp: Globally p holds

e e a ah
p p p p p p
p U g: p holds Until g holds

T

—q —q

C I _> o0 0
p
q

You can nest operators!

What does XF p mean?

Trace satisfies XFp (at time 0) if at time 1, Fp holds. l.e. p holds at some
point strictly in the future

(OO~ ... ~@— ..
-p p —p -p

—p p
What does GF p mean?

Trace satisfies GFp (at time 0) if at n, there is always a p in the future

O-()-Q - -@~ @
—p —p p —p p p

More operator fun

What does FGp mean?

p p p
What does G(p = Fg) mean?

(O~()-@ (- @)@
p q p q p q

More, more operator fun

What does the following formula mean: p; A X(pz AX(p3 A X(paA Xps))?

P1 P2 P3 p Ps
s this true? F(p A q) is the same as Fp A Fq?

; _|p; _|p; p;
—q q _'q q _'q —1q

Linear Temporal Logic (LTL) specification

It is a logic interpreted over infinite discrete-time traces

E.g. It is always true that the highest temperature will be below 75 degree and the lowest
temperature will be above 60 degree

G(pAqg) p=T<75,g=T>60

Linear Temporal Logic (LTL) specification

It is a logic interpreted over infinite discrete-time traces

E.g. For the next 3 days the highest temperature will be below 75 degree and the lowest
temperature will be above 60 degree

X(PAQAXX(pAg)AXXX(pAQ) with p = T<75, g=T>60

Operator duality and identities

Fo = -G

GFyp = -FG—op

Flp V) =Fp VFyY
G AY) = Gop AGY

FFo = Fo
GGy = Go
FGFo = GFo

GFGyp = FGo

Example specifications in LTL

Suppose you are designing a robot that has to do a number of missions
(.

™ Whenever the robot visits the
5/ kitchen, it should visit the

/ [y bedroom after.
/ 4 Study (s) G(k, = Fd,)

Kitchen - Robot should never go to the
(k) bathroom.
Living Room (¥) G-b,

The robot should keep working

I_l / Bedroom (d) until its battery becomes low
~

working U low_battery

Bathroom (b)

TV

Example specifications in LTL

Suppose you are designing a robot that has to do a number of missions
(.

The robot should repeatedly visit
5/ the living room

/ / Study (s) - GF 4

~ Whenever the TV is on and the
Kitchen - living room has no person in it,

(k) then within three steps, the robot
Living Room (¢) should turn off the TV

o(r): room occupied by a person

— / Bedroom (d) G ((—.o({’) ATV, = FSS(TVOff))
-

Bathroom (b)

e TV F=3¢p = ¢ VX¢p V XX¢ V XXX¢

Types of Specifications/Requirements

Hard Requirements: Violation leads to endangering safety-criticality or
mission-criticality
Safety Requirements: system never does something bad
Liveness Requirements: from any point of time, system eventually does
something good
Soft Requirements: Violations lead to inefficiency, but are not critical

(Absolute) Performance Requirements: system performance is not worst
than a certain level

(Average) Performance Requirements: average system performance is at a
certain level

Other kind of requirements

Security Requirements: system should protect against modifications in its
behavior by an adversarial actor

Failure to satisfy security requirements may lead to a hard requirement
violation

Privacy Requirements: the data revealed by the system to the external world
should not leak sensitive information

These requirements will become increasingly important for autonomous
CPS, especially as loT technologies and smart transportation initiatives are
deployed!

(Hard) Requirements

High assurance/safety-critical, or mission-critical systems should use hard requirements.
Verification check whether the implementation meets the requirements

A system design meets its requirements if all system executions satisfy all the

requirements.

There should ideally be clear separation between requirements (what needs to be

implemented) and the design (how should it be implemented).

Unfortunately, this simple philosophy is often not followed by designers.

(Hard) Requirements

Safety and liveness requirements require fundamentally different classes of model
checking algorithms

safety requirement: “system never does something bad”

“if something bad happens on an infinite run, then it happens already on some
finite prefix”

Counterexamples no reachable ERROR state

liveness requirement: “system eventually does something good “

I”no matter what happens along a finite run, something good could still happen
ater”

Infinite-length counterexamples, loo

Requirements example

It cannot happen that both processes are in their critical sections simultaneously

Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter.

Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

The elevator will arrive within 30 seconds of being called

Patient’s blood glucose never drops below 80 mg/dL

Requirements example (Safety vs Liveness)

It cannot happen that both processes are in their critical sections simultaneously S

Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most once before
process P1 gets to enter. S

Whenever process P1 wants to enter the critical section, provided process P2 never stays in the critical
section forever, P1 gets to enter eventually. L

The elevator will arrive within 30 seconds of being called S (observe the finite prefix of all computation
steps until 30 seconds have passed, and decide the property, therefore safety)

Patient’s blood glucose never drops below 80 mg/dL. S

LTL is a language for expressing system requirements

So far we have seen how we can express
behaviors of individual system traces using LTL
tx:=0; booly:=0 :
A system M starting from some initial state g,
satisfies a LTL requirement ¢ if all system

A: x:=x+1 : . . :
behaviors starting in g, satisfy the requirement @

B: even(x) —
y:=1-y

Denotedas M, gy E @

E.g. a system is safe w.r.t. a safety requirement ¢
Blinker if all behaviors satisfy @

Does (Blinker, (x—0,y—0)) = G(x=0)??

Processes & Fairness

Liveness property: F (x = 10)

Is this property guaranteed to hold?
nat x:=0; bool y:= 0 No, task A may be executed less than 10 times.
A x=x+ 1 Liveness Property: F y (eventually y is true)

Is this property guaranteed to hold?
No, task B may never be selected for execution!

B: even(x) =
y:=1-y

Blinker scheduler!

But, this seems like a very unrealistic or broken

For infinite executions involving multiple tasks, it is
important for the execution to be fair to each task

Weak vs. Strong fairness

A fairness assumption is a property that encodes the

meaning of what it means for an infinite execution to
nat x := 0; bool y:= 0 be fair with respect to a task.
Weak fairness: If a task is persistently enabled, then it
A x=x+1 is repeatedly executed.

|.e. if after some point the task guard is always true,
then the task is infinitely often executed.

y: =1y Strong fairness: If a task is repeatedly enabled, then it
is repeatedly executed.
Blinker

l.e. if the task guard is infinitely often true, then the
task is infinitely often executed.

B: even(x) =

Expressing fairness assumptions in LTL: |

natx:= 0; booly:= 0
{A,B,0} taken:= @

A: x:=x+1; taken:=A
B: even(x) —
y:=1-y; taken := B

Blinker

Fairness assumptions can be expressed in LTL!
Add a new variable taken that takes value ‘A’, ‘B’
Weak fairness:wf(A) := (FG guard_i) = (GF(taken = T;))

Task A: guard_A is true, so this simplifies to:
wf(A) := GF(taken=A)

Task B: wf(B) := FG (even(x)) = GF (taken=B)
Does (wWf(A)A wf(B)) = F (x = 10)?

Yes!
Does (wf(A)A wf(B)) = F y?

No!

Expressing fairness assumptions in LTL: [l

natx:= 0; booly := 0 Strong fairness: (GF guard_i) = (GF(taken =T;))
{A,B,@} taken:= @ Task A: guard_A is true, so this simplifies to:
sf(A) := GF(taken=A)

A: x:=x+1; taken:= A Task B: sf(B) := GF (even(x)) = GF (taken=B)
B: even(x) — Does (sf(A)A sf(B)) = F (x = 10)?

y: =1-y; taken :=B Yes!

Blinker Does (sf(A)A sf(B)) = F y?
Yes!

If a process satisfies a liveness requirement under strong fairness, it satisfies it
under weak fairness: strong fairness is a stronger formula than weak fairness

Open vs. Closed Systems

A closed system is one with no inputs

in out out
So p— S¢

(a) Open system (b) Closed system

For verification, we obtain a closed system by composing the system and
environment models

Formal Verification

Property
O
System YES
S [proof]
Environment I Compose Verify
o NO

counterexample

Monitors

A safety monitor classifies system behaviors into good and bad

Safety verification can be done using inductive invariants or analyzing
reachable state space of the system

A bug is an execution that drives the monitor into an error state

Can we use a monitor to classify infinite behaviors into good or bad?

Yes, using theoretical model of Blichi automata proposed by J. Richard Buchi
in 1960

Buchi Automata

Monitors

A safety monitor classifies system behaviors into good and bad

Safety verification can be done using inductive invariants or analyzing
reachable state space of the system

A bug is an execution that drives the monitor into an error state
Can we use a monitor to classify infinite behaviors into good or bad?

Yes, using theoretical model of Blichi automata proposed by J. Richard Buchi
in 1960

BUchi automaton Example 1

Extension of finite state automata to accept infinite strings

A, States Q: {qo, qr}
x =0 x =1 Input variable x with domain X: {0,1}
x =1 Final state: {q}

Transitions: (as shown)

do

=0 ar Given trace p (infinite sequence of symbols from
X), p is accepted by A4, if g5 appears inf. often

What is the language of A,7?
LTL formula GF(x = 1)

BUchi automaton Example 2

A
x = 0|1 ° x=1 Note that this is a nondeterministic
Blchi automaton
x = 0|1 A, accepts p if there exists a path
do dr along which a state in F appears
infinitely often
What is the language of 4,7
: , , 210,14, F:
¢ {qO _qf} 0,13, F:{qy} LTL formula FG(x = 1)
Transitions: (as shown)

Fun fact: there is no deterministic Blichi
automaton that accepts this language

BUchi automaton Example 3

What is the language of A;?

LTL formula:
G((x=1)=>F@y=1))

l.e. always when (x = 1), in some

future step, (y = 1)

In other words, (x = 1) must be
followed by (y = 1)

y=0

Q:{q0,q1}, Z: {0,1}, F: {qr}
Transitions: (as shown)

Using BUchi monitors

Theoretical result: Every LTL formula ¢ can be converted to a Bulchi
monitor/automaton A,

Size of A, is generally exponential in the size of ¢; blow-up unavoidable in general
Construct composition of the original process P and the Buchi monitor 4,

If there are cycles in the composite process that do not visit the states specified by
the liveness property, then we have found a violation.

Reachable cycles in process composition correspond to counterexamples to
liveness properties

Implemented in many verification tools (e.g. the SPIN model checker developed at
NASA JPL)

Reachability, MC, Monitoring and SMC

Reachability analysis is the process of computing the set of reachable states
for a system

Model checking (MC) is an algorithmic method for determining if a system
satisfies a formal specification expressed in temporal logic

M ¢ & VX Etrace (M) [(¢,x,0)=1
Type equation here.

Monitoring: computing [for a single trace X € trace M

Statistical Model Checking (SMC): “doing statistics” on 8 (@, X, 0) for a
finite-subset of trace (M)

