On-surface synthesis

Bergman reaction

Dehalogenative homocoupling of terminal alkynyl bromides

Aryl-aryl dehydrogenation coupling

Dehydrogenative homocoupling of terminal alkene Dehalogenative homocoupling of terminal alkenyl bromides

Diels-Alder reaction

 $\left({\bf r} \cdot {\bf r} \right) \rightarrow {\bf r}$

Wurtz coupling

R−X → R−R

Linear alkane polymerization

Decarboxylative polymerization

Dimerization and cyclotrimerization of acetyls

R−0−R' → R−0H

NID-OID-CIX

Nano Today 13 (2017) 77-96

Dealkylation of ethers to alcohols

Reduction

Reazione di Ullmann o Ullmann coupling

X obgeni, tipicomente Br

Inducing All Steps of a Chemical Reaction with the Scanning Tunneling Microscope Tip:

Towards Single Molecule Engineering

Saw-Wai Hla,1,2,* Ludwig Bartels,1,† Gerhard Meyer,1 and Karl-Heinz Rieder1

Covalent Organic Frameworks

La struttura del precursore determina la morfologia del 2D e la concentrazione di difetti

ACS Nano 2014, 8, 7880-7889.

Chem. Commun. 2010, 46, 7157-7159.

DOI: 10.1021/acs.accounts.5b00168 Acc. Chem. Res. 2015, 48, 2484–2494

VOL. 7 • NO. 9 • 8190-8198 • 2013

Anneoling @ 500°C

NATURE CHEMISTRY | VOL 4 | MARCH 2012

Sintesi foto-indotta

Molecole sulla superficie possono modificare la loro struttura elettronica se illuminate (UV o visibile), a seguito di due possibili processi: eccitazione interna (ADS,adsorbate excitation) o popolazione del LUMO con elettroni del substrato (HEA Hot Electron Attachment).

Photochemistry Highlights on On-Surface Synthesis

F. Palmino,^[a] C. Loppacher,^[b] and F. Chérioux^{*[a]}

Le molecole dosate su Ag(111), temperatura campione 80K, autoassemblano formando un network basato su legami idrogeno e alogeno

J. Chem. Phys. 142, 101902 (2015)

Illuminazione UV (266 nm, 10 min): si formano biradicali e ho due fasi diverse sulla superficie

J. Chem. Phys. 142, 101902 (2015)

Scaldo a RT: polimerizzazione

J. Chem. Phys. 142, 101902 (2015)

10,12-pentacosadiynoic acid

Figure 2. Schematic reaction of diacetylene after UV illumination.

J. Am. Chem. Soc. 2012, 134, 40

Self-assembly su grafene:

J. Am. Chem. Soc. 2012, 134, 40

Qui, con la fotochimica, riesco a fare on-surface synthesis anche su un substrato poco reattivo come il grafene

J. Am. Chem. Soc. 2012, 134, 40

Boronic condensation

2D Covalent Organic Frameworks

Sequenza condensazione boronica - Ullmann

J. Phys. Chem. C 2012, 116, 4819-4823

Boroxine macromolecules

Chem. Sci., 2017, 8, 3789-3798

O k-edge RESPES: IMO promotes ultra-fast charge delocalization

NBA su Au(111)

T. Faury et al., J. Phys. Chem. C 2012, 116, 4819-4823

DFT calculations: Boroxine rings break the aromaticity of phenyl rings

R. Wang, X. Zhang, S. Wang, G. Fu, J. Wang, **Phys.Chem.Chem.Phys.**,2016,18,1258

vitreous morphology Proliferation of defects

Chem. Commun., 2018

Band dispersion at room temperature – electron delocalization

•Journal of Physics Condensed Matter 2015 27(30)

Sintesi di grafene

Chenical Veron Deposition

Cu (111), 1000°C

X. Chen et al. / Synthetic Metals 210 (2015) 95-108

X. Chen et al./Synthetic Metals 210 (2015) 95-108

arbon solubility com%) at 1000 °C
41
03
04
56
39
98
01
39
35
76
01

.

Table 1 Carbon solubilities (atom%) in different transition metals at 1000 $^\circ\text{C}$ according to ref. 17

Doping di grafene Sostituire alcuni atomi di carbonio con atomi ad esembio di N o B permette di modificare la struttura elettronica del film.

Carbon 171 (2021) 704-710

Nano Lett. 2011, 11, 5401–5407

Nano Lett. 2011, 11, 5401-5407

Carbon 171 (2021) 704-710

on Au(111)

Naphthylmethyl amine (NMA)

Costantini et al., FlatChem 24 (2020) 100205

on Au(111)

Costantini et al., FlatChem 24 (2020) 100205

Costantini et al., FlatChem 24 (2020) 100205

Sintesi in sequenza:

- 1. Ullmann
- 2. Cyclodehydrogenation

Nature 2010, 466, 470–473

Chem. Sci., 2014, 5, 4419-4423 | 4421

Chem. Sci., 2014, 5, 4419-4423 | 4421

Fotocatalisi per il processo di water-splitting

Step 1: Il fotone viene assorbito dal catalizzatore e si forma un eccitone (buca-elettrone)

Step 2: buca ed elettrone si separano e migrano verso la superficie

Step 3: avvengono le reazioni di ossidazione e di riduzione di H2O e dei prodotti della sua decomposizione, con rilascio di H2 e O2

J. Phys. Chem. C 2007, 111, 22, 7851-7861

Il tutto può avvenire su un unico catalizzatore (pochi sistemi ad oggi noti) o con la giunzione di due catalizzatori, che favorisce la separazione e-h⁺

In genere dei co-catalizzatori in superficie facilitano le reazioni HER e

HER: hydrogen evolution reaction **OER:** oxygen evolution reaction

Molecole organiche possono agire da catalizzatori in un processo fotocatalitico di water splitting

Meccanismo "Proton-Coupled Electron Transfer" (W. Domcke)

- 1. Formazione di un legame idrogeno tra la molecola di acqua e l'eterociclo
- 2. Fotoeccitazione del complesso eterociclo-H₂O
- 3. Trasferimento di elettrone
- 4. Trasferimento di protone

Carbon Nitrides e Covalent Organic Frameworks (COFs)

Reazione di polimerizzazione di Ullmann

K. Kern *et al.*, Angew. Chem. Int. Ed. 2020, 59, 8411–8415

Sintesi del COF

Interazione tra COF e ghiaccio

Interazione fotoindotta tra COF e ghiaccio

Interazione tra COF e acqua

Tesi LM, Davide Piva (2023)

Sintesi del COF

Shift a basse BE:

- Effetto di screening
- Delocalizzazione elettronica

Interazione tra COF e ghiaccio

Annealing del sistema «COF + ghiaccio»

- Azoto multicomponente (almeno quattro)
- Ossigeno singola componente (FWHM~2.5 eV)
- Ossigeno presente a T>-110°C
- ~Ripristino del COF

Identificazione di nuove specie chimiche

- N1: azoto triazinico
- N2: azoto idrogenato
- N3: azoto protonato
- N4: azoto «piridina N-ossido»

Interazione fotoindotta tra COF e ghiaccio

Conversione COF fotoindotta da laser (343 nm)

Qual è la conversione massima che si può raggiungere?

Interazione tra COF e acqua

Dosaggio di acqua sul COF

