Esistenza di infiniti insiemi supplementari di un piano vettoriale in \mathbb{R}^3

Samuele Gasparotto

Università di Trieste

23 Novembre 2023

1 Introduzione

Definizione 1.1 Sia V uno spazio vettoriale su un campo \mathbb{K} qualsiasi, e $U \subseteq V$ e $W \subseteq V$ due sottospazi vettoriali di V. Si definisce

$$U+W:=\{v:\ \exists u\subseteq U\ \exists w\subseteq W:\ v=u+w\}.$$

Lemma 1.1. L'insieme U+W è il più piccolo sottospazio vettoriale a contenere l'unione $U \cup W$.

Dimostrazione. Innanzitutto verifico che $U \cup W \subseteq U + W$.

Sia $v \in U \subseteq W$. Considero $0_V \in V$, quindi $0_V \in W$. Allora $v = v + 0_V$, quindi $v \in U + W$. Il ragionamento è simmetrico tra $U \in W$.

Sia S uno spazio vettoriale tale che $S \supseteq U \cup W$. Prendo due vettori qualsiasi $u \in U$ e $w \in W$. È necessario che $u + w \in S$, di conseguenza

$$S \supset U + W$$
.

Definizione 1.2 Sia $U\subseteq V$ un sottospazio vettoriale di V. Si dice "insieme supplementare di U in V" il sottospazio vettoriale $W\subseteq V$ tale che

$$U + W = V$$

Teorema 1.1. Sia V uno spazio vettoriale finitamente generato, e $U \subseteq V$ un sottospazio vettoriale. Esiste un insieme supplementare a U in V, ed è possibile trovarlo.

Dimostrazione. Sia l'insieme $B_U = \{u_1, u_2, \dots, u_k\}$ una base di U. Per il Teorema di completamento, si trova una base di V B_V tale che

$$B_U \subseteq B_V$$
,

ossia,

$$B_V = \{u_1, u_2, \cdots, u_k, v_{k+1}, \cdots, v_n\}.$$

Allora $B_V \setminus B_U = \{v_{k+1}, \dots, v_n\}$ è una base dell'insieme W supplementare a U in V.

Sia $v \in V$ un vettore. È unica la scrittura

$$v = c_1 u_1 + c_2 u_2 + \cdots + c_k u_k + c_{k+1} v_{k+1} + \cdots + c_n v_n.$$

Si ha che

$$u = c_1 u_1 + c_2 u_2 + \cdots + c_k u_k \in U$$

 $w = c_{k+1} v_{k+1} + \cdots + c_n v_n \in W.$

Segue che

$$v = u + w$$
,

ossia

$$v \in U + W$$
.

Sia ora $v \in U + W$. Esistono quindi $u \in U \subseteq V$ e $w \in W \subseteq V$ tali che

$$v = u + w$$
.

Quindi

$$v \in V$$

perchè V è uno spazio vettoriale.

Lemma 1.2. Siano u, u_1, \dots, u_k vettori di U. Allora $Span(u_1, \dots, u_k) \subseteq Span(u_1, \dots, u_k, u)$.

Dimostrazione. Qualsiasi vettore $v \in Span(u_1, \dots, u_k)$ è combinazione lineare di u_1, \dots, u_k, u , perchè

$$v = c_1 u_1 + \cdots + c_k u_k = c_1 u_1 + \cdots + c_k u_k + 0 \cdot u_k$$

Lemma 1.3. Siano $u_1, \dots, u_k \in U$ vettori linearmente indipendenti, e si abbia $u \in Span(u_1, \dots, u_k)$. Allora $Span(u_1, \dots, u_k) = Span(u_1, \dots, u_k, u)$.

Dimostrazione. Dal Lemma 1.2 consegue $Span(u_1, \dots, u_k) \subseteq Span(u_1, \dots, u_k, u)$. Ora, si prende $v \in Span(u_1, \dots, u_k, u)$. Per definizione

$$v = c_1 u_1 + \cdots + c_k u_k + c u = c_1 u_1 + \cdots + c_k u_k + c (d_1 u_1 + \cdots + d_k u_k)$$
$$= (c_1 + c d_1) u_1 + \cdots + (c_k + c d_k) u_k.$$

Infine

$$v \in Span(u_1, \cdots, u_k)$$

2 Teorema e Dimostrazione

Teorema. Siano $V = \mathbb{R}^3$ uno spazio vettoriale, e v_1 e v_2 due vettori di \mathbb{R}^3 linearmente indipendenti. Esistono infiniti insiemi supplementari a $Span(v_1, v_2)$.

Dimostrazione. Chiamo $U = Span(v_1, v_2)$. È dim $U < \dim \mathbb{R}^3$, quindi, per il Teorema di Completamento, esiste un vettore $w \in \mathbb{R}^3$ linearmente indipendente con v_1 e v_2 tale che l'insieme $\{w, v_1, v_2\}$ è una base di \mathbb{R}^3 .

Costruisco il vettore $w_r = w + rv_1$ per un certo $r \in \mathbb{R}$. Esso è linearmente indipendente con v_1 e v_2 . Ciò è vero perchè

$$cw_r + c_1v_1 + c_2v_2 = 0 \iff c(w + rv_1) + c_1v_1 + c_2v_2 = 0$$

e w,v_1 e v_2 sono linearmente indipendenti:

$$cw + (cr + c_1)v_1 + c_2v_2 = 0 \iff \begin{cases} c = 0 \\ cr + c_1 = 0 \\ c_2 = 0 \end{cases} \iff \begin{cases} c = 0 \\ c_1 = 0 \\ c_2 = 0 \end{cases}$$

Chiamo $W_r := Span(w_r)$. W_r è supplementare di U in \mathbb{R}^3 . Dimostro che $U + W_r = \mathbb{R}^3$.

Sia $v \in U+W_r$. Esistono $u \in U \subseteq \mathbb{R}^3$ e $\bar{w} \in W_r \subseteq \mathbb{R}^3$ tali che $v=u+\bar{w}$. Poiché \mathbb{R}^3 è uno spazio vettoriale, $v \in \mathbb{R}^3$. Procedo ora a dimostrare che $\mathbb{R}^3 \subseteq U+W_r$. Prendo $v \in \mathbb{R}^3$. Siccome $\{w,v_1,v_2\}$ è una base di \mathbb{R}^3 , cerco dei coefficienti d,d_1,d_2 per i quali vale

$$cw + c_1v_1 + c_2v_2 = dw_r + (d_1v_1 + d_2v_2).$$

Ora,

$$cw + c_1v_1 + c_2v_2 = d(w + rv_1) + (d_1v_1 + d_2v_2)$$

 $cw + c_1v_1 + c_2v_2 = dw + (dr + d_1)v_1 + d_2v_2.$

Risolvo quindi il sistema lineare

$$\begin{cases} d = c \\ dr + d_1 = c_1 \\ d_2 = c_2, \end{cases}$$

la cui unica soluzione è

$$\begin{pmatrix} c \\ c_1 - cr \\ c_2 \end{pmatrix}$$

Perciò $v \in U + W_r$.

Si pone $S := \{W_r : r \in \mathbb{R}\}$. Ciascun elemento di S è un insieme supplementare di U in \mathbb{R}^3 . Dimostro che S contiene infiniti elementi.

Sia $f: \mathbb{R} \to S$ una funzione definita da $f(x) = W_x$.

f è suriettiva. Per ogni $W_r \in S$ esiste $r \in \mathbb{R}$ tale che $f(r) = W_r$.

Si prendono $r, r' \in \mathbb{R}$. Per il Lemma 1.3, se e solo se w_r e $w_{r'}$ sono linearmente dipendenti, allora $W_r = W_{r'}$, in quanto

$$Span(w_r) = Span(w_r, w_{r'}) = Span(w_{r'}).$$

Dunque,

 $W_r \neq W_{r'} \Longleftrightarrow w_r$ e $w_{r'}$ sono linearmente indipendenti.

 w_r e $w_{r'}$ sono linearmente indipendenti se e solo se l'equazione

$$aw_r + bw_{r'} = 0 (1)$$

ammete un unica soluzione, e tale soluzione è nulla.

$$a(w + rv_1) + b(w + r'v_1) = 0 \iff (a+b)w + (ar + br')v_1 = 0.$$

Poichè w e v_1 sono linearmente indipendenti,

$$\begin{cases} a+b=0 \\ ar+br'=0 \end{cases} \iff \begin{cases} b=-a \\ a(r-r')=0. \end{cases}$$

Se fosse r-r'=0, esisterebbero infinte soluzioni non nulle all'equazione (1). Quindi si impone $r-r'\neq 0$. Ma $\mathbb R$ è un campo, perciò a=0, quindi b=0. In conclusione, w_r e $w_{r'}$ sono linearmente indipendenti se e solo se $r\neq r'$. Si è quindi dimostrato che

$$\forall r \in \mathbb{R} \ \forall r' \in \mathbb{R} \ W_r \neq W_{r'} \Longleftrightarrow r \neq r'$$

Ciò implica che f sia iniettiva. Dunque f è bi
iettiva. Infine, l'insieme S contiene infiniti elementi.