
Announcements

§ HW
§ Project

272SM: Introduction to Artificial Intelligence
Multi-agent decision making

Instructor: Tatjana Petrov

University of Trieste, Italy
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Non-Deterministic Search

Example: Grid World

§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of rewards

Grid World Actions
Deterministic Grid World Stochastic Grid World

Markov Decision Processes

§ An MDP is defined by:
§ A set of states s Î S
§ A set of actions a Î A
§ A transition function T(s, a, s’)

§ Probability that a from s leads to s’, i.e., P(s’| s, a)
§ Also called the model or the dynamics

§ A reward function R(s, a, s’)
§ Sometimes just R(s) or R(s’)

§ A start state
§ Maybe a terminal state

§ MDPs are non-deterministic search problems
§ One way to solve them is with expectimax search
§ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]

What is Markov about MDPs?

§ “Markov” generally means that given the present state, the
future and the past are independent

§ For Markov decision processes, “Markov” means action
outcomes depend only on the current state

§ This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

§ In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

§ For MDPs, we want an optimal policy p*: S → A
§ A policy p gives an action for each state

§ An optimal policy is one that maximizes
expected utility if followed

§ An explicit policy defines a reflex agent

§ Expectimax didn’t compute entire policies
§ It computed the action for a single state only

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: Racing

Example: Racing

§ A robot car wants to travel far, quickly

§ Three states: Cool, Warm, Overheated
§ Two actions: Slow, Fast
§ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Racing

s a s' T(s,a,s’) R(s,a,s’)

Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 –10

(end) 1.0 0

Racing Search Tree

MDP Search Trees
§ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a
(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a
q-state

Utilities of Sequences

Utilities of Sequences

§ What preferences should an agent have over reward sequences?

§ More or less?

§ Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

§ It’s reasonable to maximize the sum of rewards
§ It’s also reasonable to prefer rewards now to rewards later
§ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

§ How to discount?
§ Each time we descend a level, we

multiply in the discount once

§ Why discount?
§ Sooner rewards probably do have

higher utility than later rewards

§ Also helps our algorithms converge

§ Example: discount of 0.5
§ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

§ U([1,2,3]) < U([3,2,1])

Stationary Preferences*

§ Theorem: if we assume stationary preferences:

§ Then: there are only two ways to define utilities

§ Additive utility:

§ Discounted utility:

Quiz: Discounting

§ Given:

§ Actions: East, West, and Exit (only available in exit states a, e)
§ Transitions: deterministic

§ Quiz 1: For g = 1, what is the optimal policy?

§ Quiz 2: For g = 0.1, what is the optimal policy?

§ Quiz 3: For which g are West and East equally good when in state d?

Infinite Utilities?!

§ Problem: What if the game lasts forever? Do we get infinite rewards?

§ Solutions:
§ Finite horizon: (similar to depth-limited search)

§ Terminate episodes after a fixed T steps (e.g. life)

§ Gives nonstationary policies (p depends on time left)

§ Discounting: use 0 < g < 1

§ Smaller g means smaller “horizon” – shorter term focus

§ Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

§ Markov decision processes:
§ Set of states S
§ Start state s0

§ Set of actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount g)

§ MDP quantities so far:
§ Policy = Choice of action for each state
§ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Solving MDPs

Optimal Quantities

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo – gridworld values (L8D4)]

Snapshot of Demo – Gridworld V Values

Noise = 0
Discount = 1
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0
Discount = 1
Living reward = 0

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 1
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 1
Living reward = 0

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = -0.1

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = -0.1

Values of States

§ Fundamental operation: compute the (expectimax) value of a state
§ Expected utility under optimal action
§ Average sum of (discounted) rewards
§ This is just what expectimax computed!

§ Recursive definition of value:

a

s

s, a

s,a,s’
s’

Values of States

§ Fundamental operation: compute the (expectimax) value of a state
§ Expected utility under optimal action
§ Average sum of (discounted) rewards
§ This is just what expectimax computed!

§ Recursive definition of value:

a

s

s, a

s,a,s’
s’

Racing Search Tree

Racing Search Tree

Racing Search Tree

§ We’re doing way too much
work with expectimax!

§ Problem: States are repeated
§ Idea: Only compute needed

quantities once

§ Problem: Tree goes on forever
§ Idea: Do a depth-limited

computation, but with increasing
depths until change is small

§ Note: deep parts of the tree
eventually don’t matter if γ < 1

Computing Time-Limited Values

Time-Limited Values

§ Key idea: time-limited values

§ Define Vk(s) to be the optimal value of s if the game ends
in k more time steps
§ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one ply of expectimax from each state:

a

Vk+1(s)

s, a

s,a,s’
Vk(s’)

Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one ply of expectimax from each state:

§ Repeat until convergence

§ Complexity of each iteration: O(S2A)

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Example: Value Iteration

Assume no discount!

s a s' T(s,a,s’) R(s,a,s’)

Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 –10

(end) 1.0 0

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Convergence*

§ How do we know the Vk vectors are going to converge?

§ Case 1: If the tree has maximum depth M, then VM holds
the actual untruncated values

§ Case 2: If the discount is less than 1
§ Sketch: For any state Vk and Vk+1 can be viewed as depth

k+1 expectimax results in nearly identical search trees
§ The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
§ That last layer is at best all RMAX

§ It is at worst RMIN

§ But everything is discounted by γk that far out
§ So Vk and Vk+1 are at most γk max|R| different
§ So as k increases, the values converge

Next Time: Policy-Based Methods

