Announcements

- HW
- Project

Announcements

https://app.wooclap.com/DAGNCI?from=instruction-slide

University of Trieste, Italy

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of (discounted) rewards

Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
 - Start state s₀

- Quantities:
 - Policy = map of states to actions
 - Utility = sum of discounted rewards
 - Values = expected future utility from a state (max node)
 - Q-Values = expected future utility from a q-state (chance node)

Optimal Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting optimally

• The value (utility) of a q-state (s,a):

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

• The optimal policy:

 $\pi^*(s)$ = optimal action from state s

Gridworld Values V*

Gridworld Display			
0.64 ▸	0.74 →	0.85 →	1.00
• 0.57		• 0.57	-1.00
• 0.49	∢ 0.43	• 0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS			

Gridworld: Q*

The Bellman Equations

The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Value iteration is just a fixed point solution method
 - ... though the V_k vectors are also interpretable as time-limited values

Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge

Policy Methods

Policy Evaluation

Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 V^π(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 🕨	-10.00
-10.00	-8.69 🕨	-10.00

Always Go Forward

-10.00	100.00	-10.00
-10.00	70.20	-10.00
-10.00	▲ 48.74	-10.00
-10.00	33.30	-10.00

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

0.95 ≯	0.96 ≯	0.98 ≯	1.00
• 0.94		∢ 0.89	-1.00
0.92	∢ 0.91	∢ 0.90	0.80

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$

Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Problem 1: It's slow – O(S²A) per iteration

- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

0	O O Gridworld Display				
		^			
	0.00	0.00	0.00	0.00	
	0.00		0.00	0.00	
	0.00	0.00	0.00	0.00	
	VALUE	S AFTER	U ITERA	LIONS	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	Gridworl	d Display	-
• • • • -1.00 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	•	•	0.00 >	1.00
• • • • • • • • • • • • • • • • • • • • • • • •	•		∢ 0.00	-1.00
	^	^	^	0.00

0	O O Gridworld Display					
	•	0.00 →	0.72 →	1.00		
	^		^			
	0.00		0.00	-1.00		
	^	^	^			
	0.00	0.00	0.00	0.00		
				-		
	VALUES AFTER 2 ITERATIONS					

k=3

0	○ ○ Gridworld Display				
	0.00 >	0.52 ▸	0.78)	1.00	
	• 0.00		• 0.43	-1.00	
	• 0.00	• 0.00	• 0.00	0.00	
	VALUES AFTER 3 ITERATIONS				

k=4

0.0	Gridworl	d Display			
0.37 ▶	0.66)	0.83)	1.00		
•		• 0.51	-1.00		
•	0.00 →	• 0.31	∢ 0.00		
VALUE	VALUES AFTER 4 ITERATIONS				

0 0	O O O Gridworld Display				
	0.51)	0.72)	0.84)	1.00	
	• 0.27		• 0.55	-1.00	
	•	0.22)	• 0.37	∢ 0.13	
	VALUES AFTER 5 ITERATIONS				

0.0	Gridworld Display				
	0.59 →	0.73 →	0.85 →	1.00	
	• 0.41		• 0.57	-1.00	
	• 0.21	0.31 →	• 0.43	∢ 0.19	
	VALUES AFTER 6 ITERATIONS				

0.0	Gridworl	d Display		
0.62)	0.74 ▸	0.85)	1.00	
• 0.50		• 0.57	-1.00	
• 0.34	0.36)	• 0.45	∢ 0.24	
VALUES AFTER 7 ITERATIONS				

Gridworld Display				
0.63)	0.74 →	0.85)	1.00	
• 0.53		• 0.57	-1.00	
• 0.42	0.39)	• 0.46	∢ 0.26	
VALUES AFTER 8 ITERATIONS				

0 0	Cridworld Display			
	0.64)	0.74 →	0.85 →	1.00
	• 0.55		• 0.57	-1.00
	• 0.46	0.40 →	▲ 0.47	∢ 0.27
VALUES AFTER 9 ITERATIONS				

O O Gridworld Display				
0.64)	0.74 →	0.85 →	1.00	
▲ 0.56		• 0.57	-1.00	
▲ 0.48	∢ 0.41	• 0.47	∢ 0.27	
VALUES AFTER 10 ITERATIONS				

0 0	O O Gridworld Display				
	0.64)	0.74 →	0.85)	1.00	
	^		^		
	0.56		0.57	-1.00	
	^		^		
	0.48	∢ 0.42	0.47	◀ 0.27	
	VALUES AFTER 11 ITERATIONS				

0 0	O Gridworld Display				
	0.64 ♪	0.74 ▸	0.85 →	1.00	
	•		^		
	0.57		0.57	-1.00	
	▲ 0.49	∢ 0.42	• 0.47	∢ 0.28	
	VALUES AFTER 12 ITERATIONS				

0.0	O Gridworld Display				
0.64)	0.74)	0.85)	1.00		
• 0.57		• 0.57	-1.00		
• 0.49	∢ 0.43	▲ 0.48	∢ 0.28		
VALUES AFTER 100 ITERATIONS					

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Double-Bandit MDP

Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

No discount 100 time steps Both states have the same value

Let's Play!

\$2\$2\$0\$2\$2\$0\$0\$0

Online Planning

Rules changed! Red's win chance is different.

Let's Play!

\$0\$0\$0\$2\$0\$0\$0\$0\$0

What Just Happened?

- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Exercise:

 For the 4x3 world shown in Figure, calculate which squares can be reached from (1,1) by the action sequence [Right, Right, Right, Up, Up] and with what probabilities.

Hint: compute the occupancy probabilities at each step by filling in the following table

•			Ţ
		١	Ξ
١	٢	١	•

		Right	Right	Right	Up	Up
(1,1)	1	.1	.02			
(1,2)		.1	.09			
(1,3)				-		
(2,1)		.8				
(2,3)						
(3,1)						
(3,2)						
(3,3)						
(4,1)						
(4,2)						
(4,3)						

Exercise:

For the environment shown in Figure, find all the threshold values for R(s) such that the optimal policy changes when the threshold is crossed. You will need a way to calculate the optimal policy and its value for fixed R(s). (Hint: Prove that the value of any fixed policy varies linearly with R(s))

			Ŧ
		١	Ξ
١	٢	١	•