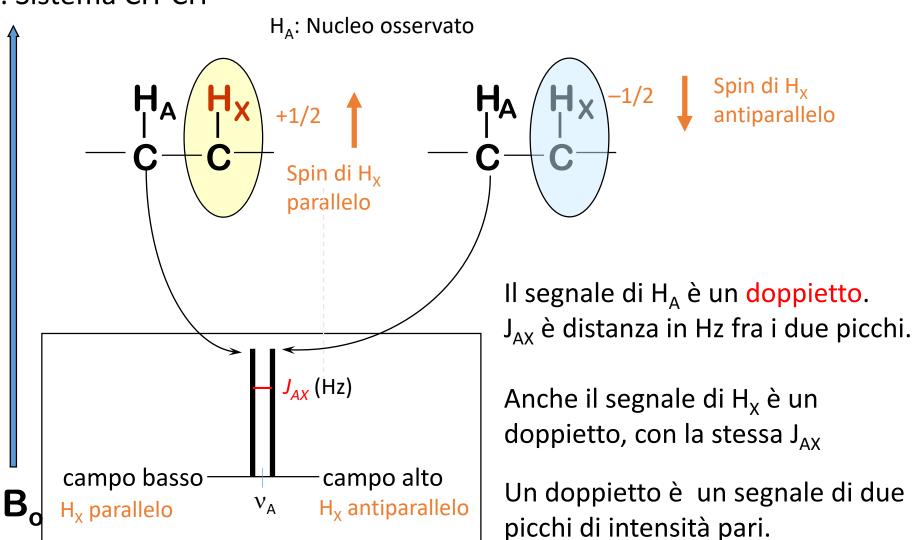

3. Molteplicità dei segnali

- Interazione magnetica fra nuclei adiacenti che produce uno splitting del segnale in più righe (multipletto).
- Può essere omonucleare (H,H) o eteronucleare (C,H)
- E' chiamato accoppiamento indiretto o scalare.
- Si trasmette attraverso gli elettroni dei legami che separano i nuclei in accoppiamento.
- L'entità dell'accoppiamento è misurata dalla costante di accoppiamento *J* (Hz).



- H_A e H_X sono accoppiati scalarmente.
- Il campo magnetico su H_A è influenzato dalle due orientazioni, parallela e antiparallela rispetto a B_0 , dello spin di H_X (e viceversa).
- Il risultato dell'accoppiamento è una suddivisione dei segnali di H_A (e di H_X) in due picchi:

Ogni H risente dell'orientazione parallela o antiparallela rispetto a B₀ degli spin degli H adiacenti

1. Sistema CH-CH

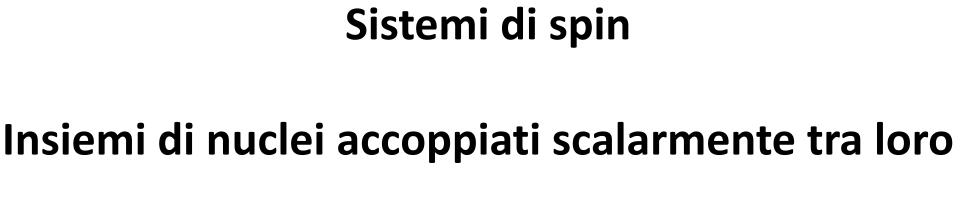
Tipi di accoppiamento

- 1) Accoppiamento diretto un legame – 1J
- ¹H—¹⁹F ¹H—¹³C

eteronucleare

2) Accoppiamento geminale due legami – 2J

- ¹H-C-¹H ¹H-C-¹³C


3) Accoppiamento vicinale tre legami – 3J

- La costante di accoppiamento è indicata con il simbolo J ed è misurata in Hz.
- Per convenzione in apice davanti alla J è indicato il numero di legami che ci sono tra i due nuclei che accoppiano e in pedice dopo la *J* i simboli dei due nuclei che accoppiano es.:

$$^{2}J = 2.7$$
Hz

Costanti di accoppiamento J

- L'accoppiamento spin-spin è trasmesso attraverso i legami di una molecola e non può avvenire tra nuclei di differenti molecole.
- Il valore della costante di accoppiamento diminuisce all'aumentare del numero di legami che separano i due nuclei in accoppiamento.
- In genere non si osservano accoppiamenti tra nuclei separati da più di tre legami.
- Tuttavia in particolari sistemi si possono osservare ⁴J e ⁵J chiamate costanti di «long range»
- Le costanti di accoppiamento non dipendono da B₀!

EQUIVALENZA CHIMICA E MAGNETICA

1. EQUIVALENZA CHIMICA:

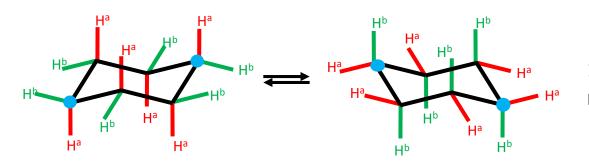
Due protoni H_A e $H_{A'}$ sono chimicamente equivalenti quando sono scambiabili attraverso operazioni di simmetria o per rotazione rapida, o quando sono coincidenti.

Se H_A e $H_{A'}$ sono chimicamente equivalenti allora $V_A = V_{A'}$

NUCLEI CHIMICAMENTE EQUIVALENTI SONO ISOCRONI (EQUIVALENTI PER CHEMICAL SHIFT) MA NON SEMPRE VALE IL CONTRARIO

Equivalenza per simmetria

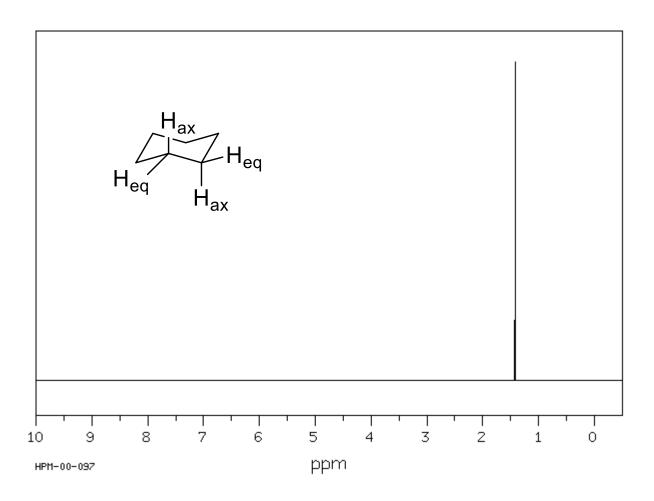
EQUIVALENZA CHIMICA E MAGNETICA


1. EQUIVALENZA CHIMICA:

Due protoni H_A e $H_{A'}$ sono chimicamente equivalenti quando sono scambiabili attraverso qualsiasi operazione di simmetria o per rotazione rapida, o quando sono coincidenti.

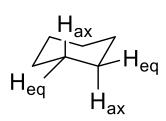
NUCLEI CHIMICAMENTE EQUIVALENTI HANNO LO STESSO CHEMICAL SHIFT

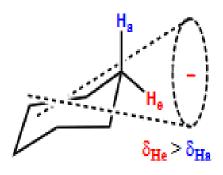
Equivalenza per rotazione rapida

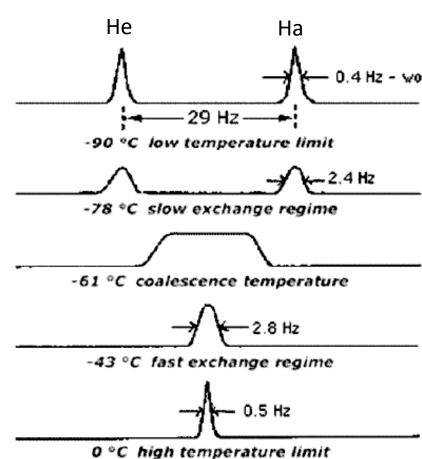

3H del CH₃ equivalenti per rotazione rapida: Solo un segnale per il CH₃

12H equivalenti per rotazione rapida a T> -90°C; 1 solo segnale

Spettro ¹H del cicloesano


Il cicloesano a temperatura ambiente esiste nelle conformazioni a sedia, sovrapponibili, in rapido interscambio . Lo spettro mostra un unico segnale «mediato», i protoni assiali e equatoriali sono equivalenti.




1.43 ppm

Spettro ¹H del cicloesano

Solo a bassa temperatura appaiono due picchi, uno per i protoni assiali e uno per i protoni equatoriali.

EQUIVALENZA CHIMICA E MAGNETICA

2. EQUIVALENZA MAGNETICA:

Due protoni H_A e $H_{A'}$ chimicamente equivalenti sono anche magneticamente equivalenti se hanno la stessa costante di accoppiamento J con tutti gli altri protoni della molecola.

A, A' e B,B' non magneticamente equivalenti $J_{\mathsf{H}_\Delta\mathsf{H}_\mathsf{R}} \neq J_{\mathsf{H}_\Delta'\mathsf{H}_\mathsf{R}}$

A, A' magneticamente equivalenti $J_{H_AH} = J_{H_{A'}H}$

$$H_{B}$$
 $H_{A'}$
 X

A, A' e B,B' non magneticamente equivalent ${\pmb J}_{\sf H_A\sf H_B} \neq {\pmb J}_{\sf H_A'\sf H_B}$

Notazione di Pople

- ☐ I nuclei chimicamente e magneticamente equivalenti sono denominati utilizzando LETTERE MAIUSCOLE e PEDICI NUMERICI. (An, Bm, Cp,...). I pedici indicano il numero di nuclei magneticamente equivalenti che costituiscono il gruppo.
- Nuclei chimicamente equivalenti ma magneticamente non equivalenti vengono distinti tramite un apice (A, A').
- ☐ Gruppi di protoni fortemente accoppiati vengono indicati con lettere dell'alfabeto consecutive (A,B,C...) andando da sinistra a destra dello spettro.
- ☐ Gruppi di protoni debolmente accoppiati vengono indicati con lettere dell'alfabeto lontane (A,M,X...).

Accoppiamento debole: $\Delta v/J > 10$

Accoppiamento forte: $\Delta v/J \ll 10$

Esempi di sistemi di spin

A₂ Due nuclei chimicamente e magneticamente equivalenti

AX (AM) Due nuclei non chimicamente equivalenti debolmente accoppiati

AB Due nuclei non chimicamente equivalenti fortemente accoppiati

AA' Due nuclei chimicamente ma non magneticamente equivalenti

Ordine dei sistemi di spin

1° ORDINE: SISTEMI DI SPIN DEBOLMENTE ACCOPPIATI $\Delta v/J > 10$

I parametri chemical shift e J sono ricavabili dagli spettri

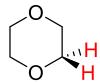
2° ORDINE: SISTEMI DI SPIN FORTEMENTE ACCOPPIATI $\Delta v/J << 10$

I parametri chemical shift e J NON sono tutti ricavabili dagli spettri, sono richiesti calcoli

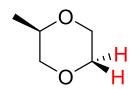
ESEMPI DI SISTEMI DI SPIN

Tipi di idrogeni (o gruppi identici) legati allo stesso C

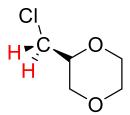
RELAZIONI DI TOPICITA' in sistemi CX2

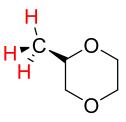

Prova di sostituzione

H,H OMOTOPICI: interscambiabili attraverso rotazione di 180° intorno ad un'asse (asse C2)
La loro sostituzione produce due molecole identiche Chimicamente e magneticamente equivalenti


H,H ENANTIOTOPICI: interscambiabili attraverso riflessione rispetto a un piano σ . La loro sostituzione produce due enantiomeri Chimicamente e magneticamente equivalenti in ambiente achirale

H,H DIASTEREOTOPICI. Non interscambiabili da alcuna operazione di simmetria La loro sostituzione produce due diastereoisomeri Chimicamente non equivalenti

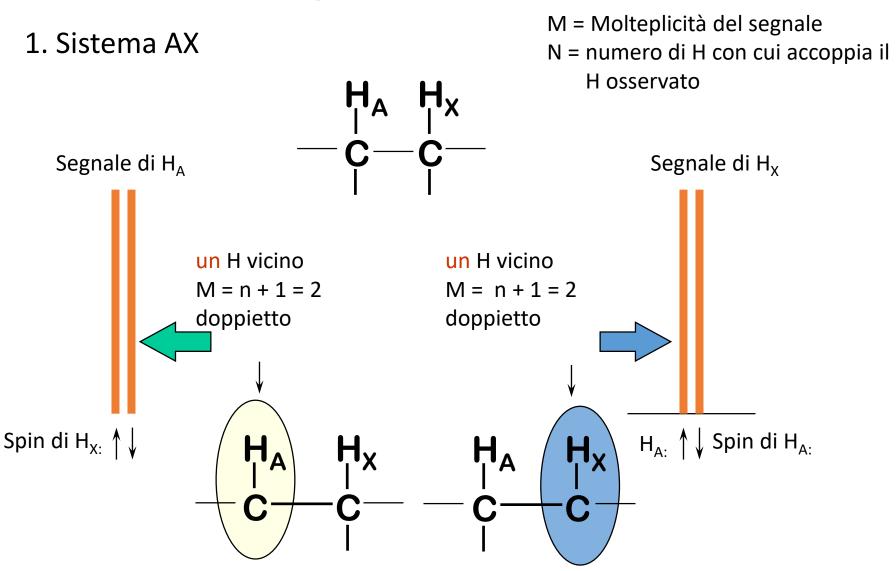

Esempi

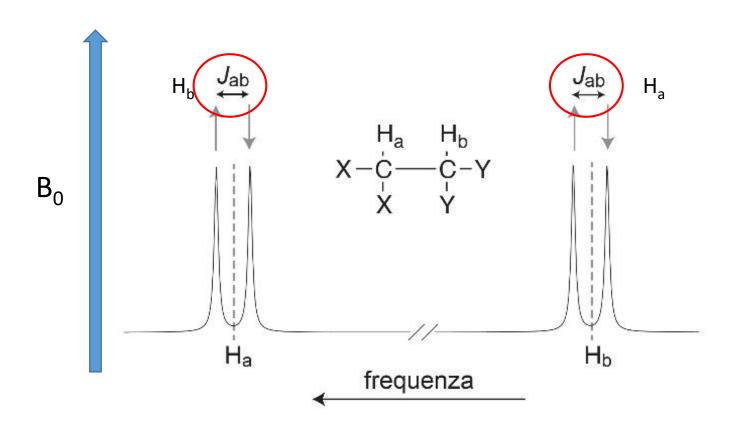

H,H enantiotopici stesso chemical shift

H,H diastereotopici diverso chemical shift

H,H diastereotopici diverso chemical shift

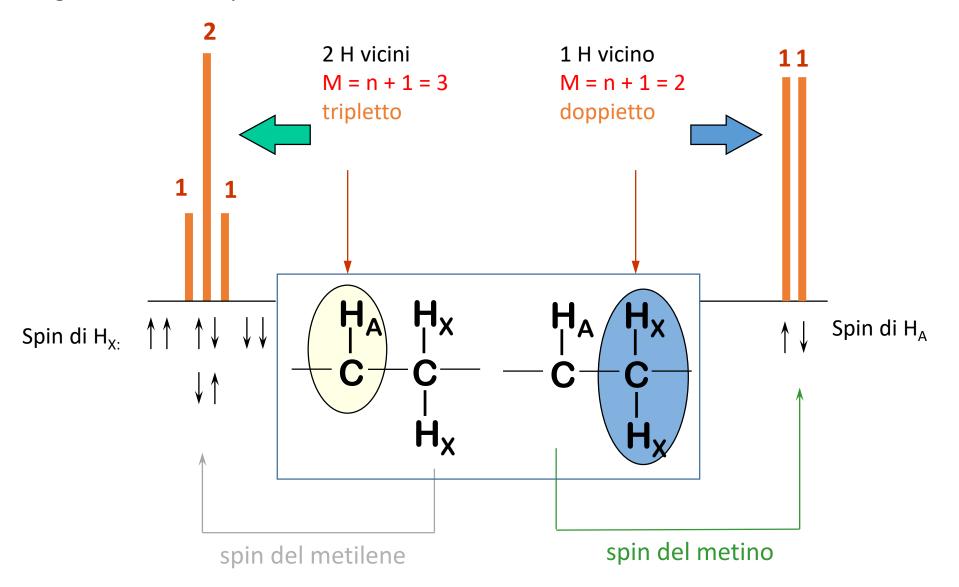
H,H,H omotopici stesso chemical shift

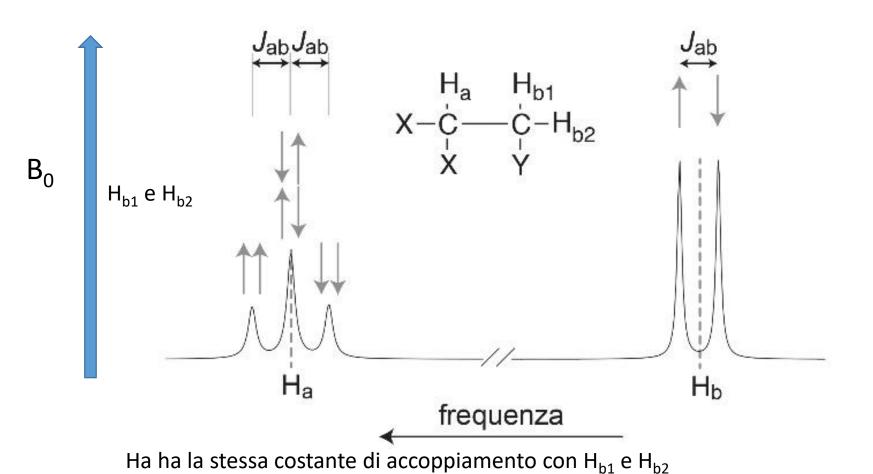

H,H omotopici stesso chemical shift


H,H diastereotopici diverso chemical shift

Idrogeni e gruppi CH₃ diastereotopici in molecole chirali

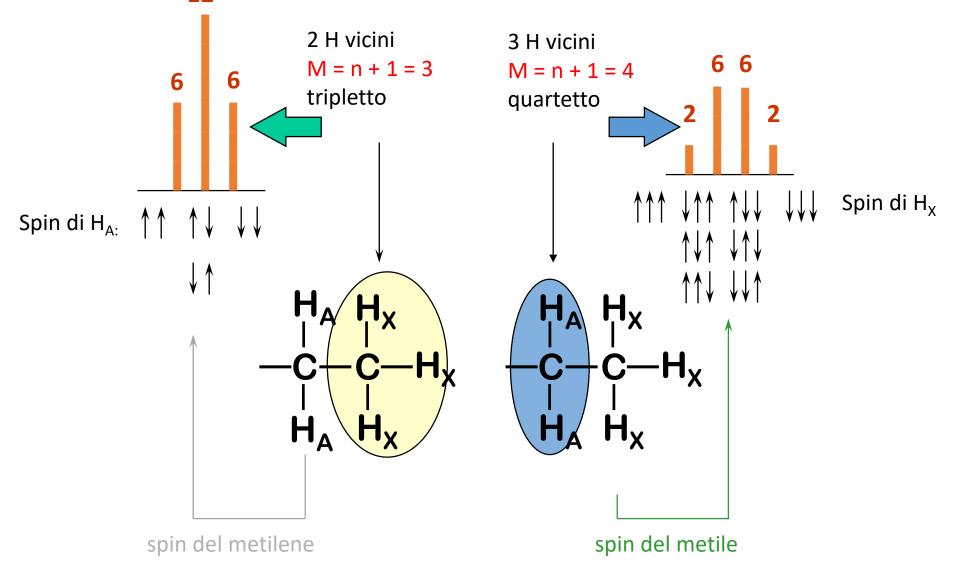
ABX


Accoppiamento spin-spin e regola di molteplicità M = n + 1

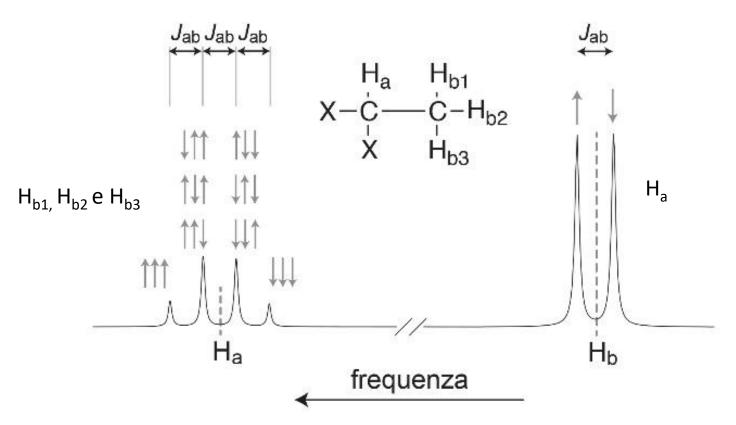


Accoppiamento spin-spin e regola di molteplicità M = n + 1

2. Sistema AX₂ - Un idrogeno A accoppia con 2 idrogeni X chimicamente e magneticamente equivalenti con la stessa J.

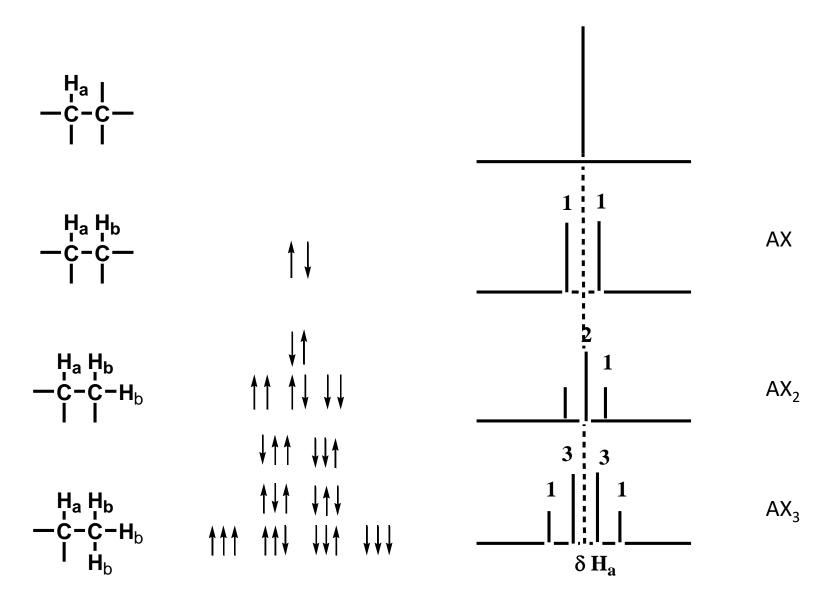


2) Sistema AX₂



Accoppiamento spin-spin e regola di molteplicità M = n + 1

3. Sistema A_2X_3 - Un idrogeno A accoppia con 2 idrogeni X chimicamente e magneticamente equivalenti con la stessa J.



4) Sistema AX₃ Un idrogeno A accoppia con 2 idrogeni X chimicamente e magneticamente equivalenti con la stessa *J*.

H_{b1} ,H_{b2} e H_{b3} hanno la stessa costante di accoppiamento con Ha

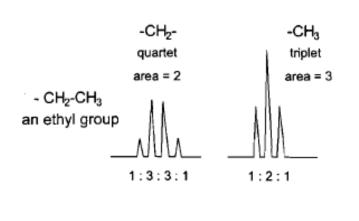
Moltepicità

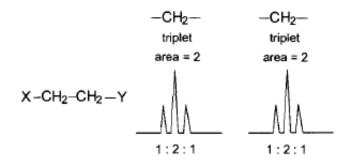
Regola di molteplicità n + 1

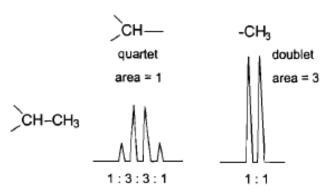
- La molteplicità M (il numero di picchi in un multipletto) è pari a n+1, con n uguale al numero di protoni vicini che accoppiano in modo uguale (hanno cioè la stessa costante di accoppiamento J)
- Questa regola vale solo per multipletti del 1° ordine
- La formula generale per tutti i nuclei, è

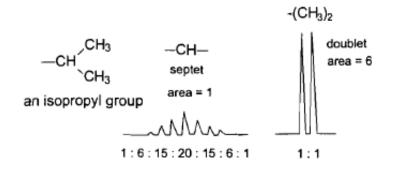
$$M = 2nI + 1$$

se $I = \frac{1}{2}$, $M = n + 1$

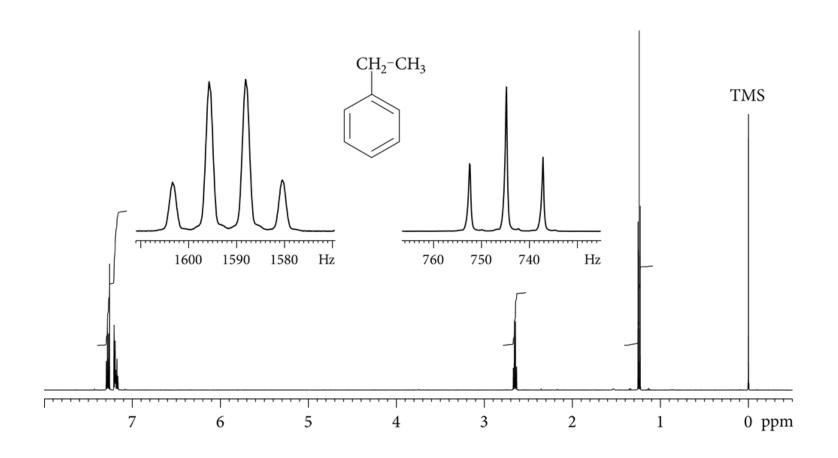

I è il numero quantico di spin dei nuclei che sono accoppiati a quello in osservazione

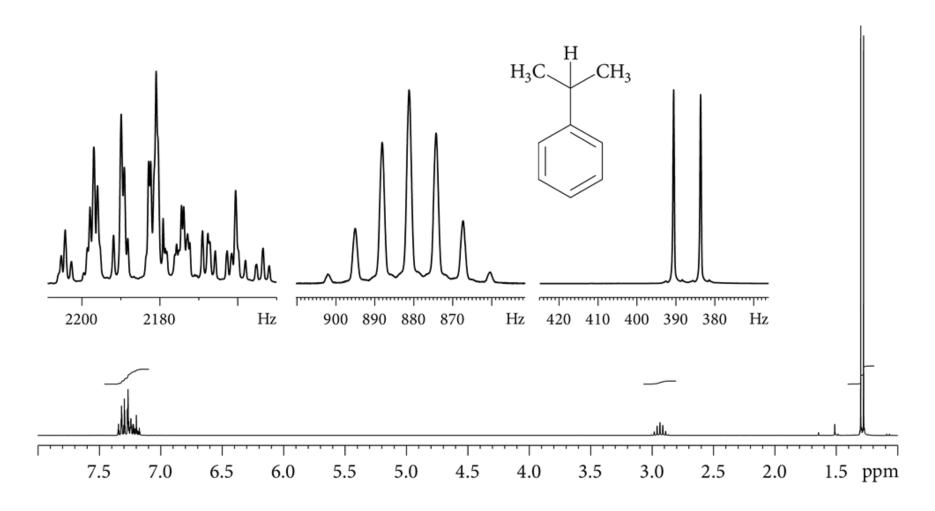

Intensità relative per semplici multipletti (n + 1)


Le **intensità relative** delle righe dei multipletti del primo ordine sono date dai coefficienti del triangolo di Pascal :


N. atomi (I = 1 accoppiati	/2) Intensità relative dei rami	Nome del multipletto	Forma
0	1	singoletto	
1	1 1	doppietto	
2	1 2 1	tripletto	M
3	1 3 3 1	quartetto	ıllı
4	1 4 6 4 1	quintetto	ullu
5	1 5 10 10 5 1	sestetto	_ullu_

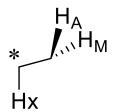
Patterns caratteristici





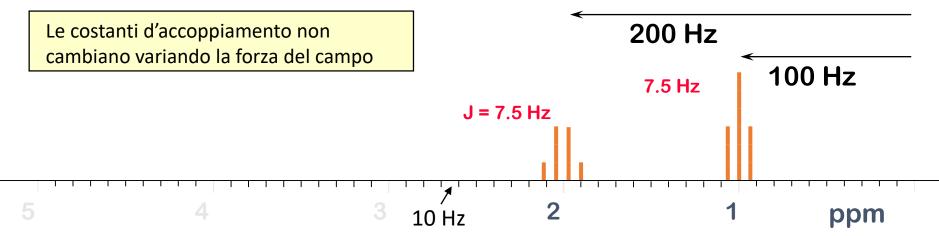
Spettro protonico NMR dell'etilbenzene in $CDCl_3$ a 600 MHz. Il gruppo etile è facilmente riconoscibile dal tripletto del CH_3 e dal quartetto del CH_2

Spettro protonico NMR dell'isopropilbenzene in CDCl₃ a 300 MHz

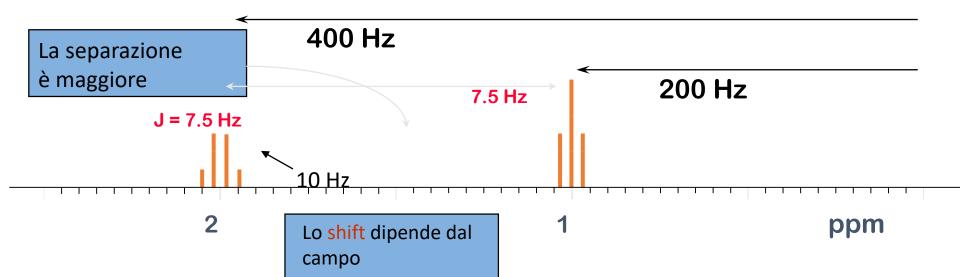

Accoppiamento di spin

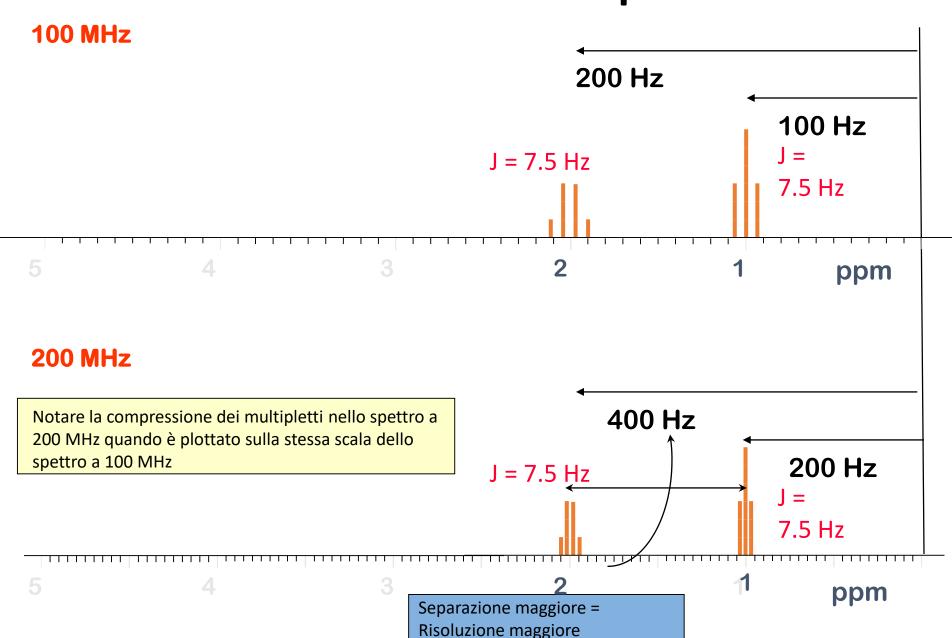
La regola N + 1 non è osservata nei seguenti casi:

- 1. Quando l'accoppiamento coinvolge nuclei con I ≠ ½
- 2. Quando il multipletto non è del primo ordine
- Quando il nucleo in osservazione accoppia con gli altri con diverse costanti di accoppiamento
- 4. Quando non c'è equivalenza magnetica in un set di protoni legato allo stesso atomo di carbonio (es. Protoni diastereotopici)


Esempio: sistemi AMX

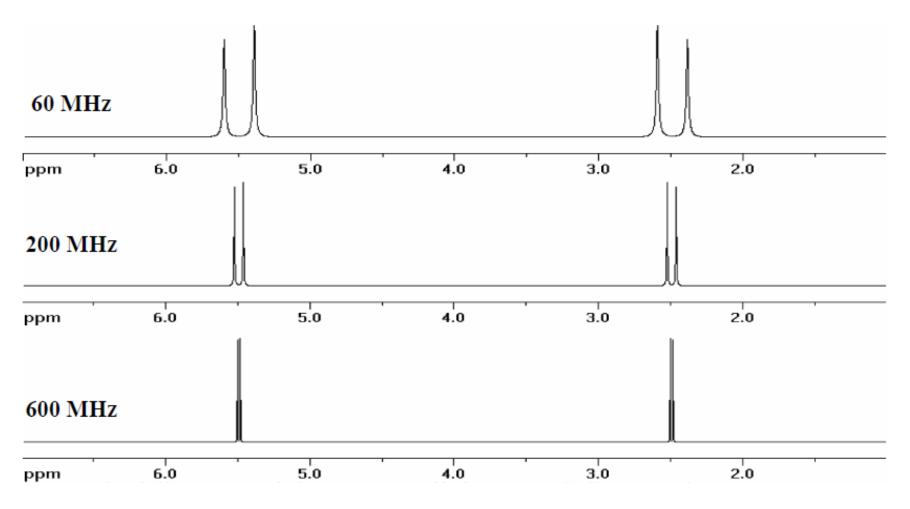
J_{AM} ≠ J_{MX} il segnale di H_M non è un tripletto!




 H_A e H_M : diastereotopici (magneticamente non equivalenti) il segnale di H_x non è un tripletto!

200 MHz

t a 1.4 ppm q a 1.8 ppm t a 2.2 ppm


J = 10 Hz

Gli spettri si semplificano

Multipletti che sovrappongono vengono separati

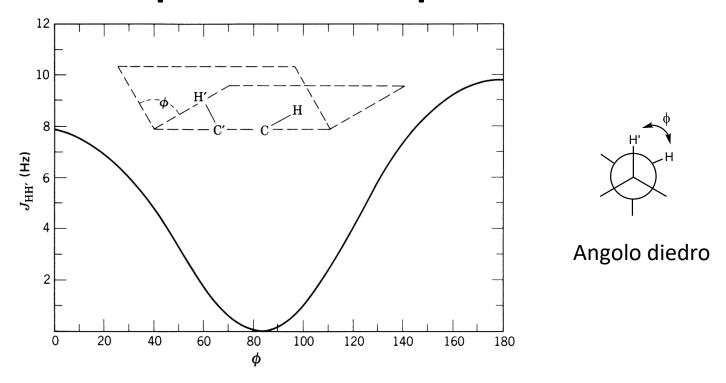
Gli effetti del secondo ordine sono minimizzati.

Aumenta la separazione fra i segnali

Costanti di accoppiamento

- L'accoppiamento è sempre reciproco: se H_A è accoppiato con H_X , anche H_X è accoppiato con H_A e $J_{AX} = J_{XA}$
- ☐ Le costanti di accoppiamento sono misurate in Hz
- \Box I valori delle costanti di accoppiamento sono indipendenti da B₀. L'accoppiamento spin-spin è un'interazione tra i momenti magnetici nucleari μ, che sono indipendenti dal campo magnetico applicato (dipendono da γ e da I)

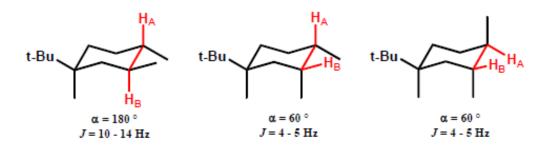
Accoppiamento geminale ²J

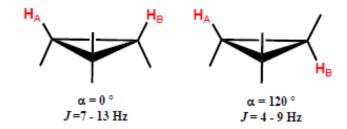

²J H-H osservata fra protoni di un gruppo CH₂ quando essi sono magneticamente non equivalenti, cioè in tre casi principali.

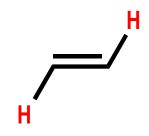
- a. CH₂ olefinici terminali
- b. CH₂ inseriti in una struttura rigida che impedisce la libera rotazione
- c. CH₂ diastereotopici per la presenza di un centro stereogenico

$$\begin{array}{c} R \\ R' \\ H \end{array} \right)^{2} J \qquad \begin{array}{c} H \\ R' \\ \end{array} \right)^{2} J \qquad \begin{array}{c} R' \\ H \\ H \\ \end{array} \right)^{2} J$$

Le ²*J* variano in un range molto ampio e possono essere negative.


Accoppiamento vicinale ³*J* Equazione di Karplus




- E' l'accoppiamento tra protoni situati su atomi di carbonio adiacenti
- La 3J Dipende principalmente dall'angolo diedro Φ tra i legami C-H e C-H'
- L'intensità di questi accoppiamenti diminuisce quando l'angolo torsionale è vicino a 90° mentre aumenta quando si avvicina a 0 e 180°

Accoppiamento vicinale ³J Equazione di Karplus

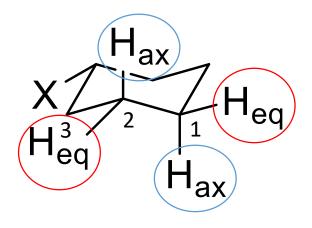
R-CH₂-CH₃
$${}^{3}J = 7.1 - 7.3$$

DA RICORDARE

$$^{3}J_{\text{trans}}$$
= 14-20 Hz (di solito ≈16)

$$^3J_{cis} = 6-14 \text{ Hz}$$
 (di solito ≈ 10)

$$^{3}J = 4-10 \text{ Hz}$$

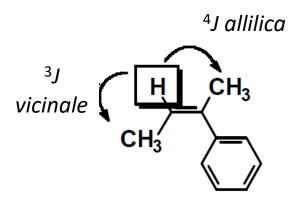

³J in Alcheni

- La stereochimica di un doppio legame può essere determinata misurando le costanti di accoppiamento tra i protoni vinilici.
- Quando il doppio legame è contenuto in un ciclo la ³J tra i due protoni vinilici riflette la grandezza del ciclo.

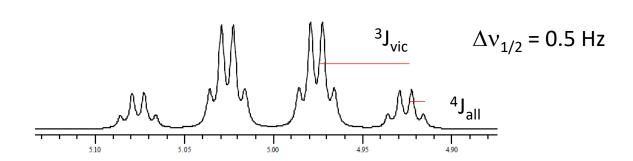
$$H_{A}$$
 $C = C$
 H_{B}
 $J_{AB(cis)}$
 $J_{AB(cis)} = 6 - 11 Hz$
 $J_{AB(cis)}$
 $J_{AB(cis)} = 5 - 7 Hz$
 $J_{AB(cis)}$
 $J_{AB(cis)} = 5 - 7 Hz$
 $J_{AB(cis)}$
 $J_{AB(cis)} = 9 - 11 Hz$
 $J_{AB(cis)}$
 $J_{AB(cis)} = 9 - 11 Hz$

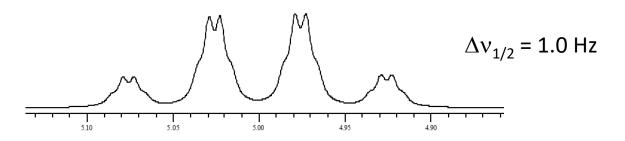
Cicloesani sostituiti in conformazione a sedia

	Angolo diedro	J (Hz) osservato
Assiale-assiale	180°	8-14 (generalmente 8-10)
Assiale- Equatoriale	60°	1-7 (generalmente 2-3)
Equatoriale- Equatoriale	60°	1-7 (generalmente 2-3)


$$H_{ax}, H_{ax} = 8 - 14 \text{ Hz}$$

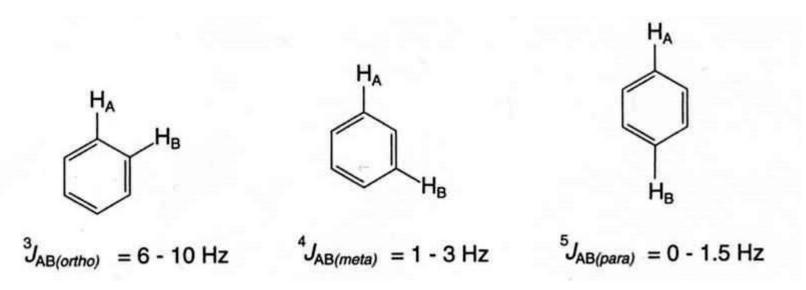
 $H_{ax}, H_{eq} = 0 - 7 \text{ Hz}$ ³J
 $H_{eq}, H_{eq} = 0 - 5 \text{ Hz}$

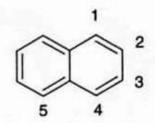

Accoppiamento di long range 41


Sistemi insaturi

Sistemi saturi a W

Accoppiamenti di long range



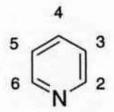

Accoppiamenti in sistemi aromatici

• Le costanti di accoppiamento sono caratteristiche della posizione relativa dei due protoni in accoppiamento (se sono in orto, meta o para).

Accoppiamenti in sistemi eteroaromatici

naftalene

$$^{3}J_{1,2} = 8.3 - 9.1 \text{ Hz}$$


$$^{3}J_{2,3} = 6.1 - 6.9 \text{ Hz}$$

$$^{4}J_{1,3} = 1.2 - 1.6 \text{ Hz}$$

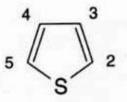
$$^{5}J_{1,4} = 0 - 1.0 \text{ Hz}$$

$$^{5}J_{1.5} = 0 - 1.5 \text{ Hz}$$

piridina

$$^{3}J_{2,3} = 4.0 - 5.7 \text{ Hz}$$

$$^{3}J_{3,4} = 6.8 - 9.1 \text{ Hz}$$

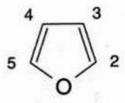

$$^{4}J_{2.4} = 0.0 - 2.5 \text{ Hz}$$

$$^4J_{3.5} = 0.5 - 1.8 \text{ Hz}$$

$$^{4}J_{2.6} = 0.0 - 0.6 \text{ Hz}$$

$$^{5}J_{2,5} = 0.0 - 2.3 \text{ Hz}$$

tiofene


$$^{3}J_{2,3} = 4.7 \text{ Hz}$$

$$^{3}J_{3,4} = 3.4 \text{ Hz}$$

$$^{4}J_{2,4} = 1.0 \text{ Hz}$$

$$^4J_{2,5} = 2.9 \text{ Hz}$$

furano

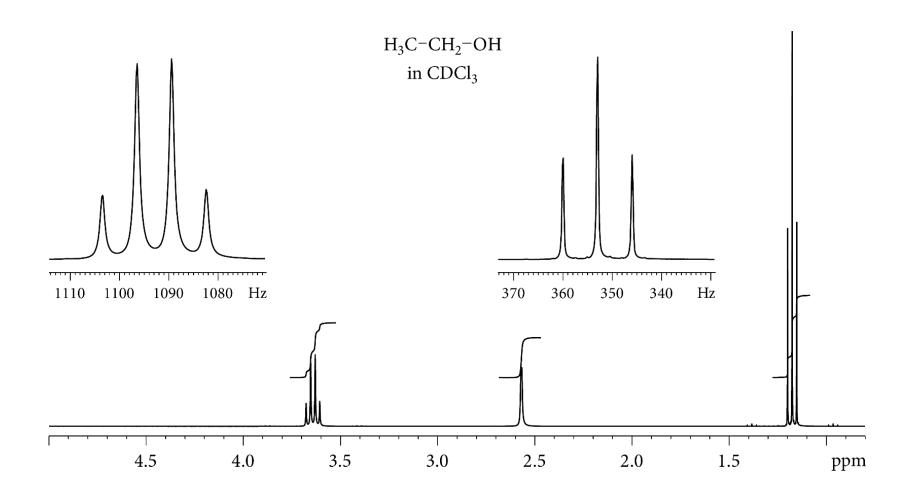
$$^{3}J_{2,3} = 1.8 \text{ Hz}$$

$$^{3}J_{3,4} = 3.5 \text{ Hz}$$

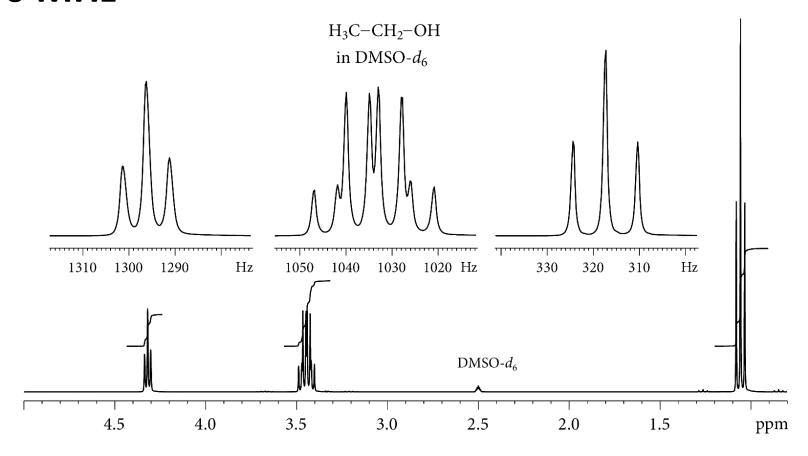
$$^{4}J_{2,4} = 0.8 \text{ Hz}$$

$$^4J_{2,5} = 1.6 \text{ Hz}$$

Accoppiamenti di idrogeni legati ad eteroatomi (OH,NH, SH)


Gli idrogeni di questi gruppi scambiano fra una molecola l'altra (o con gli idrogeni dell'acqua eventualmente presente) attraverso il legame idrogeno

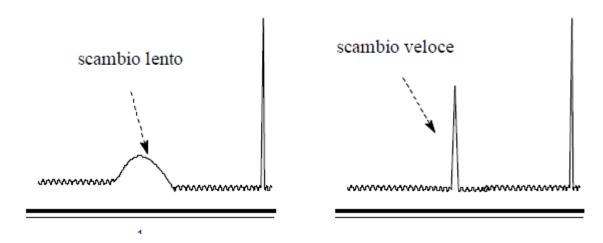
Conseguenze


1. Mancanza di accoppiamento

- Hb
 R-O
 Ha
 Ha
 Ha
- Il protone OH non permane sull'atomo di ossigeno di una sirigola molecola abbastanza a lungo da risentire dei protoni metilenici, non si ha accoppiamento.
- L' idrogeno dell'OH di RCH₂OH risuona come un singoletto.
- Lo scambio è molto veloce in CDCl₃ per la presenza di HCl (DCl)
- Uso di solventi come DMSO-d₆ o diluizioni rallentano lo scambio e si osserva la molteplicità.
- SCAMBIO VELOCE: la frequenza dello scambio è maggiore della Δv fra i segnali.
- SCAMBIO LENTO: la frequenza dello scambio è minore della Δv dei due segnali

Spettro ¹H NMR di CH₃CH₂OH in CDCl₃ a 300 MHz

Spettro ¹H NMR di CH₃CH₂OH in DMSO-d₆ a 300 MHz



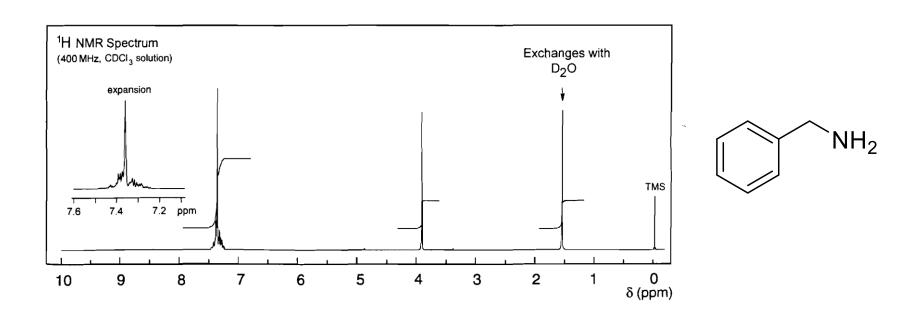
Spettro protonico NMR di CH_3CH_2OH registrato in DMSO deuterato anidro a 300 MHz. Da sinistra a destra, i picchi rappresentano OH, CH_2 , CH_3 . Il debole segnale a 2.5 ppm è dovuto al protone residuo del DMSO-d6

Scambio in OH, NH, SH

2. Allargamento del segnale OH

Segnale allargato -> scambio lento rispetto ai tempi NMR Segnale stretto -> scambio veloce rispetto ai tempi NMR.

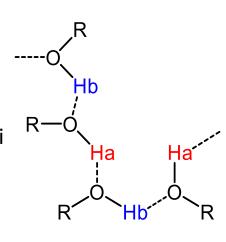
Singola molecola con gruppi scambiabili

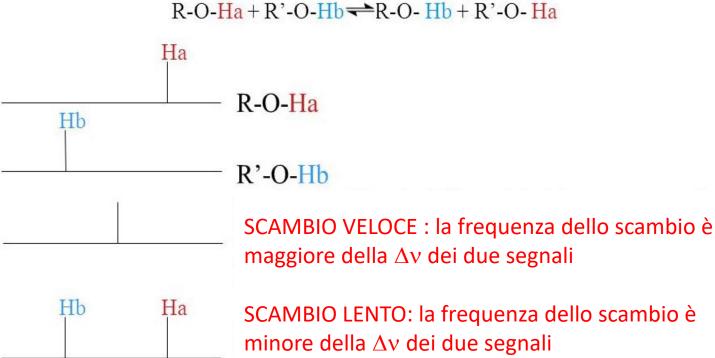

Scambio veloce: in CDCl₃ (presenza di HCl)

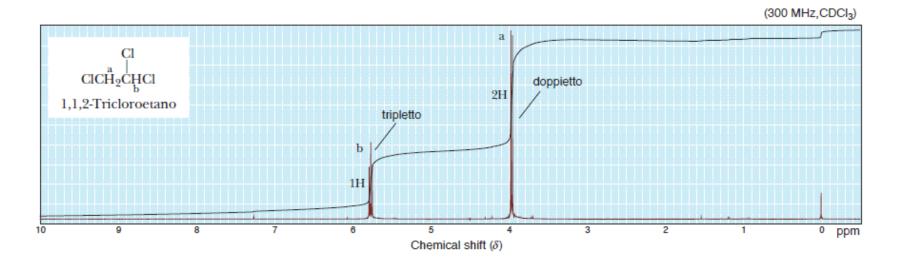
Scambio lento: in DMSO

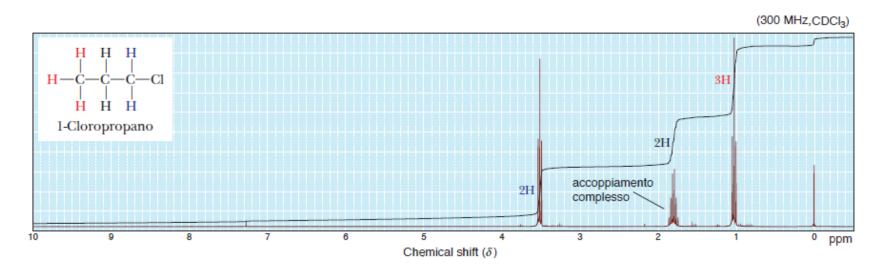
Scambio R-OH - D_2O -> R-OD + HDO: Semplificazione dello spettro (scomparsa del segnale di OH)

Idrogeni legati ad eteroatomi

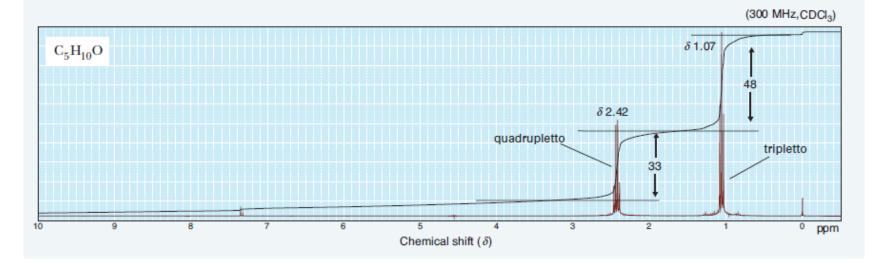

- Il segnale NMR di idrogeni acidi può essere rimosso agitando la soluzione con alcune gocce di D₂O.
- Apparirà il segnale tra 5.0 e 4.5 ppm relativo a HOD e scomparirà il segnale dell'OH




Scambio in OH, NH, SH


Effetti dello scambio

3. Segnale unico mediato in miscele di molecole o in molecole bifunzionali



$$NI = w - 1/2 x + 1/2 y + 0z + 1$$

Di seguito è riportato lo spettro 1 H-NMR di un composto che è un liquido incolore con formula molecolare $C_{5}H_{10}O$. Proponi una formula di struttura per il composto.

Calcolare per prima cosa il numero di insaturazioni dalla formula bruta

$$NI = w - \frac{1}{2}x + \frac{1}{2}y + 0z + 1$$
$$5 - 5 + 1 = 1$$

Poi l'integrazione dei segnali

48:33 = 1.45 rapporto tra le aree 1:1.5 cioè 2 : 3, visto che gli H sono in totale 10 I due segnali avranno area 4H e 6H